文档库 最新最全的文档下载
当前位置:文档库 › word版本hslogic_Delaunay三角剖分算法应用

word版本hslogic_Delaunay三角剖分算法应用

word版本hslogic_Delaunay三角剖分算法应用
word版本hslogic_Delaunay三角剖分算法应用

本课题的研究方法

三角网格化主要有两种准则:一种称为Delaunay三角剖分,即在生成的三角形网格中,各三角形的最小内角和为最大;另一种是在生成的三角网格中,所有三角形的边长和最小.其中, Delaunay三角剖分是目前研究应用最广的一种剖分方法.本课题的研究方法主要是以Delaunay三角网的两个重要性质(空外接圆性质和最大最小角度性质)以及Delaunay三角网的基本原理为基础,参照传统算法思路,在构建三角网的过程中,改进算法的实现方法,数据结构,以达到提高效率的目的。

Delaunay的重要性质

空外接圆性质:在由点集V生成的Delaunay三角网中,每个三角形的外接圆均不包含该点集的其他任意点。λ

最大最小角度性质:在由点集V生成的Delaunay三角网中,所有三角形中的最小角度是最大的,即在生成的三角形网格中,各三角形的最小内角和为最大。λ唯一性:不论从区域何处开始构网,最终都将得到一致的结果。λ

由于以上特性,决定了Delaunay三角网具有极大的应用价值。Miles证明了Delaunay三角网是“好的”三角网;Lingas进一步论证了“在一般情况下,Delauany三角网是最优的。”同时以上特性也成为建立Delaunay三角网的重要算法依据。

3.3 详细算法描述

算法基于上述的传统构建算法,但仅有两步:

第一步:

(1)在离散点集中寻找一纵坐标最小的点A。

(2)以点A为起点,寻找两个点B、D,使得向量AB与横坐标轴夹角最小,向量AD与横坐标轴夹角最大。若点A、B、D共线,将原B点标记为A,寻找点D,使得向量AD与直线AB夹角最大;寻找点C使得向量BC与线段AB夹角最小。否则,若A、B、D不共线,则寻找点C使得向量BC与线段AB夹角最小。这样,所有点都在逆时针旋转的折线DABC的左侧。

(3)上面一步生成的点C、D如果为同一点,则△ABC(或△ABD)即为包含所有不规则点的Delaunay三角形,生成凸包的过程结束跳过一下各步;否

则,继续第四步。

(4)寻找一个距离直线AB最远的点E,过E作直线AB的平行线,与射线AD、BC分别交于点D’、C’,将点D’、C’重新标记为点D、C,则凸四边形DABC 包括所有不规则点

(5)判断△ABC的外接圆是否包含点D,若是则求△ABC的外接圆半径R,在射线BC上距点C2.1R远处取一点D’,并将点D’重新标记为点D,则凸四边形DCBA即为所求得的初始凸包。若△ABC的外接圆不包含点D,则凸四边形DCBA即为所求得的初始凸包。

第二步:不规则点内插

在原有Delaunay三角形网的基础上,将其余离散点依次内插,形成Delaunay 三角网。该算法原理遵循传统(TSAI)离散点内插算法。

内插的计算机实现:

将第一步中形成的初始Delaunay三角形放入Delaunay三角形链表。并建立临时三角形链表,放置新生成的三角形,初始值为空。

(1)若没到点集链表的尾端,按顺序取不规则点中的一个点O;将临时三角形链表清空。

(2)若Delaunay三角形链表不为空,从该链表中按顺序取一个,称为当前三角形。若为空,转(5)。

(3)若当前三角形的外接圆不包含点O,转(2);否则,将当前三角形与临时链表中的所有三角形依次比较,将临时三角形链表中的与当前三角形有公共边的全部删除;并且将当前三角形中的公共边标记出,若当前三角形的公共边数达到3,转(4)

(4)将点O与当前三角形的非公共边连接成新的三角形,放入临时三角形链表的尾部,同时从Delaunay三角形链表中删除当前三角形转(2)。

(5)判断临时三角形链表是否为空,若否,将临时三角形中的所有三角形全部放入Delaunay三角形链表。

不规则三角网的算法设计与实现10页word文档

1 引言 地球表面高低起伏,呈现一种连续变化的曲面,这种曲面无法用平面地图来确切表示。于是我们就利用一种全新的数字地球表面的方法——数字高程模型的方法,这种方法已经被普遍广泛采用。数字高程模型即DEM (Digital Elevation Model),是以数字形式按一定结构组织在一起,表示实际地形特征空间分布的模型,也是地形形状大小和起伏的数字描述。 由于地理信息系统的普及,DEM作为数字地形模拟的重要成果已经成为国家空间数据基础设施(NSDI)的基本内容之一,并被纳入数字化空间框架(DGDF)进行规模化生产,已经成为独立的标准基础产品[5]。DEM有三种主要的表示模型:规则格网模型,等高线模型和不规则三角网。格网(即GRID)DEM在地形平坦的地方,存在大量的数据冗余,在不改变格网大小情况下,难以表达复杂地形的突变现象,在某些计算,如通视问题,过分强调网格的轴方向。不规则三角网(简称TIN,即Triangulated Irregular Network)是另外一种表示数字高程模型的的方法(Peuker等,1978),它既减少了规则格网带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高线的方法。不规则三角网能随地形起伏变化的复杂性而改变采样点的密度和决定采样点的位置,因而它能够避免地形起伏平坦时的数据冗余,又能按地形特征点如山脊,山谷线,地形变化线等表示数字高程特征。

基于三角形的表面建模可适合所有的数据结构,且三角形在形状和大小方面有很大灵活性,能很容易地融合断裂线,生成线或其他任何数据,因此基于三角形的方法在地形表面建模中得到了越来越多的注意,已经成为表面建模的主要方法之一。VB语言简洁易学,对于学习GIS的学生来说无疑是接受很容易而且较快的一门计算机编程和开发语言,也是大多数学生最熟悉和了解的语言。正是基于对生成不规则三角网算法的研究和满足学GIS的学生对VB语言的喜爱和熟悉的情况下,本文就主要介绍用三角网生长算法生成不规则三角网及其在VB6.0环境下的实现。 2 TIN的算法种类及各算法特点 在介绍构成TIN各种算法之前我们要来了解认识一下一个重要法则——Delaunay三角网法则。通常构建三角网并不考虑地性线(山脊线,山谷线)的骨架作用,但是,由于用等高线数据构建三角网时,由于地形的复杂多样,有的地区存在因地形突变而形成的断裂线等特殊地貌。另外一些地区存在大面积水域等内部不需要构网的区域,因此,在精度要求较高的TIN中,必须考虑以上问题。因此此时应顾及地性线,断裂线,水域线等特殊情况,也就是应构建约束—Delaunay三角网。约束法是基于约束图计算约束D—三角剖分[1,9](简称CDT,即Constrained Delaunay Triangulation)构造算法[8],这种Delaunay三角网满足这样的法则:Delaunay三角网为相互邻接且互不重叠的三角形的集合,每一个三角形的外接圆内不包含其他点。Delaunay三角网由对应Voronoi多边形的点连接而成。Delaunay三角形有三个相邻点连接而成,这三个相邻顶点对应的

Delaunay三角形构网的分治扫描线算法

第36卷 第3期测 绘 学 报 Vol.36,No.3  2007年8月 ACTA GEODAETICA et CARTO GRAPHICA SINICA Aug ,2007 文章编号:100121595(2007)0320358205中图分类号:P208 文献标识码:A Delaunay 三角形构网的分治扫描线算法 芮一康,王结臣 (南京大学地理信息科学系,江苏南京210093) A N e w Study of Compound Algorithm B ased on Sw eepline and Divide 2and 2conquer Algorithms for Constructing Delaunay T riangulation RU I Y i 2kang ,WAN G Jie 2chen (Depart ment of Geographic Inf ormation Science ,N anji ng U niversity ,N anji ng 210093,Chi na ) Abstract :As one of the most important DTM model ,Delaunay triangulation is widely applied in manifold fields.A wide variety of algorithms have been proposed to construct Delaunay triangulation ,such as divide 2and 2conquer ,in 2cremental insertion ,trangulation growth ,and so on.The compound algorithm is also researched to construct Delau 2nay triangulation ,and prevalently it is mainly based on divide 2and 2conquer and incremental insertion algorithms.This paper simply reviews and assesses sweepline and divide 2and 2conquer algorithms ,based on which a new com 2pound algorithm is provided after studying the sweepline algorithm seriously.To start with ,this new compound al 2gorithm divides a set of points into several grid tiles with different dividing methods by divide 2and 2conquer algo 2rithm ,and then constructs subnet in each grid tile by sweepline algorithm.Finally these subnets are recursively merged into a whole Delaunay triangulation with a simplified efficient LOP algorithm.For topological structure is im 2portant to temporal and spatial efficiency of this algorithm ,we only store data about vertex and triangle ,thus edge is impliedly expressed by two adjacent triangles.In order to fit two subnets merging better ,we optimize some data structure of sweepline algorithm.For instance ,frontline and baseline of triangulation are combined to one line ,and four pointers point to where maximum and minimum of x axis and y axis are in this outline.The test shows that this new compound algorithm has better efficiency ,stability and robustness than divide 2and 2conquer and sweepline algo 2rithms.Especially if we find the right dividing method reply to different circumstance ,its superiority is remarkable.K ey w ords :Delaunay triangulation ;compound algorithm ;sweepline algorithm ;divide 2and 2conquer algorithm 摘 要:Delaunay 三角网作为一种主要的DTM 表示法,具有极其广泛的用途。基于分治算法和逐点插入法的合成算法是目前研究较多的用于生成Delaunay 三角网的合成算法。简要介绍和评价扫描线算法和分治算法后,提出一种新的基于这两种算法的合成算法。该方法兼顾空间与时间性能,稳定性较高,分别较扫描线算法和分治算法,运行效率和鲁棒性更优。 收稿日期:2006206221;修回日期:2007202206 基金项目:国家自然科学基金(40401046) 作者简介:芮一康(19832),男,江苏溧阳人,研究生,主要从事地理信息系统理论与应用研究。 关键词:Delaunay 三角网;合成算法;扫描线算法;分治算法 1 引 言 2维平面域内任意离散点集的不规则三角网(TIN 2Triangular Irregular Network )的构建是GIS 数据表达、管理、集成和可视化的一项重要内 容,也是地学分析、计算机视觉、表面目标重构、有限元分析、道路CAD 等领域的一项重要的应用技 术。在所有生成TIN 的方法中,Delaunay 三角网 最优,它尽可能避免了病态三角形的出现,常常被用来生成TIN 。Delaunay 三角网是Voronoi 图的直线对偶图,即是连接所有相邻的Voronoi 多边形的生长中心所形成的三角网。它有以下两条重要性质[1]:空外接圆性质,即由点集所形成的三角网中,每个三角形的外接圆均不包含点集中的

一种基于TDOA与三角形加权质心定位的混合算法

邮局订阅号:82-946120元/年技术创新 软件时空 《PLC 技术应用200例》 您的论文得到两院院士关注 一种基于TDOA 与三角形加权质心定位的混合算法 A Hybrid Algorithm Based On TDOA And Triangle Weighted Centroid Localization (1.兰州大学;2.总参谋部通信训练基地) 傅涛 1,2 杨凌 1 李晓燕 1 闫胜武 1 FU Tao YANG Ling LI Xiao-yan YAN Sheng-wu 摘要:提出一种基于TDOA 与三角形加权质心定位的混合算法,该算法仅采用三个信标节点,充分利用节点的数据处理单元和通信单元,通过三角形加权质心定位算法得到一个定位信息,同时待定节点充分利用接收信号进行相关运算,求时差得到另一个定位信息。对两组定位信息比较、取均值,得到相对稳定的定位信息,实验证明该算法不仅减小了定位误差,提高了定位精度,而且解决了TDOA 的模糊定位问题。 关键词:TDOA;信标节点;三角形加权质心定位;混合定位 中图分类号:TP393 文献标识码:A Abstract:A hybrid algorithm based on TDOA and triangle weighted centroid localization was proposed.This algorithm only used three beacon nodes,make full use of the data processing unit and node communication unit,We can get a location information through the triangle weighted centroid localization algorithm,and at the same time,an Unknown node make full use of accept signal related calculation,for time to get another location information.For both groups positioning information comparison,Calculate average and get a relatively stable location information,the experiment shows that this algorithm not only improve location accuracy,reducing the positioning error,and solve the problem of the fuzzy TDOA localization. Key words:TDOA;Beacon nodes;Triangle weighted centroid localization;Hybrid localization 文章编号:1008-0570(2012)10-0395-02 1引言 在无线传感器网络(WSN)中,没有位置信息的监测消息是毫无意义的,因而节点定位技术成为无线传感器网络中的一项关键支撑技术。依据定位过程中是否需要测量实际节点间的距离,可将WSN 定位算法分为基于测距定位算法(Range-Based)和基于非测距定位算法(Range-Free)。前者包括:到达时间法 (TOA)、 到达时间差法(TDOA)、到达角度法(AOA)、信号强度法(RSSI)等。后者包括:质心算法、DV-HOP 算法、Amorphous 算法和APIT 算法等。事实上,每种定位算法都有其适用范围和局限性,因而本文提出一种基于TDOA 与三角形加权质心定位的混合算法。 2TDOA 双曲线定位算法 WSN 中传统的TDOA 测距技术是利用两种不同信号(一般是射频信号和超声波)到达同一节点所产生的时间差来确定节点间的距离,不仅增加了硬件成本和体积,而且应用规模受限,不符合本文要求,而移动通信系统中的TDOA 作为一种双曲线定位技术,可以很好的移植到WSN 当中,在不增加节点硬件成本的情况下完成节点定位功能。 2.1TDOA 定位算法原理如图1所示,假设A(x A ,y A )、B(x B ,y B )、C(x C ,y C )是三个信标节点,O(x,y)点是待定节点,T ij 表示信号从i 点到待定节点所用时间与信号从j 点到待定节点所用时间差,v 表示信号传播速度,d ij 表示待定节点到信标节点i 和j 点的距离差,解以下双曲线方程组即可得出未知节点的坐标,但此种方法存在模糊定位问题,可能存在双解两交点的情况,需要优化。 2.2TDOA 互相关方法数学模型 TDOA 算法关键在于得到两个信标节点到待定节点的时间差T 。直接计算TOA 需要节点达到严格同步,会大幅度增加节点的成本和能量消耗,实现起来困难,所以本文采用互相关技术求解时间差T,从而达到不增加节点硬件成本的效果。 如图1所示,当待定节点发起请求定位信号时,信标节点A 和B 发射的连续波信号为s(t),经传输后受到噪声干扰,待定节点O 接收到信号分别为x 1(t)、x 2(t): 由(2)式化简可得(3)式: 式中:T 是传输时延,T=d 1-d 2;A 为幅度比,A=A 1/A 2,则待定节点接收到信号的互相关函数为: 根据自相关函数的性质,,可以用互相关函数达到极大值来估计时延差T 。当取极大值时,τ就是我们需要测算的到达时间差T 的值,将T 代入公式,得解。 3基于RSSI 的定位算法 3.1基于RSSI 的三角形质心定位算法 傅涛:讲师硕士研究生 395--

三角网算法

三角网算法 (2010-11-15 10:54:01) 原作:Paul Bourke / 1989.1 翻译:robter_x 原文出处: https://www.wendangku.net/doc/c112152251.html,.au/~pbourke/terrain/triangulate/ 这是一个适用于地形模型的三角网算法。 摘要(略) 介绍 有很多技术能够应用于表面插值,也就是说,已知一些采样点高度,求与这些采样点接近的某点的高度。一些常用的方法是邻接插值,表面补丁,二次曲面,多边形插值,样条插值和下面将要描述的丹尼三角网(Delauney Triangulation)。一些插值方法经常应用于经验数据的显示,例如,地形模型中的原始数据来源于调查,气象中心的气象分析数据,或有限元分析筛选出的数据等。 这篇文章讨论的技术不仅适用于地形模型,而且适用于其它方面,这个技术具有下列特点 有一些地方的采样点密度高,而另一些地方的采样点密度低。例如,在地形模型中,一般水边界的内部的采样点呈低密度分布,而在一些较复杂的地方,采样点呈高密度分布。 由于地形表面的不连续,导致采样平面上的采样点较密集。这些可能是自然情况,如,悬岩和河岸,也可能是人工制造的不连续,如围墙。很多平滑方法不能很好的处理这种情况,特别是那些基于多边形的函数将导致表面尖突,摆动和不稳定。 采样点经常沿着等值线分布,这是由于采样点的来源可能是等值线图或者地质调查组的实际勘探。这是导致采样点密度不一致的另一个原因。沿着采样点曲线有较高的采样点密度,而与采样点曲线垂直的路径,除非遇到另一条采样点曲线,否则,没有采样点。 经常需有处理大量的采样点。对一个适用的技术来说,随着采样点数量的增加,处理采样所需的时间应该适度的增加。典型的采样点数量一般是100~100000,对于一个自动化的取样方法来说,通常会有这么大数量的采样点。 获得的采样点一般是逐步增多的。最初获得的采样点被分析,对于感兴趣的地方可能会增加采样密度。很显然,在分析结果上增加一些新的采样点来进一步分析比对所有的采样点重新分析要有利。

三角剖分

Delaunay三角剖分算法 默认分类2009-12-16 11:41:23 阅读33 评论0 字号:大中小订阅 转载:https://www.wendangku.net/doc/c112152251.html,/renliqq/archive/2008/02/06/1065399.html 1. 三角剖分与Delaunay剖分的定义 如何把一个散点集合剖分成不均匀的三角形网格,这就是散点集的三角剖分问题,散点集的三角剖分,对数值分析以及图形学来说,都是极为重要的一项预处理技术。该问题图示如下: 1.1.三角剖分定义 【定义】三角剖分:假设V是二维实数域上的有限点集,边e是由点集中的点作为端点构成的封闭线段, E为e的集合。那么该点集V的一个三角剖分T=(V,E)是一个平面图G,该平面图满足条件: 1.除了端点,平面图中的边不包含点集中的任何点。 2.没有相交边。 3.平面图中所有的面都是三角面,且所有三角面的合集是散点集V的凸包。 1.2. Delaunay三角剖分的定义 在实际中运用的最多的三角剖分是Delaunay三角剖分,它是一种特殊的三角剖分。先从Delaunay边说起: 【定义】Delaunay边:假设E中的一条边e(两个端点为a,b),e若满足下列条件,则称之为Delaunay边:存在一个圆经过a,b两点,圆内(注意是圆内,圆上最多三点共圆)不含点集V中任何其他的点,这一特性又称空圆特性。 【定义】Delaunay三角剖分:如果点集V的一个三角剖分T只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。 1.3.Delaunay三角剖分的准则 要满足Delaunay三角剖分的定义,必须符合两个重要的准则:

delaunay三角网生长准则及算法

Delaunay 三角网是Voronoi(或称thiessen多边形,V 图)图的伴生图形 ◆Delaunay 三角网的定义: 由一系列相连的但不重叠的三角形的集合, 而且这些 三角形的外接圆不包含这个面域的其他任何点。 ◆Voronoi图的定义: Voronoi图把平面分成N 个区,每一个区包括一个点, 该点所在的区域是距离该点最近的点的集合。 ◆Delaunay三角网的特性: ◆不存在四点共圆; ◆每个三角形对应于一个Voronoi图顶点; ◆每个三角形边对应于一个Voronoi图边; ◆每个结点对应于一个Voronoi图区域; ◆Delaunay图的边界是一个凸壳; ◆三角网中三角形的最小角最大。 空外接圆准则最大最小角准则最短距离和准则 在TIN中,过每个三角形的外接圆均不包含点集的其余任何点在TIN中的两相邻三角形形成 的凸四边形中,这两三角形 中的最小内角一定大于交换 凸四边形对角线后所形成的 两三角形的最小内角 一点到基边的两端的距离 和为最小 Delaunay三角剖分的重要的准则

张角最大准则面积比准则对角线准则 一点到基边的张角为最大三角形内切圆面积与三角形 面积或三角形面积与周长平 方之比最小 两三角形组成的凸四边形 的两条对角线之比。这一 准则的比值限定值,须给 定,即当计算值超过限定 值才进行优化 Delaunay三角剖分的重要的准则 不规则三角网(TIN)的建立 ●三角网生长算法就是从一个“源”开始,逐步形成覆盖整个数据区域的三角网。 ●从生长过程角度,三角网生长算法分为收缩生长算法和扩张生长算法两类。 方法说明方法实例 收缩生长算法先形成整个数据域的数据边界(凸壳), 并以此作为源头,逐步缩小以形成整个三 角网 分割合并算法 逐点插入算法 扩张生长算法从一个三角形开始向外层层扩展,形成覆 盖整个区域的三角网 递归生长算法

delaunay算法简介

三角剖分原理: 很多时候我们获取的信息信号都是很离散的信号,比如大地高程测量时的成果测网,纸质各种参数曲线的数字化数据等等,靠大量增加采样点的方法不现实而且会超乎想象的增加处理的计算量,通过趋势分析插值的方法可以使得数字化的模型更逼近原始模型,但是终归于这些离散数据是要通过一种方式在电脑中成为一种整体数据,不管是2d还是3d。 三角剖分最终是要将离散的数据通过连接成很多三角形来达到面化或体化的目的(四面体其实就是四个三角形)。那么我们是不是可以随便来连三角形呢?当然不行了,咱们连成的面或体要与离散化前的原始模型越接近越好。 怎么样才能使咱们连成的面或体要与离散化前的原始模型越接近越好呢?一般来说每个离散点都有一定的作用范围,那么我们在连三角形是不是就要想到,尽量让每个三角形内的三个点相对来说隔得近一点。 首先有两个原则: 1 产生的三角形不相重叠。(如果重叠,那么其中的一个三角形岂不是多余了) 2 不产生新的顶点。(如果产生新的顶点了,那么这个顶点的值我们可以确认它符合于原始模型吗?),不过这条原则很难完全保证不产生。 然后有两个问题要解决:

1 面化或体化时是否要考虑到边界的问题?也就是是否考虑边界离散点的凹凸判断,如果要考虑的话,所有边界点依次相连就行,如果不用考虑的话,所有凸点边界点依次相连就行。一般来说是要考虑的。 2 面化或体化时是否要考虑到面内或体内空洞的问题?也就是是否考虑内部空白区的判断,如果要考虑的话,内部空白区的边界点要跟问题1同等考虑。 再次我们看一下经典的三角剖分方法: 谈到三角剖分,这个名字你不得不熟悉,这就是经典---Delaunay 三角剖分。 Delaunay三角剖分具有四个特有的性质: (1)保证最邻近的点构成三角形,即三角形的边长之和尽量最小,且每个Delaunay三角形的外接圆不包含面内的其他任何点,称之为Delaunay三角网的空外圆性质。这个特征已经作为创建Delaunay三角网的一项判别标准; (2)它的另一个性质最大最小角性质:在由点集中所能形成的三角网中,Delaunay三角网中三角形的最小内角尽量最大,即三角形尽量接近等边三角形,从这个意义上讲,Delaunay三角网是“最接近于规则化的”的三角网。 (3)Delaunay三角网是唯一的。 (4)三角网的外边界构成了点集的凸多边形“外壳”; 大概的道理我们是懂了,但是给你任意一些点,你采用什么思路

基于delaunay三角剖分的三维地形生成

基于delaunay三角剖分的三维地形生成 1、问题背景 地图是几个世纪以来最重要的空间信息表达的载体“近年来随着高技术 的发展特别是基于计算机平台GIS的发展,地理信息系统得到日益广泛的应用。 地形与人类的生产生活息息相关,在城市规划、路径选取、资源调查与分配、工程勘查与设计、项目选址、环境监测、灾害预测与预报、军事、游戏娱乐等领域有广泛的应用,因此人们一直关心如何真实地表达自然界的地形,以满足人们生活的需要。目前,随着计算机技术的进一步发展,计算能力的不断提高,使用计算机进行地的三维表达成为目前研究的热点,这种地形的表达方式,不但感觉直观、真实性好、而且具有二维电子地图的其它优点,例如分层显示!位置顶点查找等。二维地形生成技术是当今社会的热门技术,正在被越来越多的人所重视和研究。 2、算法描述 Lawson提出了用逐点插入法建立D-三角网的算法思想[11]。Lee和Schachter,Bowyer,Watson,Sloan,Macedonio和Pareschi,Floriani和Puppo,Tsai先后进行了发展和完善。 本次实验算法为delaunay三角剖分的逐点插入法,算法步骤如下: 1、创建一个最大的三角形包含所有离散的数据点,构成初始的三角网。 2、遍历各点(p) (1)、在三角网查找包含p的三角形t。 (2)、若p在三角形内:p与三角形t的三个顶点相连构成三个三角形。加 入三角网中。如下图:

若p 在三角形边上:找出边所对应的另一个三角形的顶点,并与当前的三角形的顶点构成四个顶点,加入三角形网中。如下图: (3)、移除三角形t 。 (4)、用LOP 算法对各个三角形进行优化处理。 3、移除外围三角形。 LOP 算法 在相邻的两个三角形( abd 和bcd) 所组成的四边形中,如果对角线交换所得的两个新三角形ABC 和ABD( 如下图) 比原来的两个三角形更优,则用新的两个三角形替代原来的两个三角形。更优的标准之一是最小角度最大原则: 调整前的二个三角形共六个内角中的最小角和调整后的六个角中的最小角相比较,若前者小于后者则调整,否则不调整; 标准之二是空外接圆性质: 在由点集V 所形成。D-三角网中,其每个三角形的外接圆均不包含点集V 中的其他任意点。结合本文定义的数据结构,本文采取了以相邻三角形作为优化着眼点的处理算法。根据Delaunay 三角网空外接圆性质有以下判断: 当sin( ∠C + ∠D) ≤0, 不进行优化,p

word版本hslogic_Delaunay三角剖分算法应用

本课题的研究方法 三角网格化主要有两种准则:一种称为Delaunay三角剖分,即在生成的三角形网格中,各三角形的最小内角和为最大;另一种是在生成的三角网格中,所有三角形的边长和最小.其中, Delaunay三角剖分是目前研究应用最广的一种剖分方法.本课题的研究方法主要是以Delaunay三角网的两个重要性质(空外接圆性质和最大最小角度性质)以及Delaunay三角网的基本原理为基础,参照传统算法思路,在构建三角网的过程中,改进算法的实现方法,数据结构,以达到提高效率的目的。 Delaunay的重要性质 空外接圆性质:在由点集V生成的Delaunay三角网中,每个三角形的外接圆均不包含该点集的其他任意点。λ 最大最小角度性质:在由点集V生成的Delaunay三角网中,所有三角形中的最小角度是最大的,即在生成的三角形网格中,各三角形的最小内角和为最大。λ唯一性:不论从区域何处开始构网,最终都将得到一致的结果。λ 由于以上特性,决定了Delaunay三角网具有极大的应用价值。Miles证明了Delaunay三角网是“好的”三角网;Lingas进一步论证了“在一般情况下,Delauany三角网是最优的。”同时以上特性也成为建立Delaunay三角网的重要算法依据。 3.3 详细算法描述 算法基于上述的传统构建算法,但仅有两步: 第一步: (1)在离散点集中寻找一纵坐标最小的点A。 (2)以点A为起点,寻找两个点B、D,使得向量AB与横坐标轴夹角最小,向量AD与横坐标轴夹角最大。若点A、B、D共线,将原B点标记为A,寻找点D,使得向量AD与直线AB夹角最大;寻找点C使得向量BC与线段AB夹角最小。否则,若A、B、D不共线,则寻找点C使得向量BC与线段AB夹角最小。这样,所有点都在逆时针旋转的折线DABC的左侧。 (3)上面一步生成的点C、D如果为同一点,则△ABC(或△ABD)即为包含所有不规则点的Delaunay三角形,生成凸包的过程结束跳过一下各步;否

有限元分析中的二维Delaunay三角网格剖分代码实现

有限元分析中的二维Delaunay三角网格剖分代码实现 //二维平面点集的Delaunay三角剖分 #include "stdafx.h" #include #include #include #include using namespace std; #define point_size 600 #define pi 3.1415926 struct point { float x,y; }; struct triangle { point* Pv[3]; float r_of_sqrt; point o_of_tr; }; struct d_t_node { triangle Tnode; d_t_node*Pt_l[3]; int position_in_dt; int zhuangtai_when_new; }; point p1,p2,p3,p4; int n; point p[point_size]; int dt_last=0; point p_in_dtriangle1[point_size+1]; d_t_node Dtriangle[point_size]; point p_in_dtriangle2[point_size+1]; d_t_node *queue_t[point_size]; point p_in_dtriangle3[point_size+1]; int ps_last=0; int queue_t_last=0; point get_spoint_cin(point*p,int n); point get_spoint_rank(point*p,int n);

delaunay算法简介.(优选.)

最新文件---- 仅供参考------已改成word文本------ 方便更改 三角剖分原理: 很多时候我们获取的信息信号都是很离散的信号,比如大地高程测量时的成果测网,纸质各种参数曲线的数字化数据等等,靠大量增加采样点的方法不现实而且会超乎想象的增加处理的计算量,通过趋势分析插值的方法可以使得数字化的模型更逼近原始模型,但是终归于这些离散数据是要通过一种方式在电脑中成为一种整体数据,不管是2d还是3d。 三角剖分最终是要将离散的数据通过连接成很多三角形来达到面化或体化的目的(四面体其实就是四个三角形)。那么我们是不是可以随便来连三角形呢?当然不行了,咱们连成的面或体要与离散化前的原始模型越接近越好。 怎么样才能使咱们连成的面或体要与离散化前的原始模型越接近越好呢?一般来说每个离散点都有一定的作用范围,那么我们在连三角形是不是就要想到,尽量让每个三角形内的三个点相对来说隔得近一点。 首先有两个原则: 1 产生的三角形不相重叠。(如果重叠,那么其中的一个三角形岂不是多余了) 2 不产生新的顶点。(如果产生新的顶点了,那么这个顶点的值我们可以确认它符合于原始模型吗?),不过这条原则很难完全保证不产生。

然后有两个问题要解决: 1 面化或体化时是否要考虑到边界的问题?也就是是否考虑边界离散点的凹凸判断,如果要考虑的话,所有边界点依次相连就行,如果不用考虑的话,所有凸点边界点依次相连就行。一般来说是要考虑的。 2 面化或体化时是否要考虑到面内或体内空洞的问题?也就是是否考虑内部空白区的判断,如果要考虑的话,内部空白区的边界点要跟问题1同等考虑。 再次我们看一下经典的三角剖分方法: 谈到三角剖分,这个名字你不得不熟悉,这就是经典---Delaunay 三角剖分。 Delaunay三角剖分具有四个特有的性质: (1)保证最邻近的点构成三角形,即三角形的边长之和尽量最小,且每个Delaunay三角形的外接圆不包含面内的其他任何点,称之为Delaunay三角网的空外圆性质。这个特征已经作为创建Delaunay三角网的一项判别标准; (2)它的另一个性质最大最小角性质:在由点集中所能形成的三角网中,Delaunay三角网中三角形的最小内角尽量最大,即三角形尽量接近等边三角形,从这个意义上讲,Delaunay三角网是“最接近于规则化的”的三角网。 (3)Delaunay三角网是唯一的。 (4)三角网的外边界构成了点集的凸多边形“外壳”;

基于MATLAB实现二维delaunay三角剖分

34 基于MATLAB 实现二维delaunay 三角剖分 刘锋涛 凡友华 (哈尔滨工业大学深圳研究生院 深圳 518055) 【摘要】在已知凸多边形的顶点坐标的前提情况下,利用MATLAB 中的meshgrid 函数产生多边 形附近矩形区域内的网格点的坐标,然后再利用inpolygon 函数判断哪些点位于多边形内和哪 些点位于多边形的边界上。在此基础上利用delaunay 函数来完成delaunay 三角剖分。 【关键词】delaunay 三角剖分;MATLAB 网格划分是有限元分析前处理中的关键步骤,网格划分的密度以及质量对有限元计算的精度、效率以及收敛性有着重要的影响作用。自20世纪70年代开始,关于有限元网格生成方法的研究已经取得了许多重要成果,提出许多有效的算法。Ho-Le 对网格生成方法进行了系统的分类[1]。许多学者也对网格生成的方法进行了综述,如我国的学者胡恩球等[2]、关振群等[3]。 Delaunay 三角剖分(简称DT)是目前最流行的通用的全自动网格生成方法之一。DT 有两个重要特性:最大-最小角特性和空外接圆特性。DT 的最大-最小角特性使它在二维情况下自动地避免了生成小内角的长薄单元。因此特别适用于有限元网格生成。大体上可将DT 算法分为三大类:分治算法,逐点插入法和三角网生长法。经典DT 技术已经相当成熟,近年来的研究重点是约束DT 的边界恢复算法,以及如何克服算法退化现象所产生的薄元(sliver element)问题[3]。 然而,实现DT 有限元网格生成,对于非计算机图形学专业的工程师来说还是很复杂的。在处理一些对有限元网格划分质量不过的问题时,如极限分析的有限元方法,可以采用一些更为简单的方法来实现。在Matlab 计算软件中,已有一个成熟的函数delaunay 可以实现对一系列点的DT 划分。因此,本文基于Matlab 的delaunay 等一些函数来完成一个凸多边形的DT 网格划分。 1 MATLAB 中的函数 1.1 delaunay 函数 delaunay 函数可以按照DT 网格划分的要求将一个点集中的点划归某一个有限网格所有。它在Matlab 中的用法如下: =delaunay(,) or, =delaunay(,,)TRI x y TRI x y options 其输入为点集中所有点的横、纵坐标向量x 和y ,返回值为一个3m ×的矩阵,矩阵中每一行表示DT 网格中一个三角形网格的三个顶点。 1.2 meshgird 函数 为了在任意凸多边形内产生一个点集,可以利用Matlab 中的meshgrid 命令。其用法如下: [,] = meshgrid(,)X Y x y

平面点线集三角剖分的扫描算法

第24卷 第2期2004年2月北京理工大学学报 T r ansactions of Beijing Instit ute o f T echnolog y V ol.24 N o.2F eb.2004 文章编号:1001-0645(2004)02-0129-04 平面点线集三角剖分的扫描算法 周培德 (北京理工大学信息科学技术学院计算机科学工程系,北京 100081) 摘 要:提出计算平面点线集三角剖分的一种算法.该算法是利用平面扫描的思想,当扫描线达到事件点时,处理事件点,即将事件点与已被扫描的某些点连接,这样便将已扫描的区域三角剖分.当扫描线达到最左边的事件点时,处理该事件点,就完成了平面点线集的三角剖分.证明了算法的时间复杂性为O (N lb N ),其中N 是点线集中点的数目与线段端点数之和. 关键词:散乱点线集;三角剖分;平面扫描;算法;时间复杂性中图分类号:T P 301.6 文献标识码:A Sweeping Algorithm for Triangulation of Plane Point -Line Set ZHOU Pei-de (Depar tment of Co mputer Science and Engineer ing ,School o f Infor matio n Science and T echno lo gy ,Beijing Instit ut e of T echno lo gy ,Beijing 100081,China) Abstract :Sw eeping alg orithm is presented fo r the tr iangulation of plane point -line set .T he algor ithm m akes use of the idea of plane sw eeping .When the sw eep -line reaches it ,the event -po int w ill be dealt w ith,viz.,the event-point is connected w ith so me points sw ept and thus the sw ept regions are triang ulated.When the sw eep-line r eaches the leftmost event-point,the point w ill be dealt w ith ,and the triang ulation of the plane point -line set is accom plished .It is prov ed in detail that the time co mplex ities o f the alg orithm is O (N lb N ),w here N is the sum of the num ber of points and the num ber of line-seg ment endpoints w ithin the point-line set. Key words :debunching point-line set;triang ulation;plane sw eep;alg orithm;tim e co mplex ity 收稿日期:20030321 作者简介:周培德(1941-),男,教授. 平面点集三角剖分问题是计算几何中的一个重要问题,它是从许多实际问题中提出来的,至今,人们已研究了求解该问题的许多算法,其中以Delaunay 算法最为著名.将平面点集中的某些点组成点对并满足某些特殊关系,比如它们为平面线段的两个端点,而另外一些点仍为孤立点,这样便构成点线集.平面点集三角剖分问题可以转换为平面点线集的三角剖分问题,并且它们具有相同的时间复杂性下界.平面点线集三角剖分问题要求三角形的三条边或为点线集中的线段,或为点线集中不同线段端点的连线,或为点线集中点与线段端点的连线, 或为点线集中点与点的连线.三角形的顶点为点线集中的点或线段端点.另外还要求连线与连线,连线与点线集中线段均不相交.给定的平面点线集中线段互不相交(线段端点处相交除外).不难看出,平面散乱点线集三角剖分问题是平面点集三角剖分问题的一个特殊情况.按照常规,求解平面点集三角剖分的算法(比如Delaunay 三角剖分算法)可以用于平面散乱点线集的三角剖分.但在平面点集三角剖分的算法中如何保证点线集中的线段必是三角形的一条边,以及连线与点线集中线段不相交.只要解决这个问题就可以实现点线集的三角剖分.目前解决这

基于MATLAB 实现二维delaunay 三角剖分

基于MATLAB 实现二维delaunay 三角剖分 刘锋涛凡友华 (哈尔滨工业大学深圳研究生院深圳518055) 【摘要】在已知凸多边形的顶点坐标的前提情况下,利用MATLAB 中的meshgrid 函数产生多边形附近矩形区域内的网格点的坐标,然后再利用inpolygon 函数判断哪些点位于多边形内和哪些点位于多边形的边界上。在此基础上利用delaunay 函数来完成delaunay 三角剖分。 【关键词】delaunay 三角剖分;MATLAB 网格划分是有限元分析前处理中的关键步骤,网格划分的密度以及质量对有限元计算的精度、效率以及收敛性有着重要的影响作用。自20世纪70年代开始,关于有限元网格生成方法的研究已经取得了许多重要成果,提出许多有效的算法。Ho-Le 对网格生成方法进行了系统的分类[1]。许多学者也对网格生成的方法进行了综述,如我国的学者胡恩球等[2]、关振群等[3]。 Delaunay 三角剖分(简称DT)是目前最流行的通用的全自动网格生成方法之一。DT 有两个重要特性:最大-最小角特性和空外接圆特性。DT 的最大-最小角特性使它在二维情况下自动地避免了生成小内角的长薄单元。因此特别适用于有限元网格生成。大体上可将DT 算法分为三大类:分治算法,逐点插入法和三角网生长法。经典DT 技术已经相当成熟,近年来的研究重点是约束DT 的边界恢复算法,以及如何克服算法退化现象所产生的薄元(sliver element)问题[3]。 然而,实现DT 有限元网格生成,对于非计算机图形学专业的工程师来说还是很复杂的。在处理一些对有限元网格划分质量不过的问题时,如极限分析的有限元方法,可以采用一些更为简单的方法来实现。在Matlab 计算软件中,已有一个成熟的函数delaunay 可以实现对一系列点的DT 划分。因此,本文基于Matlab 的delaunay 等一些函数来完成一个凸多边形的DT 网格划分。 1MATLAB 中的函数 1.1delaunay 函数 delaunay 函数可以按照DT 网格划分的要求将一个点集中的点划归某一个有限网格所有。它在Matlab 中的用法如下: =delaunay(,) or, =delaunay(,,) TRI x y TRI x y options 其输入为点集中所有点的横、纵坐标向量x 和y ,返回值为一个的矩阵,矩阵中每一3m ×行表示DT 网格中一个三角形网格的三个顶点。 1.2meshgird 函数 为了在任意凸多边形内产生一个点集,可以利用Matlab 中的meshgrid 命令。其用法如下: [,] = meshgrid(,) X Y x y

室内定位几种算法概述

室内定位几种算法概述 一.室内定位目的和意义 随着数据业务和多媒体业务的快速增加,人们对定位与导航的需求日益增大,尤其在复杂的室内环境,如机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井等环境中,常常需要确定移动终端或其持有者、设施与物品在室内的位置信息。但是受定位时间、定位精度以及复杂室内环境等条件的限制,比较完善的定位技术目前还无法很好地利用。因此,专家学者提出了许多室内定位技术解决方案,如A-GPS定位技术、超声波定位技术、蓝牙技术、红外线技术、射频识别技术、超宽带技术、无线局域网络、光跟踪定位技术,以及图像分析、信标定位、计算机视觉定位技术等等。这些室内定位技术从总体上可归纳为几类,即GNSS技术(如伪卫星等),无线定位技术(无线通信信号、射频无线标签、超声波、光跟踪、无线传感器定位技术等),其它定位技术(计算机视觉、航位推算等),以及GNSS 和无线定位组合的定位技术(A-GPS或A-GNSS)。 由于在室内环境下对于不同的建筑物而言,室内布置,材料结构,建筑物尺度的不同导致了信号的路径损耗很大,与此同时,建筑物的内在结构会引起信号的反射,绕射,折射和散射,形成多径现象,使得接收信号的幅度,相位和到达时间发生变化,造成信号的损失,定位的难度大。虽然室内定位是定位技术的一种,和室外的无线定位技术相比有一定的共性,但是室内环境的复杂性和对定位精度和安全性的特殊要求,使得室内无线定位技术有着不同于普通定位系统的鲜明特点,而且这些特点是户外定位技术所不具备的。因此,两者区域的标识和划分标准是不同的。基于室内定位的诸多特点,室内定位技术和定位算法已成为各国科技工作者研究的热点。如何提高定位精度仍将是今后研究的重点。 二.室内定位技术的国内外发展趋势 室内GPS定位技术 GPS是目前应用最为广泛的定位技术。当GPS接收机在室内工作时,由于信号受建筑物的影响而大大衰减,定位精度也很低,要想达到室外一样直接从卫星广播中提取导航数据和时间信息是不可能的。为了得到较高的信号灵敏度,就需要延长在每个码延迟上的停留时间,A-GPS技术为这个问题的解决提供了可能性[7]。室内GPS技术采用大量的相关器并行地搜索可能的延迟码,同时也有助于实现快速定位。 利用GPS进行定位的优势是卫星有效覆盖范围大,且定位导航信号免费。缺点是定位信号到达地面时较弱,不能穿透建筑物,而且定位器终端的成本较高。 室内无线定位技术 随着无线通信技术的发展,新兴的无线网络技术,例如WiFi、ZigBee、蓝牙和超宽带等,在办公室、家庭、工厂等得到了广泛应用。 ——红外线室内定位技术。红外线室内定位技术定位的原理是,红外线IR标识发射调制的红外射线,通过安装在室内的光学传感器接收进行定位。虽然红外线具有相对较高的室内定位精度,但是由于光线不能穿过障碍物,使得红外射线仅能视距传播。直线视距和传输距离较短这两大主要缺点使其室内定位的效果很差。当标识放在口袋里或者有墙壁及其他遮挡时就不能正常工作,需要在每个房间、走廊安装接收天线,造价较高。因此,红外线只适合短距离传播,而且容易被荧光灯或者房间内的灯光干扰,在精确定位上有局限性。 ——超声波定位技术。超声波测距主要采用反射式测距法,通过三角定位等算法确定物体的位置,即发射超声波并接收由被测物产生的回波,根据回波与发射波的时间差计算出待测距离,有的则采用单向测距法。超声波定位系统可由若干个应答器和一个主测距器组成,主测距器放置在被测物体上,在微机指令信号的作用下向位置固定的应答器发射同频率的无线电信号,应答器在收到无线电信号后同时向主测距器发射超声波信号,得到主测距器与各个应答器之间的距离。当同时有3个或3个以上不在同一直线上的应答器做出回应时,可以根据相关计算确定出被测物体所在的二维坐标系下的位置。超声波定位整体定位精度较高,结构简单,但超声波受多径效应和非视距传播影响很大,同时需要大量的底层硬件设施投资,成本太高。 ——蓝牙技术。蓝牙技术通过测量信号强度进行定位。这是一种短距离低功耗的无线传输技术,在室内安装适当的蓝牙局域网接入点,把网络配置成基于多用户的基础网络连接模式,并保证蓝牙局域网接入点始终是这个微微网

相关文档