文档库 最新最全的文档下载
当前位置:文档库 › 电磁感应中导轨+杆模型

电磁感应中导轨+杆模型

电磁感应中导轨+杆模型
电磁感应中导轨+杆模型

电磁感应中导轨+杆模型

电磁感应中导轨+杆模型摘要: 电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。

关键词:安培力,稳定速度,安培力做的功和热量

解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路。电磁感应和我们以前所学的力学,电学等知识有机的结合在一起能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力,其中导轨+杆的模型更是历次考试的重点和难点。下面我就具体给大家总结一下此类问题。

一模型特点

1导轨+杆模型分为单杆型和双杆型;放置的方式可分为水平,竖直和倾斜。

2导体棒在导轨上切割磁感线运动,发生电磁感应现象

3导体棒受到的安培力为变力,在安培力的作用下做变加速运动

4当安培力与其他力平衡时,导体棒速度达到稳定,称为收尾速度

二解题思路

1涉及瞬时速度问题,用牛顿第二定律求解

2求解导体棒稳定速度,用平衡条件求解

3涉及能量问题,用动能定理或者功能关系求解.

其中导体棒切割磁感线克服安培力做功→焦耳热等于克服安培力做

的功:Q=W

三两类常见的模型

例1:如图所示,固定的光滑金属导轨间距为L ,导轨电阻不计,上端a 、b 间接有阻值为R 的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中。质量为m 、电阻为r 的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持

良好接触。已知弹簧的劲度系数为k ,弹簧的

中心轴线与导轨平行。

⑴求初始时刻通过电阻R 的电流I 的大小和方向;

⑵当导体棒第一次回到初始位置时,速度变为v ,求此时导体棒的加速度大小a ;

⑶导体棒最终静止时弹簧的弹性势能为Ep ,求导体棒从开始运动直到停止的过程中,电阻R 上产生的焦耳热Q 。

【答案】⑴棒产生的感应电动势01BLv E =

通过R 的电流大小r R BLv r R E I +=+=011 电流方向为b→a

⑵棒产生的感应电动势为BLv E =2 感应电流

r R BLv r R E I +=+=22 棒受到的安培力大小

r R v L B BIL F +==22,方向沿斜面向上 根据牛顿第二定律 有 ma F mg =-θsin

解得 )(sin 22r R m v L B g a +-=θ

⑶导体棒最终静止,有 kx mg =θsin 压缩量

k mg x θ

sin = 设整个过程回路产生的焦耳热为Q 0,根据能量守恒定律 有

2001sin 2P mv mgx E Q θ+=+ 22001(sin )2P mg Q mv E k θ=+-

电阻R 上产生的焦耳热2

2001(sin )[]2P R R mg Q Q mv E R r R r k θ==+-++

例:2:如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上(两导轨与水平面的夹角也为θ),导轨上端连接一个定值电阻。导体棒a 和b 放在导轨上,与导轨垂直并良好接触。斜面上水

平虚线

电磁感应现象中的常见题型汇总(很全很细)---精华版

电磁感应现象的常见题型分析汇总(很全) 命题演变 “轨道+导棒”模型类试题命题的“基本道具”:导轨、金属棒、磁场,其变化点有: 1.图像 2.导轨 (1)轨道的形状:常见轨道的形状为U 形,还可以为圆形、三角形、三角函数图形等; (2)轨道的闭合性:轨道本身可以不闭合,也可闭合; (3)轨道电阻:不计、均匀分布或部分有电阻、串上外电阻; (4)轨道的放置:水平、竖直、倾斜放置等等. 理图像是一种形象直观的“语言”,它能很好地考查考生的推理能力和分析、解决问题的能力,下面我们一起来看一看图像在电磁感应中常见的几种应用。 一、反映感应电流强度随时间的变化规律 例1如图1—1,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里。一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定 速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始 终与磁场区域的边界平行。取它刚进入磁场的时刻t=0,在图 1-2所示的下列图线中,正确反映感应电流强度随时间变化规 律的是( ) 分析与解 本题要求能正确分解线框的运动过程(包括部分进入、全部进入、部分离开、全部离开),分析运动过程中的电磁感应现象,确定感应电流的大小和方向。 线框在进入磁场的过程中,线框的右边作切割磁感线运动,产生感应电动势,从而在整个回路中产生感应电流,由于线框作匀速直线运动,其感应电流的大小是恒定的,由右手定则,可判断感应电流的方向是逆时针的,该过程的持续时间为t=(20/20)s=1s 。 线框全部进入磁场以后,左右两条边同时作切割磁感线运动,产生反向的感应电动势,相当于两个相同的电池反向连接,以致回路的总感应电动势为零,电流为零,该过程的时间也为1s 。而当线框部分离开磁场时,只有线框的左边作切割磁感线运动,感应电流的大小与部分进入时相同,但方向变为顺时针,历时也为1s 。正确答案:C ← → 图1—1 图1—2

电磁感应现象中的单杆切割磁感线问题

电磁感应现象中的单杆切割磁感线问题 一、教学内容:电磁感应知识与应用复习之单杆切割磁感线问题 二、教学课时:二课时 三、教学课型:高三第一轮复习课 四、教学设计适合对象:高三理科学生 五、教学理念: 电磁感应现象知识的应用历来是高考的重点、热点,问题可将力学、电磁学等知识溶于一体,能很好地考查学生的理 解、推理、分析综合及应用数学处理物理问题的能力。通过近年高考题的研究,电磁感应问题每年都有“单杆切割磁感线 问题”模型的高考题出现。 而解决电磁感应单杆切割磁感线问题的关键就是借鉴或利用相似原型来启发、理解和变换物理模型,即把最基础的物 理模型进行细致的分析和深入的理解后,有目的的针对某些关键位置进行变式,从而把陌生的物理模型与熟悉的物理模型 相联系,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法?巧妙地 运用“类同”变换,“类似”变换, “类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化,从而提高了课堂教学的有效 性。 六、电磁感应教学内容与学情分析研究: 6. 1 ?教学内容分析: 电磁感应中的单杆模型包括:导轨、金属棒和磁场,所以对问题的变化点主要有: 1.针对金属棒 1)金属棒的受力情况:平行轨道方向上,除受安培力以外是否存在拉力、阻力; 2)金属棒的初始状态:静止或有一个初速度V。; 3)金属棒的运动状态:与导轨是否垂直,与磁场是否垂直,是不是绕中心点转动; 4)金属棒割磁感线状况:整体切割磁感线或部分切割磁感线。 2?针对导轨 1)导轨的形状:常见导轨的形状为U形,还可以为圆形、三角形、三角函数图形等; 2)导轨的闭合性:导轨本身可以开口,也可闭合; 3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻; 4)导轨的放置:水平、竖直、倾斜放置。 3.针对磁场 1 )磁场的状态:磁场可以是稳定不变的,也可以均匀变化或非均匀变化; 2)磁场的分布:有界或无界。 6 . 2 .学生学情分析:

电磁感应定律——单杆+导轨模型(含思路分析)

“单杆+导轨”模型 1. 单杆水平式(导轨光滑) 注:加速度a的推导,a=F 合/m(牛顿第二定律),F 合 =F-F 安 ,F 安 =BIL,I=E/R 整合一下即可得到答案。 v变大之后,根据上面得到的a的表达式,就能推出a变小 这里要注意,虽然加速度变小,但是只要和v同向,就是加速运动,是a减小的加速运动(也就是速度增加的越来越慢,比如1s末速度是1,2s末是5,3s末是6,4s末是6.1 ,每秒钟速度的增加量都是在变小的) 2.单杆倾斜式(导轨光滑) mg 最大

【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L =1.0 m ,导轨上放有垂直导轨的金属杆P ,金属杆质量为m =0.1 kg ,空间存在磁感应强度B =0.5 T 、竖直向下的匀强磁场。连接在导轨左端的电阻R =3.0 Ω,金属杆的电阻r =1.0 Ω,其余部分电阻不计。某时刻给金属杆一个水平向右的恒力F ,金属杆P 由静止开始运动,图乙是金属杆P 运动过程的v -t 图象,导轨与金属杆间的动摩擦因数μ=0.5。在金属杆P 运动的过程中,第一个2 s 内通过金属杆P 的电荷量与第二个2 s 内通过P 的电荷量之比为3∶5。g 取10 m/s 2。求: (1)水平恒力F 的大小; (2)前4 s 内电阻R 上产生的热量。 【答案】 (1)0.75 N (2)1.8 J 【解析】 (1)由图乙可知金属杆P 先做加速度减小的加速运动,2 s 后做匀速直线运动 当t =2 s 时,v =4 m/s ,此时感应电动势E =BLv 感应电流I = E R +r 安培力F ′=BIL =B 2L 2v R +r 根据牛顿运动定律有F -F ′-μmg =0 解得F =0.75 N 。

高中物理模型-电磁场中的单杆模型

模型组合讲解——电磁场中的单杆模型 秋飏 [模型概述] 在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。 [模型讲解] 一、单杆在磁场中匀速运动 例1. (2005年河南省实验中学预测题)如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A 且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。 图1 (1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少? (2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V , 当电压表满偏时,即U 1=10V ,此时电流表示数为 I U R A 112==并 设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20V a 、 b 棒受到的安培力为 F 1=BIL =40N 解得v m s 11=/ (2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为

U I R 22=并=6V 可以安全使用,符合题意。 由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以 F I I F N N 221132 4060= ==×。 二、单杠在磁场中匀变速运动 例2. (2005年南京市金陵中学质量检测)如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。一根质量为m =0.50kg 的均匀金属导体棒ab 静止在导轨上且接触良好,abMP 恰好围成一个正方形。该轨道平面ab 棒的电阻为R =0.10Ω,其他各 部分电阻均不计。开始时,磁感应强度B T 0050 =.。 图2 (1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给ab 棒施加一个水平向右F 的大小随时间t 变化关系如图2乙所示。求匀加速运动的加速度及ab 棒与导轨间的滑动摩擦力。 (2)若从t =0开始,使磁感应强度的大小从B 0开始使其以??B t =0.20T/s 的变化率均匀增加。求经过多长时间ab 棒开始滑动?此时通过ab ab 棒与导轨间的最大静摩擦力和滑动摩擦力相等) 解析:(1)当t =0时,F N F F ma f 113=-=, 当t =2s 时,F 2=8N F F B B Lat R L ma f 200--= 联立以上式得: a F F R B L t m s F F ma N f =-==-=()/210222141, (2)当F F f 安=时,为导体棒刚滑动的临界条件,则有:

高考物理双基突破二专题电磁感应中的单杆模型精讲.doc

专题32 电磁感应中的“单杆”模型 单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。 1.此类题目的分析要抓住三点: (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。 (3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。 2.单杆模型中常见的情况及处理方法: (1)单杆水平式 开始时a =F m ,杆 ab 速度v ?感 应电动势E = 开始时a =F m ,杆ab 速度v ? 感应电动势E =BLv ,经过Δt 速度为v +Δv ,此时感应

=Blv R ,安培力F =BIL =B2L2v R ,做减速运 动:v ?F ?a , 当v =0时,F =0,a =0,杆保持静止 此时 a =BLE mr ,杆 ab 速度v ?感 应电动势 BLv ?I ?安 培力F =BIL ?加速度a ,当E 感 =E 时,v 最大,且v m =E BL BLv ?I ?安 培力F 安= BIL ,由F -F 安 =ma 知a ,当a =0时,v 最大, v m = FR B2L2 【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。下列说法正确的是 A .金属棒在导轨上做匀减速运动 B .整个过程中电阻R 上产生的焦耳热为mv20 2 C .整个过程中金属棒在导轨上发生的位移为qR BL

电磁感应中的导轨模型

电磁感应中的“杆+导轨”模型 一、单棒模型 阻尼式 1.电路特点 导体棒相当于电源 2.安培力的特点 安培力为阻力,并随速度减小而减小。 3.加速度特点 加速度随速度减小而减小 4.运动特点 a 减小的减速运动 5.最终状态 静止 6.三个规律 (1)能量关系: (2)动量关系: (3)瞬时加速度: 7.变化 (1)有摩擦 (2)磁场方向不沿竖直方向 电动式 1.电路特点 导体为电动棒,运动后产生反电动势(等效于电机) 2.安培力的特点 安培力为运动动力,并随速度增大而减小。 3.加速度特点 加速度随速度增大而减小 4.运动特点 a 减小的加速运动 5.最终特征 匀速运动 6.两个极值 (1)最大加速度: v=0时,E 反=0,电流、加速度最大 (2)最大速度: 稳定时,速度最大,电流最小 7.稳定后的能量转化规律 8.起动过程中的三个规律 (1)动量关系: (2)能量关系: (3)瞬时加速度: 发电式 1.电路特点 导体棒相当于电源,当速度为v 时,电动势E =Blv 2.安培力的特点 安培力为阻力,并随速度增大而增大 v 0 22B B l v F BIl R r == +22()B F B l v a m m R r == +2 0102mv Q -=00BIl t mv -??=-0mv q Bl =Bl s q n R r R r φ???== ++22() B F B l v a m m R r == +B F BIl =(B E lv B l R r -+)=(E E B l R r -=+反)B F mg a m μ-=(B ()E lv B l g m R r μ--+) =m E I R r =+m m F mg a m μ-=,m m F BI l =min ,m E Blv I R r -=+min min mg F BI l μ===l r R Blv E B m +-2 2)(l B r R mg Bl E v m +-=μmin min ()2 min m I E I E I R r mgv μ=+++反0 m BLq mgt mv μ-=-2 12E m qE Q mgS mv μ=++B F mg a m μ-=(B () E lv B l g m R r μ--+) = F B F BIl =Blv B l R r =+22B l v R r +=v ∝

电磁感应中导轨+杆模型

电磁感应中导轨+杆模型 摘要: 电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。 关键词:安培力,稳定速度,安培力做的功和热量 解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路。电磁感应和我们以前所学的力学,电学等知识有机的结合在一起能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力,其中导轨+杆的模型更是历次考试的重点和难点。下面我就具体给大家总结一下此类问题。 一模型特点 1导轨+杆模型分为单杆型和双杆型;放置的方式可分为水平,竖直和倾斜。 2导体棒在导轨上切割磁感线运动,发生电磁感应现象 3导体棒受到的安培力为变力,在安培力的作用下做变加速运动 4当安培力与其他力平衡时,导体棒速度达到稳定,称为收尾速度 二解题思路 1涉及瞬时速度问题,用牛顿第二定律求解 2求解导体棒稳定速度,用平衡条件求解 3涉及能量问题,用动能定理或者功能关系求解. 其中导体棒切割磁感线克服安培力做功→焦耳热等于克服安培力做

的功:Q=W 三两类常见的模型 例1:如图所示,固定的光滑金属导轨间距为L ,导轨电阻不计,上端a 、b 间接有阻值为R 的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中。质量为m 、电阻为r 的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k ,弹簧的中心轴线与导轨平行。 ⑴求初始时刻通过电阻R 的电流I 的大小和方向; 类型 “电—动—电”型 “动—电—动”型 示 意 图 已知 棒ab 长L ,质量m ,电阻R ;导轨光滑水平,电阻不计 棒ab 长L ,质量m ,电阻R ;导轨光滑,电阻不计 分 析 S 闭合,棒ab 受安培力F =BLE R ,此时a =BLE mR ,棒ab 速度v ↑→感应电动势BLv ↑→电流I ↓→安培 力F =BIL ↓→加速度a ↓,当安培 力F =0时,a =0,v 最大,最后匀 速 棒ab 释放后下滑,此时a =g sin α,棒ab 速度v ↑→感应电动势E =BLv ↑→电流I =E R ↑→安培力F =BIL ↑→加速度a ↓,当安培力F =mg sin α时,a =0,v 最大,最后匀速 运动 形式 变加速运动 变加速运动 最终 状态 匀速运动v m =E BL 匀速运动 v m =mgR sin αB 2L 2

最新高考物理双基突破:专题32-电磁感应中的“单杆”模型(精讲)

单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。 1.此类题目的分析要抓住三点: (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。 (3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。 2.单杆模型中常见的情况及处理方法: (1)单杆水平式 开始时a =F m ,杆 ab 速度v ?感 开始时a =F m ,杆ab 速度v ? 感应电动势E =BLv ,经过Δt

势E =BLv ,电流I = E R =Blv R ,安培力F =BIL = B 2L 2 v R ,做减速运动: v ?F ?a ,当v =0时,F =0,a =0, 杆保持静止 此时a =BLE mr ,杆 ab 速度v ?感应电动势BLv ?I ?安培力F =BIL ?加速度a ,当E 感 =E 时,v 最大,且v m =E BL 应电动势E =BLv ?I ?安培力F 安=BIL ,由F -F 安 =ma 知a ,当 a =0时,v 最大, v m = FR B 2L 2 【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值 为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。下列说法正确的是 A .金属棒在导轨上做匀减速运动 B .整个过程中电阻R 上产生的焦耳热为mv 202

电磁感应中的导轨问题

电磁感应中的导轨问题 一、单棒问题:基本模型 阻尼式 电动式 发电式 二、含容式单棒问题:基本模型 放电式 无外力充电式 有外力充电式 三、无外力双棒问题:基本模型 无外力等距式 无外力不等距式 四、有外力双棒问题:基本模型 有外力等距式 有外力不等距式 ·阻尼式单棒: 1.电路特点:导体棒相当于电源。 2.安培力的特点:安培力为阻力,并随速度减小而减小。 3.加速度特点:加速度随速度减小而减小。 4.运动特点:a 减小的减速运动 5.最终状态:静止 6.三个规律 (1)能量关系: (2)动量关系: (3)瞬时加速度: 7.变化:(1)有摩擦(2)磁场方向不沿竖直方向 2 22 B B l v F B Il R r == +2 2 () B F B l v a m m R r = = +2 0102 m v Q -=0m v q B l =R r Q R Q r =00B Il t m v -??=-22 ()B F B l v a m m R r ==+1

·发电式单棒 1.电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv 2.安培力的特点:安培力为阻力,并随速度增大而增大 3.加速度特点:加速度随速度增大而减小 4.运动特点:a 减小的加速运动 5.最终特征:匀速运动 6.两个极值: (1) v=0时,有最大加速度: (2) a=0时,有最大速度: 7.稳定后的能量转化规律: 8.起动过程中的三个规律 (1)动量关系: m F t B L q m g t m v μ--=- (2)能量关系: 2 12 E m F s Q m g S m v μ=++ (3)瞬时加速度: B F F m g a m μ--= 9.几种变化 (1) 电路变化(并联式)(2)磁场方向变化 (3)拉力变化(若匀加速拉杆则F 大小恒定吗?) (4) 导轨面变化(竖直或倾斜)加沿斜面恒力、通过定滑轮挂一重物、加一开关 ·电容放电式: 1.电路特点:电容器放电,相当于电源;导体棒受安培力而运动。 2 电动势,导致电流减小,直至电流为零,此时UC=Blv 3.运动特点:a 渐小的加速运动,最终做匀速运动。 4.最终特征:匀速运动,但此时电容器带电量不为零。 5.最大速度vm μ μ m F m g a m μ-=μ μ 2 2 -+= ()() m F m g R r v B l μ2 () m m m B L v F v m g v R r μ=++

高中物理 河北省保定市高三上学期单棒切割模型(一)求解电磁感应中的电量、位移、焦耳热模型

河北安国中学电磁感应中单杆模型的动态分析(一)高亚敏

动能全部转化为内能:F做的功中的一部分转化为杆的动能,一 1、(多选)如图所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN成水平沿导轨滑下,在与导轨和电阻R组成的闭合电路中,其他电阻不计。当金属杆MN进入磁场区后,其运动的速度图像可能是下图中的( ACD )

在电磁感应现象问题中求解距离问题的方法:①运动学公式。②动量定理。v m t R v L B ?=?总 22(t v ?是V-t 图像的面积)③利用电量总R nBxL q = =总 R n φ ?

B v0

连接,放在竖直向上的匀强磁场中,磁感应强度为B,杆的速度为v0,电阻不计,如图,试求棒所滑行的距离。 3、如图所示,间距为L,电阻不计的足够长平行光滑金属导轨水平放 置,导轨左端用一阻值为R的电阻连接,导轨上横跨一根质量为m, 电阻也为R的金属棒,金属棒与轨道接触良好.整个装置处于竖直向 上、磁感应强度为B的匀强磁场中.现使金属棒以初速度v0沿导轨向 右运动,若金属棒在整个运动过程中通过的电荷量为q.下列说法正确的是( D ) A.金属棒在导轨上做匀减速运动 B.整个过程中电阻R上产生的焦耳热为C.整个过程中金属棒在导轨上发生的位移为D.整个过程中金属棒克服安培力做功为 4、(多选)如图,两根平行光滑金属导轨MN和PQ放置在水平面上,间距为L,电阻不计,磁感应强度为B的匀强磁场垂直轨道平面向下,两导轨之间连接的电阻阻值为R。在导轨上有一均匀金属棒ab,其长度为2L,阻值为2R.金属棒与导轨垂直且接触良好,接触点为C、d。在ab棒上施加水平拉力使其以速度v向右匀速运动,设金属导轨足够长,下列说法正确的是(BD ) A、金属棒c、d两点间的电势差为BLv

电磁感应中常见模型

答案:(1)设在整个运动过程中,棒运动的最大距离为 S,则△^^BLS 又因为q=「左=BLS/R,这样便可求出 S=qR/BL 。 (2)在整个运动过程中,金属棒的动能,一部分转化为电能,另一部分克服摩擦力做功,根据能量守恒 定律,则有 mv 2 /2=E+ mgS 又电能全部转化为 R 产生的焦耳热即 E=Q 由以上三式解得:Q= mv 2 /2-卩mgq/BL 。 《电磁感应中的常见模型》学案 一、单杆模型 1?如图水平放置的光滑平行轨道左端与一电容器 C 相连,导体棒ab 的 电阻为R,整个装置处于竖 ab 向右做匀速运动;若由于外力作用使棒的速度突然变为零,则下 直向上的匀强磁场中,开始时导体棒 列结论的有(BD ) A .此后ab 棒将先加速后减速 B . ab 棒的速度将逐渐增大到某一数值 C ?电容C 带电量将逐渐减小到零 D .此后磁场力将对 ab 棒做正功 2 ?如图两个粗细不同的铜导线,各绕制一单匝矩形线框,线框面积相等,让线框平面与磁感线方向 垂直,从磁场外同一高度开始同时下落,则 X X X X X X X X X X B X X X X X X A ?两线框同时落地 B .粗线框先着地 C ?细线框先着地 D .线框下落过程中损失的机械能相同 3?如图所示,在竖直向上磁感强度为 B 的匀强磁场中,放置着一个宽度为 L 的金属框架,框架的右 v 沿框架向左运动。已知 端接有电阻R 。一根质量为 m,电阻忽略不计的金属棒受到外力冲击后,以速度 棒与框架间的摩擦系数为 仏在整个运动过程中,通过电阻 R 的电量为q,求:(设框架足够长) (1) 棒运动的最大距离; (2) 电阻R 上产生的热量。

河北省保定安国中学电磁感应中单杆模型的动态分析(10页)

河北省保定安国中学电磁感应中单杆模型的动态分析 速度V 0≠0 V =0 示意图 单杆以一定初 速度v0在光滑 水平轨道上滑 动,质量为m, 电阻不计,杆长为L 轨道光滑水 平,杆质量 为m,电阻不 计,杆长为L,拉力F恒定 力学和运动学分析导体杆以速度v切割磁感线产生感 应电动势BLv E=,电流 R BLv R E I= =,安培力 R v L B BIL F 2 2 = =,做减速运动: ↓ ↓?a v,当0 = v时,0 = F, = a,杆保持静止 开始时 m F a=,杆ab速度↑? v感应 电动势↑? ↑? =I BLv E安培力 ↑ =BIL F 安 由a F F m = - 安 知↓ a,当 = a时,v最大, 2 2L B FR v m = 图像观点 F B R v0 B R

1、(多选)如图所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN 成水平沿导轨滑下,在与导轨和电阻R 组成的闭合电路中,其他电阻不计。当金属杆MN 进入磁场区后,其运动的速度图像可能是下图中的( ACD ) 在电磁感应现象问题中求解距离问题的方法:①运动学公式。②动量定理。 v m t R v L B ?=?总 22(t v ?是V-t 图像的面积)③利用电量总R nBxL q ==总R n φ? 2、质量为m 的导体棒可沿光滑水平的平行轨道滑行,两轨道间距离为L ,导轨左端与电阻R 连接,放在竖直向上的匀强磁场中,磁感应强度为B ,杆的速度为v 0,电阻不计,如图,试求棒所滑行的距离。 能 量 观 点 动能全部转化为内能: 202 1mv Q = F 做的功中的一部分转化为杆的动能,一部分产热:22 1m F mv Q W + = v 0 B R

电磁感应中的导轨类问题

动态分析 导体棒与导轨问题1、一根导体棒在导轨上滑动(单导体问题) 棒ab长为L,质量为m,电阻为R, 棒ab 长为L,质量为m,电阻为R, 导轨光滑,电阻不计。导轨光滑,电阻不计。 开关闭合后,棒ab受安培力F=BLE/R,此时,a=BLE/mR,棒ab的速度增加一感应电动势BLv增加一安培力F=BIL减小一加速度a减小,当安培力F=0(a=0)时,v最大棒ab释放后下滑,此时a=gsin a 棒ab的速度v增加一一感应电动势E=BLv增加 ――感应电流增加一一安培力F增加一一加速度a减小,当安培力F=mgsin a时,v 最大。 2、两根导体棒在导轨上滑动(双导体问题) 初速度不为零, 不受其他水平外力作用 N Q N t / Q 1 尸V0 / 示M / /M M / P P 意 图质量=m i=m2 电阻=门=「2 质量=m i=m2 电阻=r i=r2 长度=L i=L2 长度=L i=L2 分杆MN做边减速运动,杆PQ做变稳疋时,两杆的加速度为零,两杆的速度 析加速运动,稳定时,两杆的加速度之比为i: 2 为零,以相等的速度匀速运动。 初速度为零,受其他水平外力的作用 \ 1;1 * 1N 电一动一电”型动一电一动”型

动一电一动”型 1 . (2007山东济南)如图所示,水平放置的光滑平行金属导轨上有一质量为 m 的 金属棒ab.导轨地一端连接电阻 R ,其他电阻均不计,磁感应强度为 B 的匀强磁场垂直 I 齐 科匕科 于导轨平面向下,金属棒 ab 在一水平恒力F 作用下由静止起向右运动.贝则(卑*弓焉宦T A .随着ab 运动速度的增大,其加速度也增大 B .外力F 对ab 做的功等于电路中产生的电能 C .当ab 做匀速运动时,外力 F 做功的功率等于电路中的电功率 D ?无论ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能 2、如图所示,有两根和水平方向成 角的光滑平行的金属轨道,上端 接有可变电阻 R ,下端足够长,空间有垂直于轨道平面的匀强磁场, 磁感强 度为B , —根质量为 m 的金属杆从轨道上由静止滑下?经过足够长的时间 后,金属杆的速度会趋近于一个最大速度 V m ,则() A .如果B 增大,v m 将变大 B .如果 变大,V m 将变大 C .如果R 变大,v m 将变大 D .如果m 变小,v m 将变大 3. 如图所示,一光滑平行金属轨道平面与 水平面成 角,两导轨上端用一电阻 R 相连,该装置处于匀强磁场中, 磁场方向垂直轨道平面向上。 质量为m 的金属杆ab ,以初 速度V 0从轨道底端向上滑行,滑行到某一高度 h 后又返回 到底端。若运动过程中,金属杆保持与导轨垂直且接触良 好,并不计 质量=m i =m 2 电阻=r i =r 2 长度=L I =L 2 摩擦力f i =f 2, 电阻=r i =r 2 质量=m i =m 2 长度=L I =L 2 开始时,两杆做变加速运动;稳定时, 两杆以相同的加速度做匀变速直线运 动。 稳定时,若FW 2,则PQ 先变加速后匀 速运动;若F>2f ,则PQ 先变加速,之 后两杆匀加速运动。 F M P * Q r Q F P

高中物理-电磁感应中的“杆+导轨”模型练习

高中物理-电磁感应中的“杆+导轨”模型练习 “杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“杆+导轨”模型又分为“单杆”型和“双杆”型(“单杆”型为重点);导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速、匀变速、非匀变速运动等. 考点一单杆水平式模型 1.如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中( ) A.PQ中电流先增大后减小 B.PQ两端电压先减小后增大 C.PQ上拉力的功率先减小后增大

D .线框消耗的电功率先减小后增大 解析:选C.PQ 在运动过程中切割磁感线产生感应电动势,相当于电源,线框左右两端电阻并联,当PQ 运动到中间时并联电阻最大,流经PQ 的电流最小,因此在滑动过程中,PQ 中的电流先减小后增大,选项A 错误;由于外接电阻先增大后减小,因此PQ 两端的电压即路端电压先增大后减小,选项B 错误; 由能量守恒得拉力功率等于线框和导体棒的电功率,因此拉力功率为P = E 2 R 总 = BLv 2 R 总 ,由于电路总电阻先增大后减小,因此拉力功率先减小后增大,选项C 正确;矩形线框abcd 总电阻为3R ,当PQ 滑动到ab 中点时,线框并联总电阻最大,最大值为3 4R ,小于导体棒PQ 的电阻,所以滑动过程中线框消耗的电功率先增大后 减小,选项D 错误. 2.U 形光滑金属导轨水平放置,如图所示为俯视图,导轨右端接入电阻R =0.36 Ω,其他部分无电阻,导轨间距为L =0.6 m,界线MN 右侧有匀强磁场,磁感应强度为B = 2 T .导体棒ab 电阻为零,质量m =1 kg.导体棒与导轨始终垂直且接触良好,在距离界线MN 为d =0.5 m 处受恒力F =1 N 作用从静止开始向右运动,到达界线PQ 时恰好匀速,界线PQ 与MN 间距也为d . (1)求匀速运动时的速度v 的大小; (2)求导体棒在MN 和PQ 间运动过程中R 的发热量Q . 解析:(1)匀速时合力为零,所以F =F 安=BIL =B 2L 2v R 得v = FR B 2L 2 =0.5 m/s (2)设导体棒从出发到匀速的过程安培力做功为W A ,根据动能定理有F ·2d +

电磁感应中的常见模型

《电磁感应中的常见模型》学案 一、单杆模型 1.如图水平放置的光滑平行轨道左端与一电容器C相连,导体棒ab的电阻为R,整个装置处于竖直向上的匀强磁场中,开始时导体棒ab向右做匀速运动;若由于外力作用使棒的速度突然变为零,则下列结论的有( BD ) A.此后ab棒将先加速后减速 B.ab棒的速度将逐渐增大到某一数值 C.电容C带电量将逐渐减小到零 D.此后磁场力将对ab棒做正功 2.如图两个粗细不同的铜导线,各绕制一单匝矩形线框,线框面积相等,让线框平面与磁感线向垂直,从磁场外同一高度开始同时下落,则( A ) A.两线框同时落地 B.粗线框先着地 C.细线框先着地 D.线框下落过程中损失的机械能相同 3.如图所示,在竖直向上磁感强度为B的匀强磁场中,放置着一个宽度为L的金属框架,框架的右端接有电阻R。一根质量为m,电阻忽略不计的金属棒受到外力冲击后,以速度v沿框架向左运动。已知棒与框架间的摩擦系数为μ,在整个运动过程中,通过电阻R的电量为q,求:(设框架足够长) (1)棒运动的最大距离; (2)电阻R上产生的热量。 答案:(1)设在整个运动过程中,棒运动的最大距离为S,则Δφ=BLS 又因为q=t I =BLS/R,这样便可求出S=qR/BL。 (2)在整个运动过程中,金属棒的动能,一部分转化为电能,另一部分克服摩擦力做功,根据能量守恒定律,则有mv2/2=E+μmgS 又电能全部转化为R产生的焦耳热即E=Q 由以上三式解得:Q=mv2/2-μmgqR/BL。 B B C a b

4.如图固定在水平桌面上的金属框cdef 处在竖直向下的匀强磁场中,金属棒ab 搁在框架上可无摩擦地滑动,此时构成一个边长为L 的正形,棒的电阻为r ,其余部分电阻不计,开始时磁感应强度为B ⑴若从t =0时刻起,磁感应强度均匀增加,每秒增量为k ,同时保持棒静止,求棒中的感应电流,在图上标出感应电流的向; ⑵在上述情况中,始终保持静止,当t =t 1s 末时需加的垂直于棒的水平拉力为多大? ⑶若从t =0时刻起,磁感应强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感应强度应怎样随时间变化(写出B 与t 的关系式)? 答案:r kL 2 b →a ,(B+kt 1)r kL 3,vt L BL + 5.如图电容为C 的电容器与竖直放置的金属导轨EFGH 相连,一起置于垂直纸面向里,磁感应强度 为B 的匀强磁场中,金属棒ab 因受约束被垂直固定于金属导轨上,且金属棒ab 的质量为m 、电阻为R ,金属导轨的宽度为L ,现解除约束让金属棒ab 从静止开始沿导轨下滑,不计金属棒与金属导轨间的摩擦,求金属棒下落的加速度. 答案: 2 22L B C m mg + 6.如图,电动机用轻绳牵引一根原来静止的长l =1m ,质量m =0.1kg 的导体棒AB ,导体棒的电阻R =1Ω,导体棒与竖直“∏”型金属框架有良好的接触,框架处在图示向的磁感应强度为B =1T 的匀强磁场中,且足够长,已知在电动机牵引导体棒时,电路中的电流表和电压表的读数分别稳定在I=1A 和U =10V ,电动机 自身阻r =1Ω,不计框架电阻及一切摩擦,取g=10m/s 2 ,求:导体棒到达的稳定速度? 答案:4.5m/s 二、双杆 1.如图所示,两金属杆ab 和cd 长均为L ,电阻均为R ,质量分别为M 和m 。现用两根质量和电阻均可忽略不计且不可伸长的柔软导线将它们连接成闭合回路,并悬挂于水平、光滑、不导电的圆棒两侧。已知两金属杆都处于水平位置,整个装置处在一个与回路平面垂直磁感强度为B 的匀强磁场中,求金属杆ab 向下做匀速运动时的速度。 B d c e f

电磁感应中杆+导轨模型问题

电磁感应中“杆+导轨”模型问题 例1、相距L=的足够长金属导轨竖直放置,质量m1=1kg 的金属棒ab 和质量m2=的金属棒cd ,均通过棒两端的套环水平地套在金属导轨上,如图1所示,虚线上方磁场的方向垂直纸面向里,虚线下方磁场的方向竖直向下,两处磁场磁感应强度大小相同。ab 棒光滑,cd 棒与导轨间动摩擦因数μ=,两棒总电阻为Ω,导轨电阻不计。ab 棒在方向竖直向上、大小按图2所示规律变化的外力F 作用下,从静止开始沿导轨匀加速运动,同时cd 棒也由静止释放。(g=10m/s2) (1)求ab 棒加速度的大小和磁感应强度B 的大小; (2)已知在2s 内外力F 做了的功,求这一过程中两金属棒产生的总焦耳热; (3)求出cd 棒达到最大速度所需的时间t0,并在图3中定性画出cd 棒所受摩擦力fcd 随时间变化的图线。 解: (1), 所 以 , (2分) 由图2的截距可知, ,, (2分) 由图2的斜率可知, ,, (2 分) (2)

, (2分) , (2分) (3) ,,所以有, ,,(2分) 2分) ( 例2、如图所示,两条光滑的金属导轨相距L =1m,其中MN段平行于PQ段,位于同一水平面内,NN0段与QQ0段平行,位于与水平面成倾角37°的斜面内,且MNN0与PQQ0均在竖直平面内。在水平导轨区域和倾斜导轨区域内分别有垂直于水平面和斜面的匀强磁场B1和B2,且B1=B2=。ab和cd是质量均为m=、电阻均为R=4Ω的两根金属棒,ab置于水平导轨上,cd置于倾斜导轨上,均与导轨垂直且接触良好。从t=0时刻起,ab棒在外力作用下由静止开始沿水平方向向右运动(ab棒始终在水平导轨上运动,且垂直于水平导轨),cd棒受到F=(N)沿斜面向上的力的作用,始终处于静止状态。不计导轨的电阻。(sin37°=)(1)求流过cd棒的电流强度Icd随时间t变化的函数关系; (2)求ab棒在水平导轨上运动的速度vab随时间t变化的函数关系; (3)求从t=0时刻起,内通过ab棒的电荷量q; (4)若t=0时刻起,内作用在ab棒上的外力做功为W=16J,求这段时间内cd棒产生的焦耳热Qcd。

在电磁感应中的动力学问题中有两类常见的模型

在电磁感应中的动力学问题中有两类常见的模型 ab长L,质量m,电阻导轨光滑水平,电阻不计 长L,质量m,电阻轨光滑,电阻不计

1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图. (2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小. (3)求在下滑过程中,ab杆可以达到的速度最大值. 2、如图所示,足够长的光滑平行导轨MN、PQ倾斜放置,两导轨间距离为L=1.0 m,导轨平面与水平面间的夹角为30°,磁感应强度为B的磁场垂直于导轨平面向上,导轨的M、P两端连接阻值为R=3.0 Ω的电阻,金属棒ab垂直于导轨放置并用细线通过光滑定滑轮与重物相连,金属棒ab的质量m=0.20 kg,电阻r=0.50 Ω,重物的质量M =0.60 kg,如果将金属棒和重物由静止释放,金属棒沿斜面上滑的距离与时间的关系如下表所示,不计导轨电阻,g取10 m/s2.求: (2)所加磁场的磁感应强度B为多大? (3)当v=2 m/s时,金属棒的加速度为多大?

3、边长为L 的正方形闭合金属线框,其质量为m ,回路电阻为R.图中M 、N 、P 为磁场区域的边界,上下两部分水平匀强磁场的磁感应强度大小均为B ,方向如图4所示.现让金属线框在图示位置由静止开始下落,金属线框在穿过M 和P 两界面的过程中均为匀速运 动.已知M 、N 之间和N 、P 之间的高度差相等,均为h =L +5m2gR2 8B4L4 , 金属线框下落过程中金属线框平面始终保持竖直,底边始终保持水平,当地的重力加速度为g.试求: (1)图示位置金属线框的底边到M 的高度d ; (2)在整个运动过程中,金属线框中产生的焦耳热; (3)金属线框的底边刚通过磁场边界N 时,金属线框加速度的大小. 4、如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l ,所在平面的正方形区域abcd 内存在有界匀强磁场,磁感应强度为B ,方向垂直斜面向上.将甲、乙两阻值相同、质量均为m 的相同金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距l.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F ,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,加速度大小为gsin θ,乙金属杆刚进入磁场时做匀速运动. (1)甲、乙的电阻R 为多少; (2)设刚释放两金属杆时t =0,写出从开始释放到乙金属杆离开磁场,外力F 随时间t 的变化关系; (3)若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q ,试求此过程中外力F 对甲做的功.

公开课-电磁场中的单杆模型

电磁感应中的单杆问题 授课教师:孟庆阳 一、教学目标: 1、知识与技能: 掌握电磁感应中单杆问题的求解方法。 2、过程与方法: 能够运用理论知识从力电角度、电学角度和力能角度处理电磁感应中的单杆问题。 3、情感、态度与价值观 提高学生处理综合问题的能力,找出共性与个性的辩证唯物主义思想。 二、教学重点、难点:电磁感应中单杆问题的求解方法及相关的能量转化。 三、知识准备: 1、感应电流的产生条件 2、感应电流的方向判断 3、感应电动势的大小计算 四、模型概述: 电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点,主要类型有:“单杆”模型,“单杆+电源”模型、“单杆+电容”模型。 五、基本思路: 单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考: 1、力电角度; 2、电学角度; 3、力能角度。 六、专项练习: 例1、如图所示,一对平行光滑轨道放置在水平面上,两轨道相距L,两轨道之间用电阻R 连接,有一质量为m、电阻为r的导体棒静止地放在轨道上与两轨道垂直,轨道的电阻忽略不计,整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直轨道平面向上。现用水平 恒力F沿轨道方向拉导体棒,使导体棒从静止开始运动。 ①分析导体棒的运动情况并求出导体棒的最大速度; ②画出等效电路图;若此时E 感 =10V,R=3Ω,r=2Ω,那么导体棒两端电压为? ③分析此过程中所涉及的能量转化。 P

变1、两根光滑的足够长的直金属导轨MN 、''N M 平行置于竖直面内,导轨间距为L ,导轨上端接有阻值为R的电阻,如图1所示。质量为m 、长度为L 、阻值为r 的金属棒ab 垂直于导轨放置,且与导轨保持良好接触,其他电阻不计。导轨处于磁感应强度为B 、方向水平向里的匀强磁场中,ab 由静止释放,在重力作用下运动,若ab 从释放至其运动达到最大速度时下落的高度为h 求: ①ab 运动的最大速度? ②ab 从释放至其运动达到最大速度此过程中金属棒产生的焦耳热为多少? ③ab 从释放至其运动达到最大速度的过程中,流过ab 杆的电荷量? ④ab 从释放至其运动达到最大速度所经历的时间? 变式2、如图ab 、cd 为间距L 的光滑倾斜金属导轨,与水平面的夹角为θ,导轨电阻不计,ac 间接有阻值为R 的电阻,空间存在磁感应强度为B 0、方向竖直向上的匀强磁场,将一根阻值为 r 、长度为L 的金属棒从轨道顶端由静止释放,金属棒沿导轨向下运动的过程中始终与导轨接触良好。已知当金属棒向下滑行距离x 到达MN 处时已经达到稳定的速度,重力加速度为g 。求: ①金属棒下滑到MN 的过程中通过电阻R 的电荷量; ②金属棒的稳定速度的大小。 例2、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试求: ①在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? ②在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).

相关文档
相关文档 最新文档