文档库 最新最全的文档下载
当前位置:文档库 › 能量感知路由协议的改进算法

能量感知路由协议的改进算法

能量感知路由协议的改进算法

修龙亭、李光、梁晓

计算机学院

摘要:本文主要探讨了无线传感器网络中路由协议的设计,对无线传感器网络中的能量感知路由协议进行了分析研究,讨论了其优点以及不足,提出了带有能量门限的感知路由协议。在该协议中,汇聚节点通过对邻居节点能量情况的探测生成能量门限,通过广播路径建立消息,利用能量门限和最少跳数方法生成路由树,并通过周期性的广播来进行路径的维护。

关键字:无线传感器网络 路由协议 汇聚节点

1、能量路由

能量路由是最早提出的传感器网络路由机制之一,它根据节点的可用能量或传输路径上的能量需求,选择数据的转发路径,节点的可用能量就是节点的当前剩余能量。能量路由算法示意图如下:

能量路由策略主要有以下几种:

(1) 最大PA 路由:从数据源到汇聚节点的所有路径中选取节点PA 之和最大的

路径。在上图中选择路径:源节点-F-E-汇聚节点。

(2) 最小能量消耗路由:从数据源到汇聚节点的所有路径中选取节点耗能之和

最少的路径。

(3) 最少跳数路由:选取冲数据源到汇聚节点的所有路径中跳数最少的路径。

(4) 最大最小PA 节点路由:每条路径上有多个节点,且节点的可用能量(PA )

不同,从中选取每条路径中可用能量最小的节点表示这条路径的可用能

量。最大最小PA节点路由策略就是选择路径可用能量最大的路径。

上述能量路由算法需要节点知道整个网络的全局信息。由于传感器网络存在资源约束,节点只能获取局部信息,因此能量路由算法只是理想情况下的路由策略。其中的最少跳数路由是比较容易实现的路由策略。

最少跳数路由的优点显而易见,它构建路由的过程迅速,数据传输过程中能量消耗小,然而它的缺陷是数据传送往往走单一路径,容易使路径上的节点能量耗尽,当大部分节点还处在活动状态时,个别关键节点能量耗尽,从而影响网络的连通性,限制了整个网络的生存期。特别是初始状态时,加入各个节点的初始能量随机分布,该算法没有考虑到对初始能量较低节点的保护,从而加大了某些关键位置节点能量耗尽的可能。

2、能量多路径路由

能量多路径路协议包括路径建立,数据传播,路由维护三个过程。路径建立过程是该协议的重点内容。每个节点需要知道到达汇聚节点的所有下一跳节点,并计算选择每个下一跳节点传输数据的概率。概率的选择是根据节点到汇聚节点的通信代价来计算的。因为每个节点到达汇聚节点的路径很多,所以这个代价值是各路径的加权平均值。能量多路径路由的主要过程描述如下:

(1)汇聚节点向邻居节点广播路径建立消息,路径建立消息中包含一个代价

域,表示发出该消息的节点到汇聚节点的代价,初始值设为0;

(2)当节点收到邻居节点转发的路径建立消息时,相对发送该消息的邻居节

点,只有当距离源节点更近,距离汇聚节点更远才转发该消息,否则丢弃。

(3)如果节点决定转发路径建立消息,需要重新计算代价值来替换原来的代

价值。当路径建立消息从节点Ni发送到节点Nj时,该路径的通信代价为节点Ni的代价加上这两个节点的通信消耗,具体如公式所示:

其中,C N

j ,Ni 表示节点N

j

到达汇聚节点的代价,其中Metric(Nj,Ni)表示

节点Nj到节点Ni的通信能量消耗,计算公式如下:

这里e

ij

表示Nj和节点Ni直接通信的能量消耗,Ri表示节点Nj的剩余能量。

(4)节点要放弃代价太大的路径,节点Nj将节点Ni加入本地路由表FTj中的条件如公式所示:

(5)节点将为路由表中的每个下一跳节点计算选择概率,该概率与下一跳节点的代价成反比。计算下一跳节点选择概率公式如下:

(6)节点根据路由表中没想的代价和转发概率,计算出该节点到达汇聚节点

的代价Cost(Nj)。Cost(Nj)定义为经过路由表中节点到达汇聚节点代价的平均值,计算公式如下:

节点Nj将用Cost(Nj)值替换消息中原有的代价值,然后向邻居节点广播该路由建立消息。在数据传输阶段,对于接收的每个分组,节点根据概率从多个下一跳节点中选择一个节点转发数据。路由的维护是通过周期的从汇聚节点到源节点实施洪泛查询来维持所支持的路径活动性。

该算法的优点是均衡了各节点的能量消耗,从而使整个网络的能量平稳降级,最大限度的延长网络生存期。但是它也有一定的缺陷,路径建立过程要比能量路由的代价大,因为每个节点可能要多次广播路径建立消息,而且转发数据时为了使整个网络能平稳降级,走的路径经常不是最节省能量的路径。虽然使用了概率来减少某些节点能量耗尽的可能,但是对于那些低能量节点仍然要承担少部分的数据转发任务,从而加重了这些节点的负担,增大了低能量节点能量耗尽的可能。

能量多路径路由对能量路由做了一定的改进,数据传输不再走单一路径,从而减轻了个别关键节点的负担,延长了网络生存期,但是同能量路由相比,能量多路径路由也有一定缺陷,它的路由构建过程相对复杂,数据传输所走的路径也经常不是最佳路径。和能量路由相似,虽然能量多路径路由构建了多条数据传输路径,减轻了个别节点的负担,但它同样没有考虑到节点初始能量随机分布的情况下对能量较低的节点的保护。

3、能量感知路由的改进思路

综合能量路由和能量多路径路由的思想和优点,通过设立能量门限将网络中的节点分为骨干节点和孤立节点。

首先将网络中的骨干节点组织成路由树,负责网络的数据传输。汇聚节点对周围邻居节点剩余能量进行探测,利用统计出来的节点剩余能量情况,取平均值生成能量门限。当根据能量门限判断的骨干节点数量少于总节点数量的50%时,建立骨干树采用能量最小消耗路由算法;当骨干节点的数量大于50%时,建立骨干树采用最小跳数算法。

而孤立节点的数据传输则是通过对周边邻居节点的定时探测,记录周边邻居节点的情况,根据骨干路由树上的最小PA和孤立节点到达这些点的通信代价计算选择下一跳节点的概率。

根据上述描述,骨干节点和孤立节点的表示如图所示:

其中,白色节点表示汇聚节点,蓝色表示骨干节点,红色表示孤立节点。

在数据进行传输的时候,骨干节点按照骨干节点路由树进行数据的传输,孤立节点根据保存的周围邻居节点信息和计算出的概率选择下一跳节点进行数据传输。

由于节点能量的变化,需要重新建立路由,步骤如下:

1.将能量门限、到汇聚节点的跳数、能量消耗以及路径上的最小PA包含在路径建立消息中,由汇聚节点进行洪泛广播。

2.根据剩余能量和能量门限,确定孤立节点和骨干节点,修改跳数和PA。

3.若节点为孤立节点,则进行周期性的周期邻居节点信息的探测,获得下一跳节点的信息,计算下一跳节点的概率。

概率计算的思想:

a.如果孤立节点探测周围邻居节点包含汇聚节点时,则不进行概率计算,并把汇聚节点作为该节点发送或转发数据的下一跳节点。

b.当孤立节点探测到的周围邻居节点包括骨干节点和孤立节点时,只考虑周围的骨干节点,如果有几个骨干节点处于同一条路径上,则只保留到达汇聚节点能量消耗最少的骨干节点。

c.当孤立节点路由探测到周围邻居节点全部为孤立节点时,如果这些节点中包含经过一跳可到达骨干路由树的节点,则只这部分节点进行考虑。这样可以使数据节点尽快到达汇聚节点并减少整个网络的能量消耗。

d.当孤立节点进行路径探测获得周围邻居节点全部为孤立节点,且这些节点不能经过一跳到达骨干路由树,则根据能量多路径路由的思想来计算概率,选择下一跳节点。

由于能量门限的生成是通过汇聚节点探测周围邻居节点的能量情况生成的,因此每次进行路由维护所生成的能量门限是逐次递减的,这样能量门限才能更近似的估计网络的能量情况,从而确保每次重建路由时都能在网络中建立一颗覆盖度较高的骨干路由树,来负责网络的数据传输工作。

该协议的优点:引入能量门限,保护了低能量节点。建立骨干路由树是吸取了能量路由的方法,建树过程耗费时间短,减少了能量的损耗,并且由于骨干路由树上的节点都是剩余能量高于能量门限的节点,从而使骨干路由树的运行有了保证。孤立节点的通信则吸收了能量多路径路由的特点,保存了多个下一跳节点,并利用概率选择下一跳节点,使网络管理更加合理,节点能量消耗更加均衡,从而延长了整个网络正常运行的时间。

该协议的不足:

1、由于不能探测全局信息,所以能量门限的生成带有一定的局限性,可能生成的能量门限偏大或者偏小,造成算法在执行时达不到很好的效果。

2、路径在维护起来比较麻烦。

路由协议试题以及参考答案

关于路由协议试题以及参考答案 1、解决路由环问题的方法有(ABD) A. 水平分割 B. 路由保持法 C. 路由器重启 D. 定义路由权的最大值 2、下面哪一项正确描述了路由协议(C) A. 允许数据包在主机间传送的一种协议 B. 定义数据包中域的格式和用法的一种方式 C. 通过执行一个算法来完成路由选择的一种协议 D. 指定MAC地址和IP地址捆绑的方式和时间的一种协议 3、以下哪些内容是路由信息中所不包含的(A) A. 源地址 B. 下一跳 C. 目标网络 D. 路由权值 4、以下说法那些是正确的(BD) A. 路由优先级与路由权值的计算是一致的 B. 路由权的计算可能基于路径某单一特性计算,也可能基于路径多种属性 C. 如果几个动态路由协议都找到了到达同一目标网络的最佳路由,这几条路由都会被加入路由表中 D. 动态路由协议是按照路由的路由权值来判断路由的好坏,并且每一种路由协议的判断方法都是不一样的 5、IGP的作用范围是(C) A. 区域内 B. 局域网内 C. 自治系统内 D. 自然子网范围内 6、距离矢量协议包括(AB) A. RIP B. BGP C. IS-IS D. OSPF 7、关于矢量距离算法以下那些说法是错误的(A) A. 矢量距离算法不会产生路由环路问题 B. 矢量距离算法是靠传递路由信息来实现的 C. 路由信息的矢量表示法是(目标网络,metric) D. 使用矢量距离算法的协议只从自己的邻居获得信息 8、如果一个内部网络对外的出口只有一个,那么最好配置(A) A. 缺省路由 B. 主机路由 C. 动态路由 9、BGP是在(D)之间传播路由的协议

路由协议的分类

路由协议的分类。什么是自治域系统、IGP、EGP。 自治域(自治系统),在同一种路由协议上使用不同的自治域,可以有效的分割 路由信息,即自治域A中的路由器不会与自治域B中的路由器交换路由 信息。一个AS是一组共享相似的路由策略并在单一管理域中运行的路由器的集合。一个AS可以是一些运行单个IGP(内部网关协议)协议的路由器集合。也可以是一些运行不同路由选择协议但都属于同一个组织机构的路由器集合。不管是哪种情况,外部世界都将整个AS看作是一个实体。按照工作区域,路由协议可以分为IGP和EGP: IGP(InteriorGateway Protocols)内部网关协议 在同一个自治系统内交换路由信息,RIP、OSPF和IS—lS 都属于IGP。IGP的主要目的是发现和计算自治域内的路由信息。 EGP(Exterior Gateway Protocols)外部网关协议 用于连接不同的自治系统,在不同的自治系统之间交换路由信息,主要使用路由策略和路由过滤等控制路由信息在自治域间的传播 什么是管理距离,有什么作用。 管理距离是指一种路由协议的路由可信度。每一种路由协议按可靠性从高到低,依次分配一个信任等级,这个信任等级就叫管理距离。对于两种不同的路由协议到一个目的地的路由信息,路由器首先根据管理距离决定相信哪一个协议。 防止环路的方法有哪些? RIP:有六种防止环路的措施:设定无穷大的值(16)路由毒化水平分割毒化反转触发更新抑制计时器 OSPF有哪些状态,在每种状态下进行哪些操作?OSPF有哪三个表?为什么需要DR、BDR,如何选择。 OSPF路由器在完全邻接之前,所经过的几个状态: 1.Down:此状态还没有与其他路由器交换信息。首先从其ospf接口向外发送hello分组,还并不知道DR(若为广播网络)和任何其他路由器。发送hello分组使用组播地址224.0.0.5。 2.Attempt: 只适于NBMA网络,在NBMA网络中邻居是手动指定的,在该状态下,路由器将使用HelloInterval取代PollInterval 来发送Hello包. 3.Init: 表明在DeadInterval里收到了Hello包,但是2-Way通信仍然没有建立起来. 4.two-way: 双向会话建立,而RID彼此出现在对方的邻居列表中。(若为广播网络:例如:以太网。在这个时候应该选举DR,BDR。) 5.ExStart: 信息交换初始状态,在这个状态下,本地路由器和邻居将建立Master/Slave关系,并确定DD Sequence Number,路由器ID大的的成为Master. 6.Exchange: 信息交换状态,本地路由器和邻居交换一个或多个DBD分组(也叫DDP) 。DBD包含有关LSDB中LSA条目的摘要信息)。 7.Loading: 信息加载状态:收到DBD后,将收到的信息同LSDB中的信息进行比较。如果DBD中有更新的链路状态条目,则向对方发送一个LSR,用于请求新的LSA 。 8.Full: 完全邻接状态,邻接间的链路状态数据库同步完成,通过邻居链路状态请求列表为空且邻居状态为Loading判断。

推荐-常用动态路由协议安全性分析及应用

常用动态路由协议安全性分析及应用 【摘要】路由器寻找的最佳路径是路由协议,它能保持各个路由器间的路由表相同,实现各个路由器间的相互连通,且在网络间传递数据包。可见,动态路由协议是借助路由器间的信息传递,计算、更新网络结构。但在此过程中,存在一定弊端影响常用动态路由器安全性。现就BGP、OSFP 和RIP V2三种常用的动态路由协议安全性进行分析,并总结其应用。 【关键词】动态路由安全性应用 连接网络的重要硬件设备,是路由器,它可以实现数据包的传递。而动态路由协议指的是路由器表的更新过程,它能够满足网络结构变化的需求。常用的动态路由分为三种,分别为BGP协议、OSPF协议和RIP V2协议。如果在数据包传递过程中,协议出现漏洞,那么容易被人利用,给网络安全造成严重影响。所以,分析常用动态路由协议安全性显得尤为重要。 一、常用动态路由协议安全性分析 1.1 BGP协议安全性 多个相互连接的商业网络共同组成了Internet。各个ISP或企业网络,需要定义一个自治系统号,即ASN,它们

的分配由IANA完成[1]。自治系统号共有65535个,其中私用保留的为65512―65535。路由信息在共享状态下,此号码的维护方式可以采取层的方式。BGP采用会话管理,其中TCP 的179端口可起到触发作用,使Keepalive和update信息被触发,且累及其邻居,从而更新和传播BGP路由表。 然而,因BGP的传输方式以TCP为主,那么容易导致BGP 出现关于TCP的诸多问题,例如拒绝服务攻击,预测序列号,SYN Flood攻击等。BGP主要是利用TCP的序列号,未使用自身的序列号。所以,一旦设备应用可预测序列号,就容易受到该类型攻击。在Internet中运行的大部分路由器都采用了Cisco设备,没有采用预测序列号方案,这就降低了受到攻击的风险。一些BGP在默认状态下,未采用相关的认证机制,有些BGP继续沿用明文密码,这样,大大增加了受到攻击的可能性。 实际应用BGP协议时,还会受到伪造报文攻击等其他攻击。但通常情况下,BGP主要在核心网的出口应用,且配置密码认证,因此,BGP协议的安全性相对较高。 1.2 OSPF协议安全性 复杂是OSPF运行机制的主要特征,运行中的诸多环节都有可能受到攻击者的攻击,给OSPF带来不同程度伤害。攻击方式分为以下几种。一是资源消耗攻击。将不同类型的OSPF报文不间断大量发送,这样极易导致攻击实体资源枯

路由器原理及常用的路由协议、路由算法

路由器原理及常用的路由协议、路由算法 近十年来,随着计算机网络规模的不断扩大,大型互联网络(如Internet)的迅猛发展,路由技术在网络技术中已逐渐成为关键部分,路由器也随之成为最重要的网络设备。用户的需求推动着路由技术的发展和路由器的普及,人们已经不满足于仅在本地网络上共享信息,而希望最大限度地利用全球各个地区、各种类型的网络资源。而在目前的情况下,任何一个有一定规模的计算机网络(如企业网、校园网、智能大厦等),无论采用的是快速以大网技术、FDDI技术,还是ATM技术,都离不开路由器,否则就无法正常运作和管理。 1 网络互连 把自己的网络同其它的网络互连起来,从网络中获取更多的信息和向网络发布自己的消息,是网络互连的最主要的动力。网络的互连有多种方式,其中使用最多的是网桥互连和路由器互连。 1.1 网桥互连的网络 网桥工作在OSI模型中的第二层,即链路层。完成数据帧(frame)的转发,主要目的是在连接的网络间提供透明的通信。网桥的转发是依据数据帧中的源地址和目的地址来判断一个帧是否应转发和转发到哪个端口。帧中的地址称为“MAC”地址或“硬件”地址,一般就是网卡所带的地址。 网桥的作用是把两个或多个网络互连起来,提供透明的通信。网络上的设备看不到网桥的存在,设备之间的通信就如同在一个网上一样方便。由于网桥是在数据帧上进行转发的,因此只能连接相同或相似的网络(相

同或相似结构的数据帧),如以太网之间、以太网与令牌环(token ring)之间的互连,对于不同类型的网络(数据帧结构不同),如以太网与X.25之间,网桥就无能为力了。 网桥扩大了网络的规模,提高了网络的性能,给网络应用带来了方便,在以前的网络中,网桥的应用较为广泛。但网桥互连也带来了不少问题:一个是广播风暴,网桥不阻挡网络中广播消息,当网络的规模较大时(几个网桥,多个以太网段),有可能引起广播风暴(broadcasting storm),导致整个网络全被广播信息充满,直至完全瘫痪。第二个问题是,当与外部网络互连时,网桥会把内部和外部网络合二为一,成为一个网,双方都自动向对方完全开放自己的网络资源。这种互连方式在与外部网络互连时显然是难以接受的。问题的主要根源是网桥只是最大限度地把网络沟通,而不管传送的信息是什么。 1.2 路由器互连网络 路由器互连与网络的协议有关,我们讨论限于TCP/IP网络的情况。 路由器工作在OSI模型中的第三层,即网络层。路由器利用网络层定义的“逻辑”上的网络地址(即IP地址)来区别不同的网络,实现网络的互连和隔离,保持各个网络的独立性。路由器不转发广播消息,而把广播消息限制在各自的网络内部。发送到其他网络的数据茵先被送到路由器,再由路由器转发出去。 IP路由器只转发IP分组,把其余的部分挡在网内(包括广播),从而保持各个网络具有相对的独立性,这样可以组成具有许多网络(子网)互连的大型的网络。由于是在网络层的互连,路由器可方便地连接不同类型的网络,只要网络层运行的是IP协议,通过路由器就可互连起来。 网络中的设备用它们的网络地址(TCP/IP网络中为IP地址)互相通信。IP地址是与硬件地址无关的“逻辑”地址。路由器只根据IP地址来转发数据。IP地址的结构有两部分,一部分定义网络号,另一部分定义网

LEACH路由协议及改进

信息与通信学院 MPLS技术 (小论文) 学号:S314080096 专业:信息与通信工程学生姓名:曲艺卓 任课教师:安澄全副教授 2015年4月

MPLS技术 曲艺卓 哈尔滨工程大学 摘要:MPLS 是一种实现标签交换的机制,它兼有基于二层交换的分组转发技术和第三层路由选择技术的优点。而 MPLS VPN 是一种基于 MPLS 技术的 IP VPN,是在网络路由和交换设备上应用 MPLS 技术,简化核心路由器的路由选择方式,利用结合传统路由技术的标记交换实现的护虚拟专用网络(IP VPN)。MPLS VPN 可以充分发挥骨干网的交换和路由选择能力,降低基础建设成本,满足用户网络应用以及提高管理的灵活性。这在构造企业内部网络上提供了巨大便利,同时也能更好的满足用户对信息传输实时性、安全性等方面的需求。 关键词:MPLS技术;标签;IP交换 1.引言 随着网络技术的迅速发展和信息化程度不断的深化,各种网络应用越来越丰富,有越来越多的业务要在网络上运行。应用者需要基于应用的丰富业务,而管理者需要在基础设施上整合各种各样的传统业务和IP 业务,不同的应用和业务类型往往有不同的使用者、安全级别,甚至这些应用中IP 地址段都有重叠。传统的IP 网络在提供比如电子邮件、聊天、WEB 访问等基本业务的时候,可以实现任意点对点的服务,但这只是“尽力而为”的服务。在面对园区甚至城域网范围的VPN 应用、安全内容传输、无线网络融合等应用时,传统IP 网络并不能很好的保证性能和安全性。在这些需求的推动下,基于多协议标签交换(Multiprotocol Label Switching, MPLS)的IP网络正逐渐成为替代传统单一IP 网络的新的应用平台。 2 MPLS原理 2.1MPLS 简介 在上世纪90 年代中期,当时路由器技术的发展远远滞后于网络的发展速度与规模,主要表现在转发效率低下,无法提供QOS 保障。本质原因是所有的路由查找算法均使用最长匹配原则,必须使用软件查找;而IP 的特点就是只关心过程,不注意结果。当时业界有这样一种议论:过于简单的IP 技术无法承载网络的未来,基于IP 技术的因特网必将在几年之后崩溃。 随后ATM 技术出现了,ATM 技术以其完美的QoS 保障与算法,企图完全

网络基础 IPv6路由协议及安全

网络基础IPv6路由协议及安全 IPV6的概念现在已并不陌生。面对这个新的网络命令者,与前一个主宰者IPV4的不同,具体体现在哪里呢?下面就对IPV6路由协议在安全问题上,从以下三个方面做一个深入的研究。 1.协议安全 在协议安全层面上,IPV6路由协议全面支持认证头(AH)认证和封装安全有效负荷(ESP)信息安全封装扩展头。AH认证支持hmac_md5_96、hmac_sha_1_96认证加密算法,ESP封装支持DES_CBC、3DES_CBC以及Null等三种算法。 2.网络安全 IPv6路由协议的网络安全包括以下4个方面,详细介绍如下: ●端到端的安全保证。在两端主机上对报文进行IPSec封装,中间路由器实现对有IPSec扩展头的 IPV6报文进行透传,从而实现端到端的安全。 ●对内部网络的保密。当内部主机与因特网上其他主机进行通信时,为了保证内部网络的安全,可 以通过配置的IPSec网关实现。因为IPSec作为IPV6路由协议的扩展报头不能被中间路由器而 只能被目的节点解析处理,因此IPSec网关可以通过IPSec隧道的方式实现,也可以通过IPV6 路由协议扩展头中提供的路由头和逐跳选项头结合应用层网关技术来实现。后者的实现方式更加 灵活,有利于提供完善的内部网络安全,但是比较复杂。 ●通过安全隧道构建安全的VPN。此处的VPN是通过IPV6路由协议的IPSec隧道实现的。在路 由器之间建立IPSec的安全隧道,构成安全的VPN是最常用的安全网络组建方式。IPSec网关的 路由器实际上就是IPSec隧道的终点和起点,为了满足转发性能的要求,该路由器需要专用的加 密板卡。 ●通过隧道嵌套实现网络安全。通过隧道嵌套的方式可以获得多重的安全保护。当配置了IPSec的 主机通过安全隧道接入到配置了IPSee网关的路由器,并且该路由器作为外部隧道的终结点将外 部隧道封装剥除时,嵌套的内部安全隧道就构成了对内部网络的安全隔离。 3.其他安全保障 IPV6路由协议的IPSec为网络数据和信息内容的有效性、一致性以及完整性提供了保证,但是数据网络的安全威胁是多层面的,它们分布在物理层、数据链路层、网络层、传输层和应用层等各个部分。 对于物理层的安全隐患,可以通过配置冗余设备、冗余线路、安全供电、保障电磁兼容环境以及加强安全管理来防护。 对于物理层以上层面的安全隐患,可以采用以下防护手段:通过诸如AAA、TACACS+、RADIUS等安全访问控制协议控制用户对网络的访问权限来防止针对应用层的攻击;通过MAC地址和IP地址绑定、限制每端口的MAC地址使用数量、设立每端口广播包流量门限、使用基于端口和VLAN的ACL、建立安全用户隧道等来防范针对二层网络的攻击;通过进行路由过滤、对路由信息的加密和认证、定向组播控制、提高路由收敛速度、减轻路由振荡的影响等措施来加强三层网络的安全性。 路由器和交换机对IPSec的完善支持保证了网络数据和信息内容的有效性、一致性以及完整性,并且为网络安全提供了诸多解决办法。

多层感知器的训练算法

多层感知器的训练算法 齐平 辽宁工程技术大学土木建筑工程学院,辽宁阜新 (123000) E-mail: qipingws@https://www.wendangku.net/doc/c117097814.html, 摘要:本文着重介绍的在人工智能中的多层感知器(MLP)是什么,是怎样构建的。多层感知器和单层感知器一样,是一种人工神经网络。单层感知器只能处理线形问题,对复杂的问题只能粗略进行近似表示。多层感知器是建立在单层感知器的基础上的,它的结构基本类似于一套级联的感知器,对输入层和输出层之间的关系进行研究。 本文侧重描述多层感知器(MLP)的逆向传递和训练过程,并给出了相应的公式和训练算法。以便了解在人工智能中,它的训练学习过程。为了简单起见用,本文中的算法是以伪代码的方式加以描述,这样,就可以用几乎任何一门语言实现它们。 关键词:神经网络,多层感知器,算法 中图分类号:tp18 1.引言 多层感知器(MLP)是一种人工神经网络,它使用输入与输出之间的多层加权连接.MLP的结构基本类似于一套级联的感知器,其中每一格处理单元都有一格相对复杂的输出函数,从而增强网络的性能. [1] 多层感知器是建立在单层感知器的基础上的. 单层感知器只能处理线形问题,而对复杂的问题只能粗略进行近似表示.多层感知器与单层感知器有两个主要的区别: 1.明确区别:多层感知器存在中间层,它们增加了感知器近似表示的能力. 2.不明确区别:对于中间层在系统中发挥的作用是必不可少的,这涉及到使用更加复杂的激 励函数. 2.多层感知器(MLP) 2.1拓扑结构 拓扑就是神经网络中处理单元的拓扑,以及它们之间如何连接在一起。一个MLP的拓扑被称为前馈(如图1),由于不存在后向的连接——也叫做回归连接。通常信息直接从输入流向输出,而MLP 的重要结构就是改善中间层。

常用路由协议的分析及比较

路由分为静态路由和动态路由,其相应的路由表称为静态路由表和动态路由表。静态路由表由网络管理员在系统安装时根据网络的配置情况预先设定,网络结构发生变化后由网络管理员手工修改路由表。动态路由随网络运行情况的变化而变化,路由器根据路由协议提供的功能自动计算数据传输的最佳路径,由此得到动态路由表。 根据路由算法 动态路由协议可分为距离向量路由协议(Distance V ector Routing Protocol)和链路状态路由协议(Link State Routing Protocol)。距离向量路由协议基于Bellman-Ford算法,主要有RIP、IGRP(IGRP为Cisco公司的私有协议);链路状态路由协议基于图论中非常著名的Dijkstra 算法,即最短优先路径(Shortest Path First,SPF)算法,如OSPF。在距离向量路由协议中,路由器将部分或全部的路由表传递给与其相邻的路由器;而在链路状态路由协议中,路由器将链路状态信息传递给在同一区域内的所有路由器。 根据路由器在自治系统(AS)中的位置 可将路由协议分为内部网关协议(Interior Gateway Protocol,IGP)和外部网关协议(External Gateway Protocol,EGP,也叫域间路由协议)。域间路由协议有两种:外部网关协议(EGP)和边界网关协议(BGP)。EGP是为一个简单的树型拓扑结构而设计的,在处理选路循环和设置选路策略时,具有明显的缺点,目前已被BGP代替。 EIGRP是Cisco公司的私有协议,是一种混合协议,它既有距离向量路由协议的特点,同时又继承了链路状态路由协议的优点。各种路由协议各有特点,适合不同类型的网络。下面分别加以阐述。 2 静态路由 静态路由表在开始选择路由之前就被网络管理员建立,并且只能由网络管理员更改,所以只适于网络传输状态比较简单的环境。静态路由具有以下特点: ·静态路由无需进行路由交换,因此节省网络的带宽、CPU的利用率和路由器的内存。 ·静态路由具有更高的安全性。在使用静态路由的网络中,所有要连到网络上的路由器都需在邻接路由器上设置其相应的路由。因此,在某种程度上提高了网络的安全性。 ·有的情况下必须使用静态路由,如DDR、使用NA T技术的网络环境。 静态路由具有以下缺点: ·管理者必须真正理解网络的拓扑并正确配置路由。 ·网络的扩展性能差。如果要在网络上增加一个网络,管理者必须在所有路由器上加一条路由。 ·配置烦琐,特别是当需要跨越几台路由器通信时,其路由配置更为复杂。 3 动态路由

基于OLSR路由协议的HIDA算法

—147— 基于OLSR 路由协议的HIDA 算法 姚 胜,冷甦鹏 (电子科技大学通信抗干扰技术国家级重点实验室,成都 610054) 摘 要:针对Ad Hoc 网络中的虫洞攻击,根据最优链路状态路由(OLSR)协议的运行特点,提出检测伪邻居的HELLO 间隔分布式算法(HIDA)。仿真结果表明,在网络平均节点数大于4、节点随机最大移动速率大于2 m/s 时,HIDA 算法能达到80%以上的虫洞攻击检测率。关键词:无线自组织网络;邻居探测;虫洞攻击;最优链路状态路由协议;HELLO 间隔分布式算法 HIDA Algorithm Based on OLSR Routing Protocol YAO Sheng, LENG Su-peng (National Key Lab of Communication Anti-interference Technology, University of Electronic Science and Technology of China, Chengdu 610054)【Abstract 】Aiming at the wormhole attack in Ad Hoc network, according to Optimized Link State Routing(OLSR) protocol, this paper presents a HELLO Interval Distributed Algorithm(HIDA) to detect fake neighbor. Simulation results show that HIDA has wormhole attack detection rate above 80% when network average node number is greater than 4, node random maximal migration rate is greater than 2 m/s. 【Key words 】Wireless Ad Hoc Network(WANET); neighbor probing; wormhole attack; Optimized Link State Routing(OLSR) protocol; HELLO Interval Distributed Algorithm(HIDA) 计 算 机 工 程Computer Engineering 第36卷 第9期 Vol.36 No.9 2010年5月 May 2010 ·安全技术· 文章编号:1000—3428(2010)09—0147—03 文献标识码:A 中图分类号:TP393 1 概述 移动Ad Hoc 网络是一种自适应的自组织网络,由于它 性能优越,因此在越来越多场合得到应用。目前关于Ad Hoc 自组网的研究大多集中在基于可信任环境下的通信和路由有效性。由于Ad Hoc 自组网无线信道的开放性,因此极易遭到攻击。攻击方通过攻击无线网络协议,窃取传输信息使网络无法正常工作。因此,无线网络的安全问题引起了很多关注。路由协议是节点通信的基础,协议运行环境为移动多跳传输,这使Ad Hoc 网络路由协议的可靠性必须依赖所有节点协调工作。如果网络中存在节点异常工作或被攻击节点入侵等情况,则会导致路由协议崩溃,整个网络不能正常工作。因此,必须提升Ad Hoc 网络的安全性能。 在移动Ad Hoc 网络中的虫洞攻击是一种很特殊的恶意攻击形式。它通过控制路由入侵网络,破坏性大且很难探测。一般的安全策略如加密认证很难抵御虫洞攻击,因此,本文以最优链路状态路由(Optimized Link State Routing, OLSR)协议为模型进行针对性的改进。 虫洞攻击一般由2个能直接通信的攻击节点协同发动,它们之间的链路称为“隧道”(其长度大于普通节点的信号覆盖半径,在路由上体现为1跳距离)是发动攻击的基础[1]。虫洞攻击示意图如图1所示,其中,A 和B 是距离较远的2个节点,不在信号覆盖范围内;X 和Y 是协同攻击节点,在它们之间建立一条私密的链路形成“隧道”。在这个网络中,通过彼此接收到对方的HELLO 报文来确定邻居探测。当A 向周围邻居发送HELLO 报文时,X 收到该报文后通过隧道传给Y ,由Y 原封不动地重放到网络中,B 接收到A 的HELLO 报文,判定A 为1跳邻居。同理,A 认为B 是自己的邻居。因此,A, B 以及所有位于X, Y 传播范围内正常节点的邻居表中均会存在伪邻居。若路由协议是以最短路径优先原则建 立路由表项,A 到B 的最短距离为(2n +2)跳,则A 的n 跳内的邻居会通过“隧道”建立路由表项到达B 。所有节点的通信都暴露在攻击节点下,通过路由信息的扩散传播会使网络极大范围内的节点通信受控于攻击节点,攻击者对通过其路径的信息进行窜改或丢弃等恶意操作使网络中部分节点无法通信,甚至使整个网络瘫痪。 图1 虫洞攻击示意图 2 相关研究 由于移动Ad Hoc 网络极易受到各种攻击,因此已提出很多安全协议。虽然安全路由协议有很多,但没有一种能应对所有恶意攻击,尤其是能绕过网络加密认证系统的虫洞攻击,加密认证系统对虫洞攻击没有任何作用。因此,要对路由协议单独进行针对性改进,使网络能抵御虫洞攻击。 Packet Leashes [2]是经典的抵御虫洞攻击的方法。其原理 基金项目:国家自然科学基金资助项目(60802024);教育部博士点新教师基金资助项目(200806141014);通信抗干扰技术国家级重点实验室基金资助项目 作者简介:姚 胜(1983-),男,硕士研究生,主研方向:数据通信,无线自组织网络,网络安全;冷甦鹏,副教授、博士 收稿日期:2009-11-28 E-mail :linmin17125@https://www.wendangku.net/doc/c117097814.html,

感知器的学习算法

感知器的学习算法 1.离散单输出感知器训练算法 设网络输入为n 维向量()110-=n x x x ,,, X ,网络权值向量为()110-=n ωωω,,, W ,样本集为(){}i i d ,X ,神经元激活函数为f ,神经元的理想输出为d ,实际输出为y 。 算法如下: Step1:初始化网络权值向量W ; Step2:重复下列过程,直到训练完成: (2.1)对样本集中的每个样本()d ,X ,重复如下过程: (2.1.1)将X 输入网络; (2.1.2)计算)(T =WX f y ; (2.1.3)若d y ≠,则当0=y 时,X W W ?+=α;否则X W W ?-=α。 2.离散多输出感知器训练算法 设网络的n 维输入向量为()110-=n x x x ,,, X ,网络权值矩阵为{}ji n m ω=?W ,网络理想输出向量为m 维,即()110-=m d d d ,,, D ,样本集为(){}i i D X ,,神经元激活函数为f , 网络的实际输出向量为()110-=m y y y ,,, Y 。 算法如下: Step1:初始化网络权值矩阵W ; Step2:重复下列过程,直到训练完成: (2.1)对样本集中的每个样本()D X ,,重复如下过程: (2.1.1)将X 输入网络; (2.1.2)计算)(T =XW Y f ; (2.1.3)对于输出层各神经元j (110-=m j ,,, )执行如下操作: 若j j d y ≠,则当0=j y 时,i ji ji x ?+=αωω,110-=n i ,,, ; 否则i ji ji x ?-=αωω,110-=n i ,,, 。

四种路由协议比较

内部网关协议RIP:基于距离向量的路由协议。(1)仅和相邻路由器交换信息,交换的信息是自己的路由表。(2)按固定的时间间隔交换信息。RIP协议用UDP报文进行传送。 RIP实现简单,但它能使用的最大距离为15,16是不可到达,所以RIP只适用于小规模网络。RIP还有一个特点就是好消息传播的快,坏消息传播的慢。 RIP为了防止成环:可以用水平分割的方法,即从本端口接收到的路由,不再从本接口发送出去。 内部网关协议OSPF:使用分布式的链路状态协议。(1)向本自治系统内的所有路由器发送信息,用洪泛法。,路由器向所有相邻的路由器发送信息,这个相邻的路由器再向所有它相邻的路由器发送信息。(2)发送的信息是与本路由器相邻的所有路由器的链路专题。(3)只有链路状态变化时,才用洪泛法发送信息,OSPF没有RIP那样坏消息传播的慢的问题。而不像RIP那样每隔30s交换一次路由信息。OSPF协议知道全网的拓扑结构图。OSPF更新收敛的快是重要特点。OSPF不用UDP而是直接用IP数据报传送。OSPF的数据包很短,这样可以减少路由信息的通信量。 注:RIP交换的是路由表,即到目的网络的最短距离,RIP就是根据最短距离选路的。OSPF发送的信息是与本路由器相邻的链路状态,即与本路由器都和哪些路由器相邻以及该链路的度量,如距离,费用带宽。所以交换完路由信息以后,形成数据库,然后利用SPF算法(如Dijkstra静态路由算法)再算出路径,形成SPF树。每个路由单元根据SPF树生成自己的路由表。对OSPF而言,主要的消耗就在SPF的算法处理中,最常用的是Dijkstra静态路由算法。当一条链路down,每台路由器都会获得变化的信息,在网络拓扑更新之后,每台路由器就会重新计算SPT。这样计算SPT的计算量特别大,消耗CPU。。在目前的实际应用中,重新计算SPT就是删除当前的SPT,调用最短路径优先算法重新构造SPT。所以需要提出一种快速收敛的算法,来消除冗余存储或冗余计算。如下图我们只需要计算第二张图中区域的节点,即只对部分变化的节点重新计算路径,大大减少了计算量。

常用动态路由协议安全性分析

题目常用动态路由协议安全性分析 声明 本人郑重声明:所呈交的毕业论文,是本人在指导教师的指导下,独立进行研究所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的科研成果,也不包含为获得其他教育机构的学位或证书而使用过的材料。我承诺,论文中的所有内容均真实、可信。本论文的成果属于云南警官学院所有。 论文(设计)作者签名:李世悦

2016年6 月15 日

目录 第一章前言 (4) 第二章路由器 (5) 2.1路由器的概念.............................. 错误!未定义书签。 2.2路由器的作用和功能......................... 错误!未定义书签。第三章动态路由概述 ............................ 错误!未定义书签。第四章RIP OSPF BGP-4三个协议的使用情况....... 错误!未定义书签。 4.1路由信息协议RIP........................... 错误!未定义书签。 4.2OSPF协议.................................. 错误!未定义书签。 4.3BGP-4协议................................. 错误!未定义书签。第五章安全性分析.............................. 错误!未定义书签。 5.1RIP协议的安全性分析........................ 错误!未定义书签。 5.2OSPF协议的安全性分析....................... 错误!未定义书签。 5.3BGP-4协议的安全性分析...................... 错误!未定义书签。第六章总结..................................... 错误!未定义书签。小结.......................................... 错误!未定义书签。致谢. (14) 常用动态路由协议安全性分析 计算机科学专业与技术

感知器算法实验--1

感知器算法实验--1

一.实验目的 1.理解线性分类器的分类原理。 2.掌握感知器算法,利用它对输入的数据进行 分类。 3.理解BP算法,使用BP算法对输入数据进 行分类。 二. 实验原理 1.感知器算法 感知器算法是通过训练模式的迭代和学习算法,产生线性可分的模式判别函数。感知器算法就是通过对训练模式样本集的“学习”得出判别函数的系数解。在本次实验中,我们主要是采用硬限幅函数进行分类。 感知器的训练算法如下: 设输入矢量{x1,x2,…,x n}其中每一个模式类别已知,它们分别属于ω1类和ω2类。 (1)置步数k=1,令增量ρ为某正的常数,分别赋给初始增广权矢量w(1)的各分量较小的任意值。 (2)输入训练模式x k,计算判别函数值 w T(k) x k。 (3)调整增广权矢量,规则是:

a.如果x k ∈ω1和w T (k) x k ≤0,则w(k+1)=w(k)+ ρx k ; b.如果x k ∈ω2和w T (k) x k ≥0,则w(k+1)=w(k)-ρx k ; c.如果x k ∈ω1和w T (k) x k >0,或x k ∈ω2和w T (k) x k <0,则w(k+1)=w(k) (4)如果k 0分类正确,则为第一个表达式,如果w T (k) x k ≤0错误分类则为第二个表达式。 在全部模式训练完一轮之后只要还有模式分类错误,则需要进行第二轮迭代,再用全部训练模式训练一次,建立新的权矢量。如果对训练模式还有错分,则进行第三轮迭代依此类推,直

能量感知路由协议的改进算法

能量感知路由协议的改进算法 修龙亭、李光、梁晓 计算机学院 摘要:本文主要探讨了无线传感器网络中路由协议的设计,对无线传感器网络中的能量感知路由协议进行了分析研究,讨论了其优点以及不足,提出了带有能量门限的感知路由协议。在该协议中,汇聚节点通过对邻居节点能量情况的探测生成能量门限,通过广播路径建立消息,利用能量门限和最少跳数方法生成路由树,并通过周期性的广播来进行路径的维护。 关键字:无线传感器网络 路由协议 汇聚节点 1、能量路由 能量路由是最早提出的传感器网络路由机制之一,它根据节点的可用能量或传输路径上的能量需求,选择数据的转发路径,节点的可用能量就是节点的当前剩余能量。能量路由算法示意图如下: 能量路由策略主要有以下几种: (1) 最大PA 路由:从数据源到汇聚节点的所有路径中选取节点PA 之和最大的 路径。在上图中选择路径:源节点-F-E-汇聚节点。 (2) 最小能量消耗路由:从数据源到汇聚节点的所有路径中选取节点耗能之和 最少的路径。 (3) 最少跳数路由:选取冲数据源到汇聚节点的所有路径中跳数最少的路径。 (4) 最大最小PA 节点路由:每条路径上有多个节点,且节点的可用能量(PA ) 不同,从中选取每条路径中可用能量最小的节点表示这条路径的可用能

量。最大最小PA节点路由策略就是选择路径可用能量最大的路径。 上述能量路由算法需要节点知道整个网络的全局信息。由于传感器网络存在资源约束,节点只能获取局部信息,因此能量路由算法只是理想情况下的路由策略。其中的最少跳数路由是比较容易实现的路由策略。 最少跳数路由的优点显而易见,它构建路由的过程迅速,数据传输过程中能量消耗小,然而它的缺陷是数据传送往往走单一路径,容易使路径上的节点能量耗尽,当大部分节点还处在活动状态时,个别关键节点能量耗尽,从而影响网络的连通性,限制了整个网络的生存期。特别是初始状态时,加入各个节点的初始能量随机分布,该算法没有考虑到对初始能量较低节点的保护,从而加大了某些关键位置节点能量耗尽的可能。 2、能量多路径路由 能量多路径路协议包括路径建立,数据传播,路由维护三个过程。路径建立过程是该协议的重点内容。每个节点需要知道到达汇聚节点的所有下一跳节点,并计算选择每个下一跳节点传输数据的概率。概率的选择是根据节点到汇聚节点的通信代价来计算的。因为每个节点到达汇聚节点的路径很多,所以这个代价值是各路径的加权平均值。能量多路径路由的主要过程描述如下: (1)汇聚节点向邻居节点广播路径建立消息,路径建立消息中包含一个代价 域,表示发出该消息的节点到汇聚节点的代价,初始值设为0; (2)当节点收到邻居节点转发的路径建立消息时,相对发送该消息的邻居节 点,只有当距离源节点更近,距离汇聚节点更远才转发该消息,否则丢弃。 (3)如果节点决定转发路径建立消息,需要重新计算代价值来替换原来的代 价值。当路径建立消息从节点Ni发送到节点Nj时,该路径的通信代价为节点Ni的代价加上这两个节点的通信消耗,具体如公式所示: 其中,C N j ,Ni 表示节点N j 到达汇聚节点的代价,其中Metric(Nj,Ni)表示 节点Nj到节点Ni的通信能量消耗,计算公式如下: 这里e ij 表示Nj和节点Ni直接通信的能量消耗,Ri表示节点Nj的剩余能量。 (4)节点要放弃代价太大的路径,节点Nj将节点Ni加入本地路由表FTj中的条件如公式所示: (5)节点将为路由表中的每个下一跳节点计算选择概率,该概率与下一跳节点的代价成反比。计算下一跳节点选择概率公式如下:

路由协议有哪些

什么是路由协议? 路由器提供了异构网互联的机制,实现将一个网络的数据包发送到另一个网络。而路由就是指导IP数据包发送的路径信息。路由协议就是在路由指导IP数据包发送过程中事先约定好的规定和标准。 路由协议有哪些? 路由协议主要运行于路由器上,路由协议是用来确定到达路径的,它包括RIP,IGRP(Cisco私有协议),EIGRP(Cisco私有协议),OSPF,IS-IS,BGP。起到一个地图导航,负责找路的作用。它工作在网络层。 路由选择协议主要是运行在路由器上的协议,主要用来进行路径选择。 路由协议作为TCP/IP协议族中重要成员之一,其选路过程实现的好坏会影响整个Internet网络的效率。按应用范围的不同,路由协议可分为两类:在一个AS(Autonomous System,自治系统,指一个互连网络,就是把整个Internet划分为许多较小的网络单位,这些小的网络有权自主地决定在本系统中应采用何种路由协议)内的路由协议称为内部网关协议(interior gateway protocol),AS之间的路由协议称为外部网关协议(exterior gateway protocol)。这里网关是路由器的旧称。正在使用的内部网关路由协议有以下几种:RIP-1,RIP-2,IGRP,EIGRP,IS-IS和OSPF。其中前3种路由协议采用的是距离向量算法,IS-IS和OSPF采用的是链路状态算法,EIGRP是结合了链路状态和距离矢量型路由选择协议的Cisco私有路由协议。对于小型网络,采用基于距离向量算法的路由协议易于配置和管理,且应用较为广泛,但在面对大型网络时,不但其固有的环路问题变得更难解决,所占用的带宽也迅速增长,以至于网络无法承受。因此对于大型网络,采用链路

感知器的训练算法实例

感知器的训练算法实例 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x①=(0 0 1)T, x②=(0 1 1)T, x③=(-1 0 -1)T, x④=(-1 -1 -1)T 第一轮迭代:取C=1,w(1)= (0 0 0)T 因w T(1)x①=(0 0 0)(0 0 1)T=0≯0,故w(2)=w(1)+x①=(0 0 1)T 因w T(2)x②=(0 0 1)(0 1 1)T=1>0,故w(3)=w(2)=(0 0 1)T 因w T(3)x③=(0 0 1)(-1 0 -1)T=-1≯0,故w(4)=w(3)+x③=(-1 0 0)T 因w T(4)x④=(-1 0 0)(-1 -1 -1)T=1>0,故w(5)=w(4)=(-1 0 0)T 这里,第1步和第3步为错误分类,应“罚”。 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T(5)x①=(-1 0 0)(0 0 1)T=0≯0,故w(6)=w(5)+x①=(-1 0 1)T 因w T(6)x②=(-1 0 1)(0 1 1)T=1>0,故w(7)=w(6)=(-1 0 1)T 因w T(7)x③=(-1 0 1)(-1 0 -1)T=0≯0,故w(8)=w(7)+x③=(-2 0 0)T 因w T(8)x④=(-2 0 0)(-1 -1 -1)T=2>0,故w(9)=w(8)=(-2 0 0)T 需进行第三轮迭代。 第三轮迭代: 因w T(9)x①=(-2 0 0)(0 0 1)T=0≯0,故w(10)=w(9)+x①=(-2 0 1)T

路由协议有哪些分类

●1路由协议有哪些分类? (从至少两个方面进行描述) 1)IGP和EGP 2)距离向量和链路状态型的路由协议3)有类和无类的路由协议 ●2.简单描述距离矢量型协议和链路状态型协议的区别? 1)距离矢量路由协议更新的是路由条目,链路状态路由协议更新的是拓扑 2)距离矢量路由协议发送周期性的更新、完整路由表更新,链路状态路由协议更新是非周期性的,部分的有边界的 3)距离矢量路由协议运行矢量路由协议会将,所有它知道的路由信息与邻居共享,但是只与直连邻居共享,运行链路状态路由协议的路由器只将他所直连的链路状态与邻居共享,这个邻居是指一个域内或区域内一个的所有路由器。 运行距离矢量型协议的路由器并不了解整个网络的拓扑,它们只知道自己直连的网络,和去往目的网络的吓一跳地址,而且距离矢量型协议是以条数作为选路的度量;运行链路状态型协议的路由器都有整个网络的拓扑,它们根据自己的所维持本地链路状态数据库来选择到达目的网络的最佳路径,链路状态型协议会根据链路上的时延带宽等因素算出一个开销最小的路径作为最优路径。 ●3.简单描述EIGRP协议中DUAL有限状态机的决策过程? 当运行eigrp协议的路由器失去和后继路由器的连接时,路由器首先回查找自己的可行性后继路由器,如果存在可行性后继的话就把可行性后继提升为后继路由器,若没有的话就向所有的邻居路由器发送查询,每个接受到查询的路由器会查看自己的路由表,若有一条替代路由,则向发送查询的源路由器发送这条路由的信息,若没有就继续向自己的邻居发送查询,当发送查询的源路由器收到所有邻居路由器的回复后悔重新计算以选取新的后继。 ●4.EIGRP需要维护几张表? 每张表的作用分别是什么? EIGRP能够快速收敛的关键在于什么? 邻居表:确保直接邻居之间能够双向通信,保存邻居的IP等信息 拓扑表:拓扑表中存放着前往目标地址的所有路由的 路由表:从拓扑表中选择到达目标地址的最佳路由放入路由表 eigrp能够快速收敛关键:使用扩散更新算法(DUAL) ●5.EIGRP协议有哪几种Packet类型?每种类型的Packet的作用是什么? 1)Hello packet:以组播的方式定期发送,用于建立和维护邻居关系 2)ACK(acknowledgement) packet:以单播的方式发送HELLO包,包含一个不为零的确认号,用来 更新、查询和答复数据包。 3)Update packet:当路由器收到某个邻居路由器的第一个HELLO包时,以单播传送方式发送一个包含他所知道的路由信息的更新包。当路由信息发生变化时以组播方式发送只包含变化路由信息的更新包 4)Query(查询))packet:当一条链路失效,并且在拓扑表中没有任何可行后继路由器时,路由器需要重新进行路由计算,路由器就以组播的方式向它的邻居发送一个查询包。 5)Request(请求)packet最初是打算提供给路由服务器(server)使用的,但是从来没实现过. )& Reply(应答):以单播的方式回复查询方,对查询数据包进行应答。 ●6.OSPF协议中链路状态通告有几种类型? 它们的作用分别是什么? 1)路由器LSA:由区域内所有路由器产生,并且只能在本个区域内泛洪广播。 2)网络LSA :由区域内的DR或BDR路由器产生,报文包括DR和BDR连接的路由器的链路信息。网络LSA也仅仅在产生这条网络LSA的区域内部进行泛洪。 3)网络汇总LSA :由ABR产生,可以通知本区域内的路由器通往区域外的路由信息。 4)ASBR汇总LSA :由ABR产生,但是它是一条主机路由,指向ASBR路由器地址的路由。 5)自治系统外部LSA :由ASBR产生,告诉相同自治区的路由器通往外部自治区的路径。 6)组成员LSA 7)NSSA外部LSA :由ASBR产生,几乎和LSA 5通告是相同的,但NSSA外部LSA通告仅仅在始发这个NSSA外部LSA 通告的非纯末梢区域内部进行泛洪。 ●7.OSPF协议有哪几种Packet类型? 每种类型的Packet的作用是什么? 1)hello:用于建立和维护ospf邻接关系 2)DBD数据库描述:检查链路状态数据库是否同步。

相关文档