文档库 最新最全的文档下载
当前位置:文档库 › 中高温热泵热水器工质的理论及实验研究

中高温热泵热水器工质的理论及实验研究

中高温热泵热水器工质的理论及实验研究
中高温热泵热水器工质的理论及实验研究

中高温热泵热水器工质的理论及实验研究

彭继军杨昭王明涛方筝

(天津大学热能研究所,天津 300072)

摘要:提出性能优于R22及R407C的中高温热泵热水器新工质RTJU3及RTJU4。分析及实验结果表明:和R22相比,新工质更适合于中高温热泵工况、有更出色的变工况性能、更高的能效比,和R407C相比且,新工质不仅具有温室效应更低、滑移温度更小,能基本解决组分迁移造成热泵系统长时间运行时性能变差问题的优点,而且有着较为卓越的中高温变工况性能。

关键词:中高温;热泵热水器;工质;危险性分析;组分迁移

Theoretical and Experimental Study on Refrigerants Used in Medium-high Temperature Heat-Pump Water Heaters

Peng Jijun ,Yang Zhao, Wang mingtao, Fang Zheng

(Thermal Energy Research Institute, Tianjin University, Tianjin 300072)

Abstract: After theoretical analysis, new working fluids RTJU3 and RTJU4 used in moderate-high temperature heat-pumps are gained. Their fatalness and drop-in performances are experimentally tested and theoretically analyzed. The experimental results show that RTJU3 has high security, and is more energy-saving than R22. Compared to R407C, new refrigerants have such advantages as more environmentally friendly, lower slide temperature, and can basically solve the problem that the performance of heat pump systems descends after long time running, which is resulted from chemical element mobility.

Keywords: medium-high temperature; heat pump water heater; refrigerant; fatalness analyze; chemical element mobility

0前言

热泵热水器中常用的工质有R22、R407C、R410a、R417a、R134a[1]、二氧化碳[2]等。此外,国内外高校和研究机构研究了一些热泵工质,如R123/R134a[3]、R22/R142b [4]、R22/R123[5]和R22/R134a[6]等。 R22及其替代物R407C和R410A属于常温型热泵工质,CO2可用于中高温热泵热水器。中高温热泵一般供热温度在60℃以上,正常运行出水温度范围为62℃~70℃,可以满足所有中央空调和生活热水系统的水温要求。由于常温型热泵工质具有在中高温工况下的压力水平高、COP低等缺点,而CO2热泵热水器也存在压缩机匹配困难、工作压力高,效率低等诸多缺点,因此需要开发适用于中高温热泵工况、循环性能优良的热泵热水器新工质。

1筛选原则

在优选热泵热水器工质时,需使其尽量满足以下原则:

1)优良的环境性能。臭氧层破坏、温室效应加剧和人类生存环境进一步恶化迫使人类将优良环境性能摆在筛选原则首位。新型环保工质的臭氧消耗潜能ODP值应该为0,温室效应潜能应该比现有热泵工质R22、R407C、R134a低。

2)优良的热工性能和循环性能。新工质在满足热工性能和循环性能要求的前提下滑移温度应尽量小,以期减小或者克服组分迁移带来的危害。

3)安全性能和经济性能。新工质无毒不燃或者微燃,廉价易得。

本文依据中高温热泵制冷剂要求考察多种物质的物理化学性质、热力学性质、毒性、可燃性和环境接受性能。众多候选工质中满足臭氧层破坏潜能ODP值为0,温室效应潜能GWP 值低,热工性能好,无毒等条件的制冷剂很可能具有可燃性,因此新型环保中高温制冷剂中

需含有一种或者两种阻燃工质,被选制冷剂饱和蒸汽压力曲线见图1。经理论计算分析所选工质组成混合物的循环性能和热工性能,最终确定混合物RTJU3和RTJU4为中高温热泵热水器工质。

图1 饱和蒸汽压力曲线 2性能比较

为了解新工质RTJU3和RTJU4的综合性能,本文将新工质与现有热泵热水器工质R22、R407C 在安全性能、环境性能、热物理性能、变工况性能方面进行比较。

2.1 一般性能比较

制冷剂的一般性能包括环境性能(ODP 、GWP )、热物理性能(密度、导热系数等),

R22 R407C RTJU3 RTJU4 成分 R22 R32/125/134a A1/A2/A3 B1/B2/B3 Wt 1 23/25/52 / / M 86.5 86.2 66.7 58.1 T c 96.15 85.6 99.8 129.3 P c 4990 4613 5056 9075 ODP 0.055 0 0 0 GWP 1700 1700 642 3 ρL 1264 1237 816 958 C P,V 0.7611 0.9488 1.209 2.345 μL 206.7 209.1 178.3 123.8 λV 0.0098 0.01125 0.01299 0.01924 r 201 204 297 905

M 为分子量,T c 为临界温度(℃),P c 为临界压力(kPa ),ρL 为5℃饱和液密度(kg/m 3),C P 为5℃饱和气比热(kJ/K·kg ),μ为5℃饱和液运动粘度(×10-6m 2/s ),λ为5℃饱和气导热系数W/(m·K ), r 为5℃蒸发潜热(kJ/kg )。

分析比较新工质与R22、R407C 的一般性质,可以得出:

1)RTJU3和RTJU4的大气臭氧破坏潜能均为0,温室效应潜能小于R22、R407C ,其中RTJU3的GWP 为R407C 的38%,RTJU4的GWP 仅3,几乎没有温室效应,说明RTJU3和RTJU4有更好的环境接受性能。

压力(M P a )温度(℃)

2)液态密度直接影响工质的充灌量, 5℃时新工质RTJU3和RTJU4的饱和液相密度小于R22、R407C ,有利于减小RTJU3和RTJU4的充灌量。

3)RTJU3和RTJU4的导热系数比R407C 分别高15%、71%。导热系数越大,蒸发器和冷凝器传热系数越大,有益于减小蒸发器和冷凝器面积,降低造价,提高热泵热水器性能。

4)RTJU3和RTJU4的粘度系数小于R22和R407C ,分别为R407C 的85%和59%。小粘度系数一方面可以减少流体与管壁以及流体内部的摩擦损失,减少运行费用;另外一方面可以增大换热系数,提高传热性能。

5)RTJU3、RTJU4的气化潜热远大于R22和R407C ,分别是R407C 的1.46倍和4.4倍。气化潜热越大,相同制热量下工质循环量少,减少运行费用。

6)相同温度下新工质RTJU3和RTJU4的饱和气态比热大于R22、R407C 。比热容越大,达到相同过冷度放出热量越多,所需换热器面积越大,这是新工质的不利方面。相同蒸发器负荷下RTJU3和RTJU4的吸气温度比R22、R407C 低,因而排气温度也较低,这对减少压缩过程气体与气缸间的热交换、减少不可逆损失、改善压缩机输气系数和提高压缩机效率有重要作用,同时还可改善冷凝器工作状况,减少传热不可逆损失,降低能耗。

2.2变工况性能比较

由于热泵热水器大多数时间是在变工况下运行,因而需要比较中高温热泵热水器在变工况下新工质与R22、R407C 的循环性能和热工性能,计算条件为冷凝温度=55~85℃,蒸发温度=7.2℃,过热度=27.8℃,过冷度=8.3℃,压缩机绝热效率取0.8。

显大于R22、RTJU3和RTJU4。在变工况条件下,RTJU3与R22有相近的循环性能。随着冷凝温度的升高,RTJU3的滑移温度变小,且始终小于R407C 和RTJU4,因此可以考虑用

压缩比冷凝温度(℃)压缩机出口温度(℃)性能系数冷凝温度(℃)容积制热量(k J /m 3)

RTJU3替代现有热泵热水器中的工质R22。在变冷凝温度条件下,RTJU4的容积制热量和性能系数表现出优良性能:容积制热量几乎不随冷凝温度变化,性能系数始终高于R22、R407C 和RTJU3,缺点是压缩机排气温度较高。

2. 3充灌实验

为了进行各种工况的比较,本文利用可进行工况调节的多功能恒温恒湿系统对R22和RTJU3进行对比测试。蒸发温度为-5℃,变冷凝温度变化时的实验结果如图3~5.

由实验过程及实验结果知,冷凝温度高于67℃后,新工质的压缩机排气温度低于R22,且能保持较高的性能系数(大于R22),而R22的综合性能明显下降,说明新工质RTJU3更适用于中高温热泵热水器。

2.4安全性能分析

危险性是阻止工质推广的最大障碍之一。

要想使新工质具有实用价值,推广应用之前必

须分析其燃爆特性。

本文利用可燃制冷剂燃爆极限测试台[10]测

试新型环保节能工质RTJU3(包括几组变浓度)

的燃爆极限以及A1/A2/A3混合物的临界可燃

浓度曲线,如图6。试验结果表明:阻燃工质虽

然不能完全抑制可燃工质燃烧,但是提高了混

合工质燃爆下限,降低了燃爆上限,含阻燃成

分混合工质安全性能得到了很大改善。

由RTJU3组元组成混合物的临界可燃浓度

曲线如图6。RTJU3等温气相泄漏时,低沸点

滑移温度(℃)冷凝温度(℃)

A1

组元A1的含量减少,中沸点组元A3的含量略有增加,高沸点组元A2的含量增加。随着泄漏的进行,RTJU3的可燃性略有增加。实验还表明,在点火功率一定的条件下,A1/A2/A3组成混合物的临界可燃浓度曲线是一条略有弯曲的曲线。原因是该混合物含有可燃性差且最小点火能很高的组元。当点火功率一定,混合物中可燃性强、最小点火能低的组元越来越少,而高点火能的组元越来越多时,混合物的可燃性加速减小,尤其是强可燃组分从无到有时突变严重。

计算表明,当RTJU3各组分浓度质量含量在5%范围内变化时,容积制热量和滑移温度变化较大,容积制热量最多减少6%,滑移温度最大升高0.8℃,其余各项性能指标变化小,因此,配比该混合物时应该严格控制各组分含量误差在±2%以内。

在实际的热泵热水器系统中,制冷剂浓度的变化一般源于制冷剂泄漏。从图6可以看出,由于新工质RTJU3是近共沸混合物,等温气相泄漏后各组分浓度变化小(泄漏率为50%时各组分质量浓度变化不到5%),危险性也变化小(燃烧下限在6.5~7.5V%之间),且系统的压力性能和温度性能得到改善,冷凝器和蒸发器的滑移温度减小,说明充灌RTJU3的热泵热水器系统泄漏后仍有较好的热工性能、循环运行性能以及较高的安全性能。

3结论

综合前面的分析可知,三元混合物RTJU3和RTJU4具有压力适中,容积制热量大,性能系数高等优点。和R407C相比,新工质更环保,中高温热泵工况性能更好,滑移温度更低,能基本解决组分迁移造成热泵系统长时间运行时性能变差问题。充灌实验表明RTJU3比R22更节能,更适用于中高温热泵热水器。RTJU3的安全性测试和分析表明,新工质RTJU3泄漏后的各项性能指标变化小,能保持较高的安全性能。本文仅对新工质进行了理论分析计算及短期实验,如要全面筛选和评价新工质,尚需进行传热与流动性、材料相容性、电机绝缘性、毒性、化学稳定性、成份迁移和长期可靠性等。

参考文献

[1]陈嘉澍,陈姝,卓献荣等,R22和R134a应用于家用热泵热水器实验性能研究,广东化工,2006,6:25-27.

[2]李小飞,陈汝东,CO2循环的特点及其在热泵热水器中的应用,流体机械,2005,33(2):59-61.

[3]山崎公丸,高温热泵工质,冷冻(日本),1985, 60(698):1170-1176.

[4]Leon Liebenberg, Josua P Meyer.ASHARE Trans., 1998, 104(1):418-429.

[5]Kazuo Nakatani, Mitsubiro Ikoma, Kcji Arita, Yuji Yoshida.National Technical Report, 1989, 35(6):12-16.

[6]S. Karagoz, M. Yilmaz , O. Comakli, O. Ozyurt, R134a and various mixtures of R22/R134a as an alternative to R22 in vapour compression heat pumps, Energy Conversion and Management,2004, 45:181-196.

[10]中华人民共和国标准,空气中可燃气体爆炸极限测定方法:GB/T12474-90.

水源热泵设计方案

水源热泵热水机组 设 计 方 案 方案目录 方案概述................................ 第一章水源热泵中央空调介绍........................ 第二章水源热泵中央空调相关政策依据................ 第三章方案设计.................................... 第四章工程概算.................................... 第五章水源热泵系统技术特点........................ 第六章公司简介.................................... 第七章工程清单目录................................

方案概述 本方案采用水源热泵中央空调新技术,水源热泵中央空调是二十世纪七十年代以来欧美发达国家大力推广的空调新技术。它是利用地下浅层水中低品位能源制冷和制热,空调运行成本比传统电制冷空调节约50%以上。 第一章水源热泵中央空调介绍 一、水源热泵现状及政策依据 水源热泵最早源于1912年瑞士的一项发明专利,二十世纪七十年代能源危机以后,这一节能、环保的空调技术受到西方国家的重视。水源热泵技术在美国、加拿大和北欧国家和地区已得到广泛地应用。瑞士的普及率达到50%以上,美国推广速度以每年20%的速度递增。 1995年中美签署了《中华人民共和国国家科学委员会和美利坚合众国能源部效率和再生能源技术的发展与利用领域合作协议书》,并与1997年又签署了该合作协议书的附件六——《中华人民共和国国家科学技术委员会与美利坚合众国能源部地能开发利用的合作协议》。其中,两国政府将地源热泵空调技术列为能源效率和再生能源的合作项目。建设部2000年第76号令也将地热、可再生能源以及空调节能技术列入建设部推广项目。2004年9月14日国家发改委高技术处颁发了《关于组织实施“节能和新能源关键技术”的通知》,将地热、热泵列为重点开发内容。2005年2月28日第十届全国人民代表大会常务委员会第十届会议通过了《中华人民共和国可再生能源法》鼓励大力推广应用太阳能、地热能、水能等可再生能源。 与此同时,适合推广水源热泵的北京市、山东、河南、辽宁、河北等地政府对推广水源热泵空调制定了优惠政策。这一举措极大的促进了我国地源热泵技术的发展。 北京市第一个地温空调工程——蓟门饭店(两会代表驻地)已运行七年。运行成本低于原燃煤锅炉和单冷机组,比改造前每年可节约数十万运行费用。 二、水源热泵工作原理 水源热泵技术利用地球表面浅层水源(如地下水、河流和湖泊)中低品位热能资源,通过逆卡诺循环实现低品位热能向高品位热能转移的一种技术。它以水为工作介质将地下土壤中的低品位热能提取出来,经高效的热泵机组,利用少量的高品位电能,将水中的低品位能量输送到空调场所,完成热交换的地下水又重新回灌到地下去。井水是在金属管路中闭路循环的,水不与大气接触,不消耗水,也不污染水,只提取水中的热能。地温空调

生能空气源方案样本

方案提供单位: 浙江正理电子电气有限公司联系人: 黄建生 联系电话 :

目录 第一章项目概况................................... - 6 -第二章方案设计简介............................... - 7 - 2.1 系统原理图 ................................ - 7 - 2.2 整体方案说明............................... - 7 - 2.3 报价方案 .................................. - 7 - 2.4 该方案的经济效益........................... - 8 -第三章设计依据及标准............................ - 10 -第四章设计计算参数.............................. - 10 - 4.1 机组额定工作参数.......................... - 10 - 4.2 工程设计计算参数.......................... - 11 -第五章卫生热水系统设计.......................... - 11 -第六章酒店卫生热水系统设计….…................. - 12 - 6.1 热泵机组运行时间确定...................... - 12 - 6.2 日耗热量的确定............................ - 12 - 6.3 设备选型 ................................. - 13 - 6.3.1 冬季最冷工况下( -2.4℃) 设备选型........ - 13 - 6.3.2 冬季平均工况下( 4.2℃) 运行时间校核..... - 14 - 6.3.3 年平均工况下( 1 7.5℃) 运行时间校核...... - 14 - 6.3.3 夏季工况下( 29.7℃) 运行时间校核........ - 15 -

热泵热水系统设计选型

热水系统设计一、热泵做方案需了解的信息 用水标准有特殊要求的请说明,否则按规范计算用水定额。

二、热泵选型参考数据 1、冷水计算温度表(表1) 2、广西省各类建筑物的热水定额表(表2)

3、广西2008年电费一览表(表3) 中央热水选型案例 一、工程概述 该建筑使用场所为酒店,共153间为标准客房,需要24小时提供生活55℃热水。 二、热负荷计算及机组选型 1、机组选型: 日用水量:30600 L/天

热量需求:Q=CM△T=1kcal/kg·℃×30600L/天×(55℃-15℃)=1224000Kcal (C=水的比热,M=用水量, △T=供应热水与自来水的温度差,冷水初始水温按冬季温度15℃考虑,热水出水水温为55℃) 在冬季环境温度10℃时,机组能满足系统负荷要求,加热时间一般为12~16小时。则供水所需的总制热功率为: P总= Q d÷860kcal/kw =1224000KcalKcal÷860kcal/kw =1423kw 设定每天加热时间13小时,则 机组的制热功率为P 时= P 总 /T=1423kw /13=109kw 选择格力空气源热水热泵机组KFRS-36SM/AS(制热量36kw)3台即可满足要求.机组实际每天工作时间: 1423÷(36kw×3)=13.2小时 2、水箱选型: 配置2个8吨和1个5吨不锈钢保温水箱(按高峰期70%的用水量),内胆选用SUS304-2B不锈钢;50㎜聚氨脂发泡保温;外用彩钢板保温,可满足用水需求。 3、方案说明 水箱分为1个5吨加热水箱和2个8吨保温。机组也分为加热机组和保温机组,2台用于加热,1台用于保温。 开始,加热水箱内补充进自来水,水满后机组启动开始加热。当加热水箱内热水温度达到设定温度且保温水箱不再高水位时,放水电磁阀打开,热水流入储水箱。之后,副水箱补充进自来水,重新开始加热。这个过程,直至主水箱的热水到达预定水位,同时副水箱内热水温度到达设定温度为止,机组停机。当储水箱的温度低于设定温度时,保温机组启动,加热至设定温度停机。 主机采用微电脑自动控制,可自动检测水箱温度,水箱温度达到设定值后自动停机,以最大限度节约能源。 机组配有完善的保护功能,适应各种恶劣的工作环境,无须专人值守,为业主节省人工费用。

某学校地源热泵系统的设计方案

某学校地源热泵系统的设计方案 [摘要] 随着我国建筑业持续发展,对建筑节能的要求越来越高,而供热系统和空调系统是建筑能耗的主要组成部分,因此,设法减小这两部分能耗意义非常显著。地源热泵供热空调系统是一种使用可再生能源的高效节能、环保型的系统。冬季通过吸收大地的能量,包括土壤、井水、湖泊等天然能源,向建筑物供热;夏季向大地释放热量,给建筑物供冷。与长久以来使用的煤、气、油等常规能源供热、制冷方式相比,具有清洁、高效、节能经济的特点。因地制宜的发展地源热泵系统,有利于优化能源结构,促进多能互补,提高能源利用效率,保护环境。本文对位于北京市海淀区某学校地源热泵设计方案进行介绍,并把地源热泵系统与传统采暖制冷方式从技术及经济方面的对比。选定采用地源热泵系统对建筑物采暖制冷。 [关键字] 地源热泵 项目简介 项目位于北京市海淀区清河龙岗路,总建筑面积43098.80平方米,其中地上部分34193.20平方米,地下部分8905.6平方米,整个校区包括4栋独立建筑(1号楼教学办公楼、2号楼培训楼、3号楼宿舍楼和4号楼食堂、篮球馆)。 一、地源热泵设计方案 各建筑面积及冷热负荷一览表(见表1) 根据表1所述冷、热负荷的计算,需设计配备3台地能热泵机组进行冷热水的制备,机组型号为2台YSSR-1100A/2和1台YSSR-700A/2。制热量为3224kW,制冷量为2896kW。冬季机组向末端提供50/45℃的热水,夏季机组向末端提供7/12℃的冷冻水。 根据本工程的特点、工程所在地的地质、水文条件及北京的环境条件,本工程设计采用地埋管式地源热泵。竖孔设计深度为80m,系统所需地埋管约674孔,竖孔开孔直径为150mm。孔内设置双“U” 型竖直地埋换热器,换热管采用PE100、管径DN32的HDPE管材。各孔间距约在4.5米,水平环路集管主干管采用异程布置,分支管采用同程布置。每一分支管带10~14个竖孔,每一分支管均从集管器或检查井(调节井)引出,所有分支管均可实现控制调节。 二、地源热泵系统与现有主要供暖方式分析 北京市目前可实行的供暖方式主要为市政热力(燃煤、燃气、燃油)、燃煤供暖、燃气供暖、燃油供暖、直接电采暖。地源热泵供暖属于新兴供热方式,节能环保,这项新技术已经被国家列入大力推广的行列,北京市也将在今后逐步推广该供暖新方式。现对各采暖方式的利弊进行分析与比选。

第三章 地源热泵系统的设计及计算.

第三章地源热泵系统的设计及计算 一说到设计,人们往往想到的是工程技术人员的计算和绘图,当然这些都属于设计领域里的工作,而寻找解决问题的途径,也是设计任务之一。设计本身包括寻找解决问题的途径,所以它不限于事先构思,更不排斥实践,而应是思维活动与实践活动的统一。空调设计的任务及目的,就是把现有能效高的设备组织好、使用好、充分发挥它们的作用。 现代空调系统的不断发展使建筑物内的设施日益增多和复杂,这对改善人们的生活和工作环境有着积极作用,但同时也带来了由于系统设计、工程施工和运行管理不当而造成对自然环境和人体健康有害的因素。所以反过来力求解决这些问题就成为一种主要的推动力,促使空调技术更进一步向前发展。目前,建筑节能的重要性越来越引起人们的关注。从建筑设计方面来看,提高隔热保温性能,采用合理的朝向,增设必要的遮阳等可以减少空调负荷,降低能耗。对于确定的空调负荷,提高设备的效率和优化运行过程提供相应的硬件软件,都成为降低能耗的关健。 空调系统的设计一般采用工况设计法,是以夏季和冬季室外空气设计参数为依据的典型工况进行计算,并且是按最不利情况考虑,按照设备的额定工况选择指标。所以,设备选型较大。空调设备经常处于部分负荷状态下运行,必须要求设备在部分负荷运行时也能高效率运行。避免负荷变化了,而设备不能作相应调节,出现大马拉小车的现象;或设备也能调节负荷,但调节性能差,耗能指标落后。

因此,设计的任务就是要用先进的自控技术将空调全工况下的性能调整到最佳程度,这就是所谓的过程设计方法。 一、中央空调设计主要参考以下的规范及标准 1、通用设计规范 1).《采暧通风及空气调节设计规范》(GB50019-2003(2003 年版)); 2).《采暖通风及至气调节制图标准》(GBJ114-88) 3).《建筑设计防火规范》(GBJ116-87) 4).《高层民用建筑设计防火规范》( GBJ0045-95) 5).《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-95)2.专用设计规范: 1).《宿舍建筑设计规范》(JGJ36-87) 2).《住宅设计规范》(GB50096-99) 3).《办公建筑设计规范》(JG67-89) 4).〈旅馆建筑设计规范〉(JGJ67-89) 5).《旅游旅馆建筑热土与空气调节节能设计标准》(GB50189-93) 6).《地源热泵系统工程技术规范》(JGJ142-2004) 7).《地面辐射供暖技术规范》(GB50366-2005) 8).其它专用设计规范 3.专用设计标准图集: 1).《暖通空调标准图集》 2).《暖通空调设计选用手册》(上、下册)

空气源热泵技术协议

集中供暖项目空气源热泵 技 术 协 议 甲方: 乙方: 2016年9月22日

一、总则 (甲方)与(乙方)经双方友好协商,就集中供暖项目空气源热泵的订货事宜及所涉及的技术问题达成共识,形成以下条款: 1.1本技术协议书适用于集中供暖项目空气源热泵及其附属设备的性能、结构、调试及售后服务等方面。 1.2本技术规范书所提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,乙方应保证提供符合现行技术规范书和现行工业标准的优质产品。 1.3本协议书所使用的标准与乙方所执行的标准所发生矛盾时,按较高标准执行。 1.4签订合同后,甲方保留对本协议书提出补充要求和修改的权利,乙方应予以配合,具体项目和条件由甲乙双方商定。 1.5乙方应严格按照甲方提供的技术资料、进行生产、严格执行甲方所提供的技术资料中的制造规范和检验标准。 1.6乙方负责履行设备制造和交货进度。乙方保证不能因正在履约的其它项目及其他任何原因,而影响到本投标设备按期保质保量的完成与交货。 1.7乙方在设备制造过程中发生侵犯专利权的行为时,

其侵权责任与甲方无关,应由乙方承担相应的责任,并不得影响甲方的利益。 二、技术规范及相关要求 2.1空气源热泵设备技术参数表如下:

2.2供暖系统机组全部正常运行供回水温差不低于8℃,或运行流量在满足8℃温差下能够正常启动机组。 2.3结合基础的承重能力,热泵机组在正常供暖运行情况下,重力负荷不超过0.5T/㎡。 2.4需提供设备具体详细的运行参数及运行曲线,所提供数据必须是设备运行或模拟运行的实际参数,不得为推论值。 2.5在国标工况下制热能效比不低于 3.5,以第三方的检测报告原件为准。 2.6在室外7℃、设备出水温度55℃、进出水温差不小于10℃时,能效比COP不得低于2.8; 在室外-5℃、设备出水温度55℃、进出水温差不小于10℃时,能效比COP不得低于2.4; 在室外-15℃、设备出水温度55℃、进出水温差不小于10℃时,能效比COP不得低于2.1;以上数据需提供国家权威机构检测报告原件或复印件加盖公章,作为设备质量验收依据。 2.7空气源热泵应提供降噪具体措施,降噪后满足《社会生活环境噪声排放标准》噪音标准要求(昼间60分贝,

热水工程设计方案-10-11-23

目录 一、集中热水供水系统简介 (2) 空气源热泵热水机组(Air-SourceHeatPumpHotWaterUnit)是当今世界上开拓利用 新能源最好的设备之一,是继锅炉、燃气热水器、电热水器和太阳能热水器之后 的新一代热水制取装置。在能源供应日益紧张的今天,空气能热泵热水机组凭借 其高效节能、环保、安全等诸多优势迅速在市场上得以推广。 二、空气源热泵热水器的产品优势……………………………………………………3-4 运用逆卡诺循环原理,是继燃气热水器,电热水器和太阳能热水器后的创新一代的绿色节能热水机组。 三、智能IC卡水表的产品优势 (5) 实现管理部门对非接触IC卡水表进行有效的管理和维护。为供水部门提供了功能强大的管理方案,克服了人工记帐的繁琐,操作简易、方便、高效,对所属用户进行统一管理,实行“先购水后用水”的方法。 四、学校生活热水现状分析 (6) 现有以锅炉为主的生活热水系统存在能耗高、运行和维护成本高、环境污染和安全隐患及学生使用不方便等难题。 五、系统改造后的效益分析 (7) 在不增加学校任何负担、不增加学生任何负担的前提下,降低学校热水系统的能耗和环境污染、提高学生使用热水的方便性,积极响应国家“节能减排”政策。 六、投资分析(项目设定以及风险控制)……………………………………………7-9 举例说明产品设计方案,以及具体风险控制。 七、设备配置………………………………………………………………………………9-11 我司充分遵循系统及设备材料在运行过程中的安全性、稳定性、环保性、节能性及备用性之原则。 八、设备安装……………………………………………………………………………11-12 规范流程、严格按照国家标准、行业标准和企业标准施工管理。全面细致的服务确保业主无后顾之忧。 九、售后服务……………………………………………………………………………12-15 只有加上优质的售前售后服务,才能使它的品质尽善尽美。我们的服务宗旨是:以质量树信誉,售后服务立口碑“我们将通过以下服务承诺为每一个客户解决后顾之忧

住宅小区地源热泵空调系统设计方案书

住宅小区 【地源热泵空调系统设计方案书】

目录 01、某公司及主要产品简介....................03-05 02、工程概况......................................06-06 03、设计依据及原则................................06-06 04、设计方案......................................07-08 05、室外换热孔设计................................09-11 06、项目初投资费用分析............................12-16 07、运行费用分析..................................16-18 08、地源热泵与其它空调初投资与运行费用分析... .. 18-19 09、地源热泵简介........................... ..... 20-26 10、地源热泵系统简介...................... .... . 26-32 11、产品出厂检验..................................33-34 12、技术及售后服务承诺............................34-35 13、部分用户名录..................................36-39

一公司及主要产品简介 1、公司简介 某新能源有限公司,是集科研、生产、销售、服务于一体的专业制作中央空调、净化空调的高科技技术企业。先后与全国著名高等学府、合肥通用机械研究院等单位进行技术合作,科研攻关,通过把高科技成果产品化,坚持技术创新,发展具有自主知识产权的专利技术,生产研发出了高效能的中央空调系列产品。 公司定位于节能减排的可再生能源和新能源产业领域。公司主导产品地源热泵、污水源热泵、工业废热余热型热泵、海水源热泵、水冷冷水机组、水冷离心机组、空气源热泵机组等热泵系列产品及中央空调、净化空调末端系列产品,是利用浅层地热能、污水热能、工业废热余热、海洋热能、空气能等低品位的可再生能源和新能源的重要技术装备产品。公司生产制造的热泵系列产品已为超过4000万平方米的建筑提供可再生能源供热热源和供冷冷源,年运行节能量超过40万吨标准煤。 十二五期间,某新能源有限公司将为社会提供10000台热泵机组,以年节约100万吨标准煤为目标,有效降低温室气体和有害气体的排放,为祖国节能减排事业贡献力量! 我们珍惜每一个客户的选择和认可,敬重每一个客户的批评和建议,感谢关心和支持某的每一个朋友和合作伙伴。我们将继续以优良的售后服务,巩固并拓展销售市场,真诚地希望与您携手共创辉煌。 2、产品简介

热泵热水系统项目 设计方案

热泵热水系统项目设计方 案 一、公司简介 由####(Deron Group)引进##顶尖热泵技术,建立的########研发中心,是国家级##节能科技园重点企业。公司自主研发并与##技术合作,专业研发生产节能热泵热水机组,为全球众多宾馆、酒店、学校、机关、工厂、医院及家庭别墅群提供能源节省率达75%的中央热水系统解决方案。 ####公司是国最早建立热泵研发中心的企业之一,获高新科技企业认定证书,拥有国家级的热泵实验室,21位技术研发人员。自主研发了三十六项国家专利,使热泵的使用突破了-25℃低温区,并且可以使用空气源、水源、地源及废水源、海水源等多种热源。同时还研发了冷热利用的热回收机组,抗腐蚀的泳池机组及电镀机组。 ####公司参与了两项国家标准起草。一是家用及类似用途热泵热水器国家标准,二是热泵辅助太阳能热水系统国家标准。获国家相关单位评为生产许可证,并获##CE认证、##TUV认证、##SGS认证。产品质量经过省级和国家级检测合格,并由中国人民保险公司承保。 ####公司引进###、###、###等国际先进设备和仪器,建立起四条主机生产线、两条自动化钣金、两条检测线及两条保温水箱生产线。拥有家用、中央、大型工程及空调热水器二合一等四大系列40多个型号,产品出口##、###、###、###、###、###、###、###等三十多个国家及地区。####公司正在打造热泵热水器全球生产基地。 二、热泵介绍 1、空气源热泵热水器介绍

由生活中的常识中我们可以知道,热水可以自己慢慢向空气中放热,冷却成凉水,这表明热量可以从温度高的物体——热水自动的传递到温度低的物体——空气。那么可不可以将这个过程反过来进行,将温度较低的空气中的能量向热水中转移呢?热力学第二定律指出:不可能把热从低温物体传到高温物体而不引起其他变化。这就是说,热量能自发的从高温物体传向低温物体,而不能自发地从低温物体传向高温物体。但这并不是说热量就不能从低温物体传向高温物体,就向水泵能够使水从低处流向高处一样,热泵通过消耗一部分电能,也能够使热量从低温物体传到高温物体。空气源热泵热水器就是根据这样一个原理来工作的,通过消耗少量的电能驱动压缩机,使制冷剂吸收空气里的热量来加热生活用热水的,其制热效果比传统热水器高出4倍,而消耗的电能仅为普通热水器的四分之一,并能从根本上杜绝了漏电、一氧化碳中毒的危险。 热泵热水器的工作过程如下:如上图所示,压缩机通过消耗一部分电能,将低温低压的制冷剂气体压缩成高温高压的气体,高温高压的气体在冷凝器中放出热量将水加热,自己温度被降低,经过膨胀阀节流降压后,变成低温低压的气液混合物,在蒸发器中制冷剂吸收其他介质(如空气、井水)中的热量,变成低温低压的气体,然后再被压缩机吸收,压缩成高温高压的气体加热热水。与其他形式的热水器相比,热泵热水器主要有安全、节能、环保的特点。 2、空气源热泵热水器的产品优势 ●运用逆卡诺循环原理,是继燃气热水器,电热水器和太阳能热水器后的创新一代的绿色

地源热泵机房隔音降噪设计方案1

地源热泵机房隔音降噪设计方案1

中国北京市顺义区 万通天竺新新家园1-N2#住宅楼项目之 地源热泵系统工程 热泵机房降噪方案 编制单位: 编制人: 审核人: 批准人: 批准日期:年月日

第一章噪声分析 噪声本身就是由不同的频率组成杂乱无章的声音,要想治理它,必须掌握该些设备噪声频率和噪声频率的特性运行工作中的噪声为稳定连续的噪声。高、中、低频都同时存在,它的蘋带很宽,声波的强度很大,声压级很高,是由多个噪声源组成的,一个较复杂的综合性的高噪声源。 噪声的传播有两种方式即空气传声和固体传声。声源直接激发空气振动,并借助空气介质而传播噪声,此种形式为空气传声。机组振动除直接向空气辐射噪声外,同时还会引起基础振动。基础振动又会沿地基、管道等传至建筑物内的其它房间,引起房间内的墙体、梁柱、门窗以及室内物件等振动。这些物体的振动会再次辐射噪声,这种噪声的辐射形式为固体传声。 吸声分析: 吸声是声波撞击到材料表面后能量损失的现象,吸声可以降低室内声压级。描述吸声的指标是吸声系数α,代表被材料吸收的声能与入射声能的比值。如果某种材料完全反射声音,那么它的α=0;如果某种材料将入射声能全部吸收,那么它的α=1。事实上,所有材料的α介于0和1之间,也就是不可能全部反射,也不可能全部吸收。 不同频率上会有不同的吸声系数。人们使用吸声系数频率特性曲线描述材料在不同频率上的吸声性能。按照ISO标准和国家标准,吸声测试报告中吸声系数的频率范围是100-5KHz。将 100-5KHz的吸声系数取平均得到的数值是平均吸声系数,平均吸声系数反映了材料总体的吸声性能。在工程中常使用降噪系数NRC粗略地评价在语言频率范围内的吸声性能,这一数值是材料在250、500、1K、2K四个频率的吸声系数的算术平均值,四舍五入取整到0.05。一般

高温水源热泵研究与发展趋势

高温水源热泵研究与发展趋势 简介:本文介绍了高温水源热泵的概念和工作原理,并详细介绍了高温水源热泵的工质研究和近年来高温水源热泵在国内外的研究现状与发展趋势,包括高温制冷剂的研究以及高温热泵系统性能的研究并讨论了高温水源热泵的应用情况以及在我国发展的趋势。 关键字:高温水源热泵工质节能环保 1前言 随着能源和环境问题的日益突出,如何高效地使用能源、回收各种余热和减小对环境的污染成为人们关注的焦点。水源热泵就是一种用来解决能源和环境方面问题的极为有效的技术。 热泵是以消耗一部分高质能(机械能、电能等)或高温位能为代价,通过热力循环,把热能由低温物体转移到高温物体的能量利用系统。高温水源热泵是高温热泵的一类,它利用各类工业和生活废水中的余热来制取70℃~90℃高温热水,可以直接用于供暖和普通工业加热。从美国ASHRAE对北美地区的调查来看高温热泵应用于工业的前景是非常乐观的[1](见下表1)。图1是工业用的高温热泵在主要发达国家中的应用比例。 表1各工业部门所须的温度范围[2] 行业需求温度℃<—183>183食品烟草纤维工业木材工业纸浆加工化学工业橡胶制品皮革制品陶瓷工业由于高温热泵有良好应用前景,使其成为近年国际热泵研

究的一个基本方向。在日本的超级热泵项目,美国IEA热泵中心和IIR热泵发展计划及欧洲的大型热泵研究计划中,高温热泵均是其中的重点研究内容之一[3]。 2高温水源热泵工质的研究 目前高温热泵的研究主要针对的是高温水源热泵,大量研究工作集中在适宜工质的选择和进一步提高系统制热效率方面。相对于常温热泵,高温热泵很难找到一种很适用的工质。对于高温工质的选择有两种趋势,一种是使用自然工质(C02、NH 3及碳氢化合物等),另一种是使用HCFC、HFC、HFE及它们的混合物。自然工质一般压力较高或者循环进入超临界区,有些还具有较高的爆炸性危险,因此相应的系统一般都有特殊的要求,因此目前大多数研究倾向于人造工质的选择。高温热泵对工质的要求主要有以下几个方面[4]: (1)冷凝压力在以下,以使目前大多数系统部件可以承受; (2)蒸发压力在以上,以免在系统中形成负压; (3)容积制冷量一般应大于/cm3,以免系统体积过于庞大: (4)油溶性好、化学性质稳定: (5)对环境危害小,无毒、不可燃; (6)具有高的COP。 南非等国对高温热泵工质的研究

空气源热泵水温低的解决方法

空气源热泵水温低的解决方法 绿色节能低碳是我们生活工作学习中都在追求的一种境界,这不仅仅体现在人们对于节能灯具等节能设备的应用,节能建筑更是现在人们追求的最为舒适的居住环境。 在这样的一种环境中,空气源热泵热水器机组出水温度一般设定在50℃~60℃之间,偶然高于60℃在65℃以下也属于允许范围,只是工况下运行可能会影响机组使用寿命。设定水温达不到或温度上升缓慢。但有些空气源热泵工程机组运行时间超过设计时间很多仍达不到水温,只能勉强直接使用热水甚至不能使用,空气源热水器冬夏季工作原理实测温度在40左右或更低,系统偱环泵不停地偱环,温度不见升高。 有可能是热量流失大或等于热量的流入,当两者相等时,水温不变。热量流失也包括两种可能,其一是保温层不够质量与自然界温差太大,热散失严重,特别是水箱入口密封不严保温不好或隐蔽保温部分没有做好,外围接管保温与箱体保温不连续都会增加热量的损失。 空气源热泵水温低案例图片 解决方法:根据我们诊断分析应先检查看每日用水量是否超标,每 1kg生活用水上升1℃吸收1Kcal热量相当于1.163×10-3KWh,既1000Kg水上升1度,需吸收1.163 KWh的热量。计算公式为:水量(吨)×温差℃×1.163/空气源热泵机组功率Kw×COP值≤设计工作时间(小时),例如:冷水温度为15℃,出水温度设定为55℃,空气源热泵机组功率2.2KW,在冬季环境温度较低时,COP值为2左右(产品制造商公布数据),工程设计用水量为1吨,则空气源热泵机组工作时间为11小时<设计最大工作时间20小时,同样工况下用水量为2吨,则机组工作时间为22小时<允许最大工作时间24小时,同样工况下用水量为3吨,则应考虑辅助加热或增加空气源热泵机组配置。若机组配置不存在问题,可切断单机与储水箱的水循环,启动空气源热泵机组,检测单机集热能力,若温度达不到铭牌标示最高温度,则可能为冷媒问题。 检查冷媒工作压力,对照出厂数据表,若压力不足,则表现为冷媒丢失,按原型号冷媒充加到出厂标准量即可。

空气源热泵选型计算

4 主要设备选型计算 4.1冷源设备的选择 1)冷源形式:本项目冷源采用空气源热泵机组。 2)设备容量计算与配置 根据项目的设备布置条件,选用5台机组,其中3台布置在201号楼5楼,2台布置在181号楼7楼。项目计算冷负荷为2574kW,181号楼预留冷负荷1096kW,总冷负荷3670kW。选用单台制冷量为735kW的空气源热泵机组5台。 4.2热源设备的选择 1)热源形式:本项目冷源采用空气源热泵机组。 2)设备容量计算与配置 项目计算热负荷为1411kW,181号楼预留热负荷768kW,总热负荷2179kW。 项目空气源热泵容量根据夏季制冷工况选择,按冬季-2.2℃工况修正校核。 根据设备厂家资料,温度修正K1=0.72;融霜修正K2=0.9;机组单台制热量为Q=735*0.72*0.9=475kW。 机组制热量可以满足冬季制热需求。 4.3水泵选型计算 1)水泵流量计算 2)水泵扬程计算 a)最不利环路水系统简图 b)扬程计算汇总表 (注4.3-2) 3)水系统水力平衡 空调水系统各管道环路,通过设置平衡阀和调节阀使各并联环路之间的压力损失相对差额不大于15%。(注4.3-3) 4)水系统输送能效比计算

(注4.3-4) 5通风系统计算 5.1 通风系统风量计算(注5.1) 5.2通风系统水力计算与风机单位风量耗功率计算1)通风系统水力计算简图 2)通风系统水力计算表(注5.2-1) 3)通风系统风机单位风量耗功率计算(注5.2-2)

6空调系统计算 6.1 空调系统焓湿图计算 (注6.1) 6.2空调系统水力计算与风机单位风量耗功率计算 1)空调风系统水力计算简图 2)空调风系统水力计算表(注6.2-1) 3)空调风系统风机单位风量耗功率计算(注6.2-2) 7节能措施 7.1本工程夏季计算冷负荷XX kW,冬季计算热负荷XX kW。建筑面积为XX m2,单位面积冷负荷指标为XX W/m2, 单位面积热负荷指标为XX W/m2。 7.2主要冷(热)源设备及能效比 (注7.2) 7.3空调水系统输送能效比详4.3,均满足相关节能规范要求。 7.4普通通风系统风机单位风量耗功率详5.2,均满足相关节能规范要求。

空气源热泵项目设计方案

空气源热泵项目设计方案公司是集科研、生产、销售、服务于一体的专业制作中央空调、净化空调的高科技技术企业。先后与全国著名高等学府、通用机械研究院等单位进行技术合作,科研攻关,通过把高科技成果产品化,坚持技术创新,发展具有自主知识产权的专利技术,生产研发出了高效能的中央空调系列产品。 公司定位于节能减排的可再生能源和新能源产业领域。公司主导产品地源热泵、污水源热泵、工业废热余热型热泵、海水源热泵、水冷冷水机组、水冷离心机组、空气源热泵机组等热泵系列产品及中央空调、净化空调末端系列产品,是利用浅层地热能、污水热能、工业废热余热、海洋热能、空气能等低品位的可再生能源和新能源的重要技术装备产品。公司生产制造的热泵系列产品已为超过4000万平方米的建筑提供可再生能源供热热源和供冷冷源,年运行节能量超过40万吨标准煤。 十二五期间,公司将为社会提供10000台热泵机组,以年节约100万吨标准煤为目标,有效降低温室气体和有害气体的排放,为祖国节能减排事业贡献力量! 我们珍惜每一个客户的选择和认可,敬重每一个客户的批评和建议,感关心和支持世纪昌龙的每一个朋友和合作伙伴。我们将继续以优良的售后服务,巩固并拓展销售市场,真诚地希望与您携手共创辉煌。 2、产品简介 公司专业生产经营热泵型中央空调系列,目前公司产品已发展到第四代、拥

有十大系列一百五十多个型号。 公司产品主要分为中央空调主机和空调末端设备两大单元; 中央空调主机单元主要包括:水源热泵、地源热泵和空气源热泵三大板块; 空调末端设备单元主要包括:风机盘管、射流风机、组合式空调器、新风换气机和组合式净化空调等。 (1)中央空调主机单元 从热源利用上:既可利用地下水,又可利用河水、湖水等地表水、工业废水、城市污水、洗浴污水以及油田回注水等;从压缩机选型上:既有半封闭螺杆式机组、全封闭涡旋式机组,又有离心式机组;从换热器选型上:既有钎焊板式换热器、干式、满液式换热器,又有套管换热器。从形式上:既有风冷式,也有水冷式。 (2)空调末端单元 公司空调末端设备单元共分为四大系列,两百多个产品规格,从形式上可分为:风机盘管、射流风机、组合式空调器、新风换气机和组合式净化空调器等;从送风方式上分为:独立送风设备和集中送风设备;从送风质量上分为:室自然风循环设备和净化加湿设备;从静音方式上可分为:普通型和高静音型;

高温水源热泵技术的研究与应用

高温水源热泵技术的研究与应用 发表时间:2019-04-16T10:52:35.283Z 来源:《建筑学研究前沿》2018年第35期作者:肖鹏飞[导读] 本文主要介绍了高温水源热泵技术的工作原理和概念,对高温水源热泵的工质进行研究,并阐述了高温水源热泵技术现今在国内外的研究现状和发展趋势。 广东西屋康达空调有限公司 528000 摘要:伴随着我国科技的不断发展以及节能减排工作的深化,高温水源热泵技术的应用范围越来越广,在原油加热、地热供暖系统、污水回收利用等多个方面都被广泛应用。本文主要介绍了高温水源热泵技术的工作原理和概念,对高温水源热泵的工质进行研究,并阐述了高温水源热泵技术现今在国内外的研究现状和发展趋势。希望能够由此推进我国高温水源热泵技术的进一步发展,为相关部门和人员以供一定的参考。 关键词:高温水源热泵技术;工质研究;应用;发展趋势 引言:现今能源和环境保护问题形势愈加严峻,受到了国际上的高度重视,减少化石能源的使用、降低污染排放量、回收工业余热已经是各国战略发展中的关键项目。由此,高温水源热泵技术走进了人们的视野。其能够消耗低品质电能或少量高品质电能,利用热力循环的方式,将低温物体存有的热能转移至高温物体,更具环保性和节能性。高温水源热泵技术因自身的优势特点,被广泛应用在供暖和普通工业加工等多个方面。同时这项技术在其应用领域中认可度极高,具有良好的发展前景。 1.高温水源热泵技术概述和发展 高温水源热泵技术是指通过对少量高品质电能或低品质电能的消耗,经过热力循环系统,将热能从低温物体转移至高温物体的一种能量使用系统,其具有消耗功较低的优势特点,消耗的能效仅为提供热量的三分之一甚至更少。高温水源热泵技术能够用于普通工业加热和生活供暖,主要的结构组成有蒸发器、压缩机、冷凝器和膨胀阀这四个部分,其运行原理为:通过工质的蒸发,吸收周围环境中的热量,之后进行压缩和冷凝,将热量放出,再通过蒸发器蒸发,由此形成了一个热能循环,以供相应需求。高温水源热泵技术较比其他热泵技术,具有高效、环保、节能、可利用再生资源、运行过程稳定可靠以及成本较低等多方面的优势。该技术自出现之后,受到了世界各国的高度关注,各个国家都相继开展了高温水源热泵技术的相关项目,并广泛应用于多个领域,获得了大众的青睐[1]。 2.高温水源热泵技术的工质种类研究 针对高温水源热泵技术的研究而言,主要是针对工质的选择和系统制热效率这两个方向进行研究。高温水源热泵的工质选择性较比常温水源热泵较少。在现今的应用中,工质的类型主要有两种:一是自然工质,如氨气、二氧化碳等;二是人造工质,主要有HCFC、HFC、HFE以及他们的混合物。在高温水源热泵的发展进程中,自然工质因在使用时存在较高的不稳定性和危险性,并且对系统要求较为特殊,已被逐渐淘汰。而人造工质因自身稳定性高,安全性能好,是现今理想的工质选择[2]。高温水源热泵在工质的选择上主要有以下几点要求: 第一,压力适中,尤其是在高冷凝温度下(100℃左右)工质的冷凝压力要小 于2.7MPa,避免出现热泵系统零件压力超过承受上限的情况; 第二,尽可能高的单位容积制热量,避免系统体积过大; 第三,工质蒸发压力要大于0.1MPa,以防在系统中产生负压; 第四,工质自身不会对环境造成危害或危害极小,性质稳定,没有毒害性,无易燃易爆现象。 我们可以通过REFPROP软件,筛选出临界温度大于90℃的含碳工质,它们的重要热力参数及环境性能见表1 表1 冷凝温度90℃时工质的环境性能及重要物性参数 其中符合环境要求的工质共7种:R134a、R152a、R227ea、R236ea、R236fa、R245ca、R365mfc。现阶段高温热泵机组使用较多还是R134a、R245ca单工质或者自配、自制的混合工质。 3.高温水源热泵系统的研究 第一,中高温水源热泵系统的研究工作主要在系统循环的优化,换热器内换热的强化及系统控制方面。首先压缩机的整个系统的心脏部件,压缩机的可靠性直接影响机组的性能。压缩机的选择:目前热泵设备常用压缩机类型主要有螺杆压缩机、全封闭涡旋压缩机与半封闭活塞压缩机等,经过对不同类型压缩机工作特性及适用场所进行比较研究,目前中高温水源热泵一般选用螺杆压缩机。因中高温水源热泵冷冻水从15~60℃的低品位热水中回收热量,制取60~85℃的热水,压缩机处于压缩比变化工况下运行,需尽可能选取内容积比与实际工况相匹配的回转式压缩机,压缩机配置电机功率考虑最恶劣工况时的耗电量。不仅有效降低机组输入功率,且提高机组能效比及安全性。 第二,蒸发器和冷凝器的换热机理、与系统的匹配及控制采集点对机组都尤其重要。设计中考虑合适的换热面积使蒸发温度和冷凝温度与冷冻水和冷却水温相匹配。在热泵系统中,换热面积越大,换热效果越好,在使用非共沸混合工质的情况下,热泵系统中蒸发器和冷凝器的换热面积若能达到最大,在理论上就能实现换热的最大能效比。但是,非共沸混合物的性质较为复杂,相应的热力学过程计算难度较大,同时在热泵系统的正常运行过程中,工质出现相变的几率较高,换热机理更加难以研究。

空气源热泵设计完整方案

第第一一章章 空空气气源源热热泵泵热热水水系系统统方方案案设设计计文文件件 目 录 第一章 空气源热泵热水系统方案设计文件 一、工程项目概况 二、地理位置及气候 三、工程设计依据 四、设计参数 五、热水系统设计计算 六、热泵设备选型 七、保温储热水箱选型 八、系统运行技术措施 第二章 运行成本分析 一、方案运行费 二、效益 三、不同形式制取热水成本分析

制取生活热水,考虑节约运行费用,新能源——空气源热泵热水机组是目前比较节能、环保的一个产品。 热泵热水器作为一种新型热水和供暖热泵产品,是一种可替代锅炉的供暖设备和热水装置。与传统太阳能相比,热泵热水器不仅可吸收空气中的热量,还可吸收太阳能。热泵热水器通过制冷剂温差吸热和压缩机压缩制热后,与水换热,大大提高热效率,充分利用了新能源,是将电热水器和太阳能热水器的各自优点完美的结合于一体的新型热水器。目前,热泵热水器有空气源热泵热水器系列,是开拓和利用新能源最好的设备之一。 热泵是利用设备内的吸热介质(冷媒)从空气或自然环境中采集热能,经压缩机压缩后提高冷媒的温度,并通过热交换器冷媒放出热量加热冷水,同时排放出冷气,制取的热水通过水循环系统送入用户进行采暖或直接用于热水供应。 热泵在使用低谷电时更能节约用电。 产品特征: 1、高效节能:其输出能量与输入电能之比即能效比(COP)一般在2~6之间,平均可达到3.5以上,而普通电热水锅炉的能效比(COP)不大于0.95,燃气、燃油锅炉的能效比(COP)一般只有0.6~0.8,燃煤锅炉的能效比(COP)更低一般只有0.3~0.7。 2、环保无污染:该产品是通过吸收环境中的热量来制取热水,所以与传统型的煤、油、气等燃烧加热制取热水方式相比,无任何燃烧外排物,制冷剂对臭氧层零污染,是一种低能耗的环保产品,具有良好的社会效益,是一种可持续发展的环保型产品。 3、运行安全可靠:整个系统的运行无传统热水器(燃油、燃气、燃煤)中可能存在的易燃、易爆、中毒、腐蚀、短路、触电等危险,热水通过高温冷媒与水进行热交换得到,电与水在物理上分离,是一种完全可靠的热水系统。 4、使用寿命长,维护费用低:该产品的使用寿命可长达10年以上,设备性能稳定,运行安全可靠,并可实现无人操作(全自动化智能程序控制)。 5、可一年四季全天候运行:热泵机组热源来源广泛,包括空气、阳光、雨水、地下水、工业废气、工业废水和海水等,无论白天、黑夜、室内、室外、地下室,不管晴天、阴天、刮风下雨或下雪都能照常工作。 6、适用范围广:可用于酒店、宾馆、工矿、学校、医院、桑拿浴室、美容院、游泳池、温室、养殖场、洗衣店、家庭等,可单独使用,亦可集中使用,不同的供热要求可选择不同的产品系列和安装设计,从任何角度满中您的要求。

完整版2018 2019年热泵考试题精选

年热泵考试题(精选)2018-2019河南城建学院能源学院一、选择题 第一章 1.下列( C )是低品位能源。 A机械能 B电能 C内能 D化学能 2.下列选项中哪一个是空气源热泵( A )。 A空气-空气热泵 B水-空气热泵 C土壤-水热泵 D土壤-空气热泵 3.下列哪一个热源是热泵常用的热源( B )。 A机械能 B太阳能 C化学能 D电能 4.利用水作为热泵的低位热源时,应考虑( D )。 A补充热源的问题 B噪音问题 C除霜问题 D设备和管路的腐蚀问题5.水环热泵空调系统的特点( C )。 A以蒸汽为热源 B吸收太阳辐射能 C回收建筑物内部的余热 D从土壤中吸收热量 6.将多台小型水-空气热泵机组并联在一起的水源热泵系统称为( D )。 A空气源热泵系统 B土壤源热泵系统 C太阳能热泵系统 D水环热泵空调系统7.水-空气源热泵流经室内换热器的介质为( A )。 A空气 B冷却水 C内部蒸汽 D内部热水 8.热泵在( A )与()温度区间工作。 A环境温度Ta、被加热物体温度Th B被冷却物体温度Te、环境温度Ta C被冷却物体温度Te、被加热物体温度Th D环境温度Ta、冷凝温度Tc 9.( C )是由两个等熵过程和两个工质与热源之间无温差的传热过程组成。 A卡诺循环 B逆卡诺循环 C洛伦兹循环 D回热循环 10.冬季工况空气源热泵机组可提供( B)热水,夏季工况空气源热泵机组可提供()冷冻水。 A 45~55、14 B 45~55、7 C 55~60、14 D 55~60、7 第二章 1.下列( C )不是单级蒸气压缩式热泵组件的是: A压缩机 B冷凝器 C吸收器 D蒸发器 2.热泵工质在系统内没有经过下列哪种过程( D ) A压缩 B节流 C冷凝 D膨胀 3.被称为整个热泵系统心脏的是( C ) A冷凝器 B节流阀 C压缩机 D蒸发器 4..压焓图上等干度线在湿度蒸气区域内大小从左至右( B ) A逐渐减小 B逐渐增大 C保持不变 D不能确定 5.在实际压缩过程中压缩终了阶段蒸气温度( A )缸壁的温度 A高于 B低于 C等于 D无法确定 6.压缩机输送每千克工质所消耗的理论动称为( B )

相关文档
相关文档 最新文档