文档库 最新最全的文档下载
当前位置:文档库 › (完整)泥水平衡盾构机施工总结,推荐文档

(完整)泥水平衡盾构机施工总结,推荐文档

(完整)泥水平衡盾构机施工总结,推荐文档
(完整)泥水平衡盾构机施工总结,推荐文档

泥水平衡盾构机施工总结

本工程是我单位常规直径地铁盾构第一次采用泥水盾构机施工。在施工、操作方面可借鉴经验不多,造成在施工中走过了不少弯路,出现了许多问题。泥水盾构机操作的基本原则是:控制切口压力在技术交底范围内稳定和盾构机姿态在设计要求范围内的前提下,实现盾构机正常掘进。切口压力的稳定是保证地面沉降、安全掘进的前提条件,而盾构机姿态决定隧道走向是否与设计路线符合,成型隧道符合设计要求的先决条件。如果在掘进期间,切口压力不稳定,波动较大的话,轻则沉降较大,重则引起地面塌方。所以在操作泥水盾构机的时候,每一个操作手必须清楚的明白,保证切口压力稳定的重要性。而盾构机姿态是决定我们的施工是否按设计路线施工,如果出现姿态超限,轻则隧道管片出现错台、开裂、漏水等质量问题,重则需要联系设计单位和业主,进行调线。通过一年多的泥水盾构机施工经验,结合自己以前土压平衡盾构机的操作经验,对泥水盾构机的施工和质量控制方面的一些想法做如下总结。

一.工程概况:

东莞市城市快速轨道交通R2线工程(东莞火车站~东莞虎门站段)[2303A标:榴花公园站、茶山站~榴花公园站区间]土建工程施工项目,位于方中路上的茶山站后,正线隧道与出入段线隧道并行约100m由东向西穿越宽约200米的寒溪河,进入东岸大片农田(此时出入段线进入寒溪河东岸的东城车辆段)、通过中间风井及河西岸的数幢别墅后进入莞龙路。线路继续沿莞龙路前行,绕避了数架人行天

桥后到达榴花公园前的榴花公园站结束。

本标段起讫里程YDK2+298.728~ YDK5+502.598,包含1个明挖车站(【榴花公园站】)和1个区间(【茶山站~榴花公园站区间】),1条出段线盾构隧道(【中间风井~出段线盾构井】),1条入段线盾构隧道(【茶山站~入段线盾构井】)。其中正线段茶山站~榴花公园站区间左线起讫里程为:ZDK2+301.000~ZDK3+497.720、

ZDK3+653.485~ZDK4+118.812,左线长1662.041m; 右线起讫里程为:YDK2+298.728~YDK3+434.162、YDK3+601.659~ YDK4+110.000,右线长1643、775m;区间正线总长3406.628m。其中ZDK3+653.485~ZDK3+746.000、YDK3+601.659~ YDK3+690.000采用矿山法开挖,盾构管片衬砌。

二.操作注意事项:

(一)泥浆粘度控制

在泥水盾构中,泥浆的作用有两种:维持开挖面稳定和运送弃土。泥水盾构机施工时稳定开挖面的原理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制掌子面变形和地面沉降;在掌子面形成弱透水性泥膜,保持泥水压力有效作用于掌子面。泥浆作为一种运输介质将开挖下来的渣土以流体形式输送,经地面泥水处离处理设备分离,将处理过的渣土运至弃土场。

泥浆的比重和粘度等性能决定它稳定开挖面和携带渣土的能力。(1)泥浆比重

为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥

浆比重应比较高。从理论上讲,泥水比重最好能达到开挖土体的密度。但是,泥浆比重大会引起泥浆泵超负荷运转以及地面泥水分离设备处理困难;泥浆比重小虽可减轻泥浆泵的负荷,但因泥粒渗走量增加,泥膜形成慢,对掌子面稳定不利,容易造成地面沉降。因此,在选定泥浆比重时,必须充分考虑土体的地层结构,在保证开挖面的稳定的同时也要考虑泥水分离设备的处理能力。一般情况下,在砂层中,泥浆比重要求偏大一些,在1.20~1.25g/cm3,在粘土层中应当偏小一点,一般在1.10~1.15g/cm3。

(2)泥水粘度

泥水必须具有适当的粘性,以收到以下效果:

①防止泥水中的粘土、砂粒在土仓内的沉积,保持开挖面稳定;

②提高粘性;

③使开挖下来的弃土以流体输送,经泥水分离设备处理后滤除废渣,将泥水分离。泥浆粘度太低,达不到携带弃土能力和稳定开挖面的要求,粘度太高会影响它的运输能力,并造成刀盘及土仓结泥饼。在实际掘进中,我们应当结合地层分布情况、泥水分离系统的出渣情况、进出口泥浆粘度和比重的差值、环流系统是否顺畅、地表沉降等原因综合考虑。

(二)环流系统控制

环流系统控制受外界影响较大,有的可控,有的无法控制。

1、地层因素

地层的影响对切口的压力最为关键,而我们环流操作的目的就是

稳定切口压力。不同的地层、埋深需要的切口压力值不一样,所以每一个操作手必须了解和熟悉在掘进状态下盾构机所处在的地层、埋深。当地层发生改变时,操作手提前做好掘进数据记录,方便在相应的地层中寻求最佳的掘进参数。

2、环流液位的控制

环流液位的上升与下降直观的反映出切口环压力的波动,客观的反映出土仓里面泥渣的堆积情况。

A、当液位上升快时,如果进出管流量差不大时,应留意切口环压力和你的推进速度,当切口环压力也随液位上升而上升时,适当的降低掘进速度,通过阀的切换和泵的转速来重新保持环流平衡。

B、当液位上升快时,如果进出管流量差大时,应当减少进出管流量差(加大出浆量或者减少进浆量,一般采用加大排浆量),或者少开阀来慢慢稳定环流平衡(对于易结泥饼的6、7、8号地层,在开阀的时候必要保证一定的进浆压力,否则容易刀盘结泥饼)。

C、液位下降快时,应减少进出管流量差,对于6、7、8号易结泥饼地层,进浆流量应该保持在800~900立方每小时的高流量(海瑞克盾构机),进浆压力不小于 2.2bar。全断面砂层中流量保持在500~650立方每小时,进浆压力保持在1.5~2.0bar。

3、环流系统控制

泥水盾构机操作最重要的就是环流控制,环流控制是否适当直接影响切口压力的稳定。环流的控制主要靠泵和阀来控制,一般来说,在环流不怎么堵管的时候,尽量不要调动泵的转速,多切换阀,顺利

的将土仓中的泥渣带出,来保证切口环压力的稳定进行正常掘进。对于不同的地层,环流的控制手法应该是有所不同的,掘进速度有快慢之分。

一般在全断面的砂层中,速度控制在28~35mm/mim,进浆流量控制在550~650立方每小时,进出管流量差宜在60~80立方每小时。泥浆粘度宜控制在32~38秒。

中部底部以7#,8#为主,上部存在3-1#,4-1#,在隧道上部依然是3-1#,属于典型的上软下硬地层,这种复合地层中盾构机土仓内和刀盘最容易结泥饼,在进行环流操作时,尽量控制流量高点,一般来说,流量控制到800~900m3/ h时,土仓内不会有泥渣积累造成堵管现象。泥浆粘度情况需根据出渣比例进行调节。为防止刀盘结泥饼,尽可能的将通向土仓的阀全开,或者频繁切换土仓进浆阀,适当选用高转速(刀盘转速必须结合当前的地质实际情况,需防止由于转速高引起超挖造成地表沉降过大)。

对于全断面的7#、8#地层,掘进速度不宜过快,15~20mm/min 为宜,泥浆粘度控制在20~25s。环流重点要注意的部位是在土仓与气泡仓的出口处,所以通向土仓底部的阀门可以全开启,或者开一个,频繁切换。进出浆的流量要大,一般控制在850~950 m3/h,而冲洗碎石机和出口格栅两旁的浆管至少各开一个,以保持出口处通畅。

在掘进期间要注意土仓压力,土仓压力慢慢上升,适当的加大进浆压力,多冲洗土仓,同时加大排浆量,通过液位升降来维持切口环压力(加大排浆量的同时防止液位抽空)稳定。等土仓压力慢慢回落

到原来设定值时再重新调节环流平衡。

若土仓压力瞬间上升,马上打开旁路,等到土仓压力回落到原来掘进数值时再切换到掘进模式,并清洗格栅处。等到压力稳定后恢复掘进,先以慢速推进(实现一边推进一边清洗土仓和气压仓),在环流比较稳定的条件下再适当加快推进速度。

(4)液位计联锁控制

液位连锁原理是当液位上升或者下降到某一液位指示等亮时,循环系统自动切换到旁路,停止掘进。其原理时防止液位在人为操作情况下继续上升或下降,引起切口环压力大的波动,从而关闭或者开启进浆阀。液位连锁还有一个优点是,可以更好的协调交接班,防止上一个班组由于操作不当引起气压仓或者土仓堵塞问题。

(5)刀具配置

应尽量避免滚刀的偏磨,顺利通过软弱地层及上软下硬地层地段,进入到全断面岩层。因此如何防止滚刀偏磨是一个重要问题。根据经验,在软土地层中,滚刀磨损量很少,几乎没有。因此,重点控制在上软下硬地层中的掘进。根据本项目掘进情况,滚刀偏磨可能主要由泥饼引起,由于形成泥饼后使滚刀无法滚动,从而造成偏磨,特别是中心滚刀,由于开口率小,刀具布置密集,容易形成泥饼,因此在推进时应注意控制环流,采取各项措施防止泥饼形成。另外,在上软下硬地层中,滚刀容易产生破坏,应合理控制刀盘转速和推进速度,若发现异常及时上报。

(三)盾构机姿态控制

1、影响盾构机姿态的主要原因:

(1)地层变化,

(2)掘进参数不合理,

(3)设备存在缺陷(如刀具配置不合理)。

2、在正常掘进过程中应当保持盾构机水平和垂直姿态在±30mm,垂直姿态控制在0~ -30mm更理想,这样的姿态无论对于超限和隧道上浮都有一定纠偏余地。在上软下硬的复合地层中,盾构机保证一定的俯角(-2~-5)推进,在沙层中保持+2~+4的仰俯角推进,这样更有利于姿态的控制。

3、滚动角应当控制在±5,根据滚动角的变化随时更换刀盘转向,一环中有需要的话可以多次转变刀盘转向,这样可以防止由于滚动角大造成隧道管片扭转。

4、在曲线掘进时,在盾构机进入暖和曲线前,做好盾构机姿态调节,常规下一般姿态向曲线内侧偏移-10~-25mm比较合适。

5、推进油缸行程原则上控制在至1730mm至1760mm的时候应停止掘进,除非特殊情况下推进油缸行程可以适当多走一点(如需接大管)但行程不宜过长,如果行程到1850后不能接大管要求,等管片拼装后再往前推进到满足要求。推进油缸行程差不宜超过50mm,行程差过大,则盾尾刷容易露出,管片脱离盾尾较多,变形较大,易导致管片姿态变差;行程差过大,易使盾体与盾尾之间的夹角增大,如果推进油缸行程差比较大时,应当合理的进行管片选型,通过管片楔形量来调整推进油缸的行程差。

6、铰接油缸伸出的长度,直接影响到掘进时盾构机的姿态,应减少铰接油缸的长度差,尽量将长度差控制在20mm以内,将铰接油缸的行程控制在40~60mm之间为宜。铰接油缸行程差加大,盾构机推力增大,同时造成管片选型困难。

7、管片选型要合理,在管片选型上,不能仅凭盾尾间隙草率选定管片,应当以盾尾间隙为原则,结合铰接油缸行程和盾构机走向趋势来进行综合选型。

(三)质量控制

质量控制主要体现在三个方面:

1、管片选型控制

管片选型的两个原则:第一,管片选型要适合隧道设计线路;第二,管片选型要适应盾构机姿态。这两者是相辅相成的,前者影响整个隧道管片的需求计划,后都影响隧道掘进和隧道轴线与设计轴线的偏差。所以在管片选型上,我们要结合盾尾间隙、推进油缸行程差、铰接油缸行程、设计轴线等方面原因进行正确选型。

2、管片拼装控制

管片拼装时,必须将盾尾清理干净,将管片冲洗干净,避免管片间夹有杂物,使相邻管片环面不平整,使管片局部受力过大产生开裂、破损。检查管片止水条是否有脱落现象,管片拼装时先就位底部管片,然后自下而上左右交叉安装,每环相邻管片均布摆匀并控制环面平整度和封口尺寸,最后插入封顶管片成环。管片拼装成环时,其连接螺栓应先逐片初步拧紧,脱出盾尾后再次复紧。拼装完后及时调

整千斤顶撑靴,防止千斤顶撑靴压坏止水条,造成管片拼缝位置渗漏。在曲线段管片拼装时,人为意识的将管片向曲线内侧水平偏移2mm-3mm,这样有利于减少管片在转弯处出现错台。

3、注浆控制

注浆按其注浆方式为同步注浆和二次补浆,按浆液性能分单夜浆和双液浆。

(1)同步注浆

同步注浆是指在盾构掘进过程中,盾构机向前行进,管片脱出盾尾与围岩形成建空隙的同时,从位于盾尾的注浆管路注入浆液填充形成的建筑空隙。管片之间的连接相对管片的刚度而言表现为柔性,因此在同步注浆时必须控制好注浆压力和注浆量,使之既能达到有效的填充建筑空隙,又不会对管片的成环质量产生影响。由于在盾构掘进中,对周围土体产生一定的扰动,因此,在注浆时,不仅考虑到浆液要充满管片背后的空隙,同时还要渗透至周边的土层中,所以要求注浆量比计算的空隙要大些,一般取为理论空隙体积的130%~180%为系数,甚至更大。注浆的速度要结合掘进速度,而注浆量需结合地表沉降。

同步注浆施工时应注意以下事项:

①在推进油缸行程达到1600 - 1650mm之间时,停止注入浆液,改打膨润土液清洗注浆管并将管内浆液压入开挖空隙,以免浆液在管路中停滞过久堵塞注浆管路;

②每掘进完成一环应检查清洗注浆管路一次;

③注浆压力不能大于盾尾油脂腔的压力,一般在5bar以内;

(2)二次注浆

盾构施工过程中,因同步注浆效果不理想,浆液未能有效填充管片衬背后建筑空隙,造成地面沉降大,管片上浮,漏水等缺陷。为改善这种现象,利用管片吊装孔二次补充注入浆液。二次注浆一般以双液浆为主,也有部分采用二次补充注单液浆。在控制管片上浮、控制地表沉降时多采用注双液浆。

二次注浆量和压力要视情况而定。一般以注浆压力来控制。

二次注浆时应注意一下事项:

①在注浆前应查看管片情况并在注浆过程中进行跟踪观察,如有异常情况应立即停止注浆。

②在注入过程中应严格控制注浆压力。

③在注入过程中出现压力过高但注入效果不明显的情况时应检查注浆泵及注浆管路是否有堵管现象,并立即进行清理。

④在进行二次双液注浆前应将同步注浆管路的所有球阀全部关闭。

⑤注浆前应查看盾尾油脂腔的压力,如果压力偏低,应适当手动注入盾尾油脂,以保证在注浆过程中有足够的压力避免盾尾漏浆

⑥在注浆前应查看管片情况及土仓压力情况并在注浆过程中进行跟踪观察,如有异常情况应立即停止注浆。

⑦注浆位置一般选定在盾尾内数倒数第五环管片以后,避免浆液流向盾构机,造成盾尾固死。

除了注浆方式不一样以外,在不同地层中掘进其浆液类型也有所区别,在砂层中用双液浆效果更为理想。

(四) 掘进中常见事故处理

1、盾尾漏浆处理

盾尾漏浆是盾构施工最常见的,也是最麻烦的问题。特别是在富水层中掘进,如果盾尾刷受损,盾尾间隙差,浆液凝固时间长,注浆压力大等原因,漏浆的频率高很多。

盾尾漏浆有两种形式:漏泥浆和漏砂浆(实际掘进中盾尾还会漏水)。

造成盾尾漏浆的主要原因:

(1)盾尾刷在掘进过程中由于盾尾间隙差,盾尾刷受管片挤压导致失去弹性或者脱落造成盾尾漏泥浆和砂浆及清水。

(2)浆液凝固时间过短,造成浆液不能充分填充管片后空隙,而是堆积在注浆口附近,造成注浆通道受限制,后续浆液压力必然剧增,当浆液压力高于盾尾刷和油脂的抗压力时,就会击穿盾尾刷和油脂衬背而造成盾尾漏砂浆,长期下去就会导致盾尾漏泥浆和砂浆及清水。

所以在防止盾尾漏浆最有效的措施是保护好盾尾刷和控制好注浆压力与浆液的凝固时间。在掘进过程中盾尾漏浆,首先应当了解漏浆情况,具体位置在哪个部位,漏浆量有多大,盾尾间隙如何,注浆压力有多大,根据情况进行处理。

(1)如果漏浆量不大,而盾尾间隙比较合理的情况下,对漏浆位置进行手动补盾尾密封油脂(对漏泥浆或者砂浆都可行),漏浆部

位崭停注浆。

(2)如果漏浆量大,而盾尾间隙比较合理的情况下,在对漏浆位置进行手动补盾尾油脂的同时往盾尾晒海绵条,漏浆部位崭停注浆。

(3)如果漏浆量大,而盾构间隙差的情况下,在手动补盾尾油脂的同时往盾尾塞海绵条,漏浆部位崭停注浆。管片选型往间隙大的部位走,在掘进下一环过程中注意盾构机姿态尽量不要摆动来进行纠偏。

(4)控制好盾尾密封油脂的注入,盾尾油脂的损耗与掘进速度成正比,速度过快则注入盾尾的密封油脂在单位时间内不能满足其消耗量,若不及时调整油脂泵注脂率,则盾尾刷内的油脂量和注入油脂的压力不能及时密封盾尾,势必造成尾刷的密封效果减弱,形成盾尾漏浆。

在掘进中多注意保护盾尾刷,控制好注浆压力,使用配比合理的浆液,从根源上解决漏浆问题。在判断盾尾刷受损严重时,有条件更换盾尾刷的应马上更换尾刷。

2、地表沉降处理

地面沉降一般发生在软弱地层中,沉降分为两种,一是推进过程中刀盘位置发生沉降,二是后期管片脱出盾尾后沉降。推进过程中发生沉降的主要原因可能是切口压力波动大,造成超挖使地层发生变形沉降;还有可能是切口环压小造成局部塌方或超挖,从而使地表地层沉降,一般这种情况发生在隧道上覆地层为软弱地层的时候,由于软

弱地层稳定性差,对变形敏感,变化很快传递到地面产生地表沉降。后期沉降的产生与推进和注浆有关。即使地层稳定,若推进过程中发生超挖现象,而注浆没有相应增加,则有可能造成部分施工空隙没有填充,导致地层缓慢变形,最终产生地面沉降。在地下水丰富的地层中,若注浆没有及时凝固,浆液被地下水稀释带走也造成注浆的不足,从而引发地面沉降。对只有单液注浆系统的盾构机,后期沉降也可能受切口水压影响。由于单液注浆凝固时间长,注浆完成后其压力可能迅速消散,直至其值与切口水压相同,若所设定的切口水压过低,则有可能使地层缓慢变形后形成地面沉降。

由以上分析,切口压力和注浆控制是地面沉降的主要因素,因此在推进过程中控制好这两个方面可减少地面沉降的发生。这就要求设定较合理的切口压力及在推进时避免超挖现象,并严格按照指定的注浆方式进行注浆。对于前期刀盘位置处沉降,在掘进中可以适当调节切口水压和泥浆比重和粘度来减少沉降,对于盾尾后期沉降,加大同步注浆量或者进行二次补浆来减少沉降。

土压平衡盾构与泥水平衡盾构的结构原理

2土压平衡盾构与泥水平衡盾构的结构原理 傅德明 上海市土木工程学会 1 土压平衡盾构的结构原理 土压平衡盾构的基本原理 土压平衡盾构属封闭式盾构。盾构推进时,其前端刀盘旋转掘削地层土体,切削下来的土体进入土舱。当土体充满土舱时,其被动土压与掘削面上的土、水压基本相同,故掘削面实现平衡(即稳定)。示意图如图所示。由图可知,这类盾构靠螺旋输送机将碴土(即掘削弃土)排送至土箱,运至地表。由装在螺旋输送机排土口 处的滑动闸门或旋转漏斗控制出土量,确保掘削面稳定。 1.1.1 稳定掘削面的机理及种类 土压盾构稳定掘削面的机理,因工程地质条件的不同而不同。通常可分为粘性土和砂质土两类,这里分别进行叙述。 1.1.1.1 粘性土层掘削面的稳定机理 因刀盘掘削下来的土体的粘结性受到破坏,故变得松散易于流动。即使粘聚力大的土层,碴土的塑流性也会增大,故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进行控制。对塑流性大的松软土体也可采用专用土砂泵、管道排土。 地层含砂量超过一定限度时,土体流性明显变差,土舱内的土体发生堆积、压密、固结,致使碴土难于排送,盾构推进被迫停止。解决这个问题的措施是向土舱内注水、空气、膨润土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。 1.1.1.2 砂质土层掘削面的稳定机理 就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。当地下水位较高、水压较大时,靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和水压。再加上掘削土体自身的流动性差,所以在无其它措施的情况下,掘削面稳定极其困难。为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌,改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。 1.1.1.3 土压盾构的种类 按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表1。 表1 土压盾构的种类 图1 土压盾构基本形状

泥水盾构操作规程

盾构机掘进基本操作指导书 (包括刀盘转速、掘进速度、油缸推力、方向姿态等控制) 1、安全操作规程 1.1.基本注意事项 (1).遵守岗位内安全规程 ●盾构机操作、维修人员必须是受过专业训练的,必须具备相应的操作资格。 ●进行机械操作或维修时,请遵守相关的技术资料和项目部下发的文件中所 有安全规则、注意事项及顺序。 ●身体不适、服用药物(催眠药)时及酒后不要操作, 因为发生危机时,容易造成判断失误。 ●多人共同作业时,一定要设指挥员,根据制定的方案操作。 (2).设臵安全联锁装臵 ●请确认所有的防护装臵、防护罩是否装在正常位臵。如果破损,请马上修理。 ●请认真了解盾构联锁、溢流阀等安全装臵。 ●请勿随便调节盾构联锁装臵、溢流阀。 解除盾构联锁装臵请参照盾构联锁装臵的使用说明。 ●一旦误用安全装臵,将会造成重大人身事故。 (3).电气、液压的设定,不要随便变更 ●为防止电气火灾,请勿变更热继电器等设定值。 ●为防止盾构机损伤,请勿变更溢流阀压力等液压设定值。 (4).正确穿戴工作服和安全保护用品 过肥的服装、饰品等有可能被机械部件上的物品钩住,有油的工作服因易 燃,也不得穿用。 ●请勿忘记根据工作内容穿戴保 护眼镜、安全帽、口罩、手套等。 特别是用锤子打击销子等金属片、 异物时可能飞散,必须使用保护眼 镜、安全帽、手套等保护用具。

1.2.盾构掘进过程中的注意事项 (1).掘进中必须特别注意的事项 ●掘进中,机器有时会突然侧滚。所以进入掘进机内时,请充分注意因突然侧滚造 成的跌倒、滚落。 特别是在高处时,必须要用安全带。 ●因传送带或土沙压送泵运转中的振动,造成后续台车的翻到,伤及 作业者的危险性是存在的,请切实装好防翻部件,并认真确认。(2).注意电机的散热 ●电机散热装臵周围闭塞时,就不能散热,有损伤内部、发生火灾的可能, 因此,请保持电机散热装臵的正常运转,不要挡住电机前后风路。(3).推进油缸靴撑和管片间的注意事项 ●推进油缸靴撑和管片间有夹住手脚的危险。注意不要把手脚臵于其间。(4).注意异常声音、异常情况等 ●如果对器具的异音、异常不加以注意,零部件将可能破损而飞散,并有因部件 飞散而造成人员伤害的危险。 机器发生异音、异常时,请立即中止掘进,进行点检、维修。

盾构施工质量控制要点

盾构施工质量控制要点 一、盾构法隧道施工质量控制要点 (一)审查盾构施工总体方案,需重点注意的内容 1.施工场地总平面布置图; 2.盾构推进方案(始发、掘进、到站或掉头); 3.盾构推进计划; 4.管片的质量控制; 5.施工测量方案、沉降监测方案; 6.同步注浆和二次补浆的质量控制; 7.盾构设备性能参数及操作方法; 8.出土方案和弃土安排; 9.端头和联络通道地层加固方案; 10.建筑物、管线等调查及保护方案; 11.补充地质勘探方案; 12.洞门密封及处理方案; 13.盾构设备组装调试; (二)进场设备检查 应对进入施工现场的各种设备进行检查,包括注浆设备、起吊设备、管片运输设备、管片防雨设施、给排水系统、供电设备等。在盾构始发井前,这些设备应处于可正常工作的状态。 (三)控制测量复核 盾构施工前,应对所使用的水准点和控制点进行复核,确认

没问题后才可使用。 (四)临时管片安装和盾构设备推进前的检查 应对以下方面进行检查,确认没问题后,才可以开始安装临时管片和进行盾构设备推进。 1.盾构设备定位; 2.反力架安装; 3.洞口橡胶密封条和端墙凿除; 4.临时管片固定方式; 5.盾构设备操作方式; 6.同步注浆和二次补浆方式; 7.垂直运输和水平运输设备及其运输方法; (五)盾构设备掘进与管片拼装检查 1.在盾构设备推进前,承包商应提交详细的施工进度安排 报监理和业主批准; 2.监理应通过承包商提供的施工进度报表和现场检查来判 断盾构设备的掘进与管片拼装的情况,出现异常情况时 须及时分析原因,必要时采取相应措施; (六)进场管片检查 1.要求承包商在管片安装之前,必须有专人对以下内容进 行检查,并填写检查表(检查表应有承包商提交给监理 备案):(1)管片表面损坏情况;(2)管片生产日期;(3) 管片类型编号;(4)止水带封条的粘贴(位置和牢固性);

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研究

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研 究 摘要:本文以南京纬三路过江隧道工程超大直径泥水平衡盾构机穿越江中深槽段施工为例,通过对风险源的分析与应对措施研究,提出了超大泥水平衡盾构长距离穿越深水浅覆土地区应对措施。 1.工程背景 南京纬三路过江通道工程采用直径14.93m泥水平衡盾构,盾构穿越江中深槽段总长度为586m,该段掘进全部位于江中段,是工程中风险最高、难度最大的施工区段。在该段深槽线路范围内,线路位于右偏R=1500m的圆曲线内,线路为V字型,坡度从-3.892%过最低点(SDK4+780)后变为2.45%。江底最低覆土深度为14.46m(到盾构机顶部),水深最深为34.9m(2009年9月数据)。江中段地质情况见表1。 表1 地质分层分段情况表 2.施工风险分析 2.1地质勘测准确性风险 由于江底深水地质勘测难度大、成本高,准确性也难以保证,江底隧道地质勘探具有极大的局限性,遇到未勘查清楚的不良地质或存在未查明的地下障碍物的风险十分可能发生。因此,施工准备阶段和施工过程中,需要通过对筛分渣样的分析达到地质预测的目的,可部分揭示开挖面前方地层情况。同时江底可能会出现特异性的障碍物,如废弃铁块、沉船等影响盾构掘进。 2.2盾构机的适应性、可靠性风险 盾构机选型极大程度上是工程成功的决定性因素,盾构机穿越江底掘进过程中,盾构机选型尤为重要,主要表现在以下几个方面: (1)刀盘、刀具磨损:盾构机长距离掘进对刀盘、刀具磨损大;在软硬不均的地层及卵石地层掘进时,刀具不可避免的产生卡刀或偏磨等问题。 (2)泥浆泵及管路磨损、堵塞:泥水循环回路泥浆中的砂石成分会磨损泥浆泵及排送管路,导致盾构机排渣不畅; (3)主轴承磨损,密封件防水失效:因主轴承在长距离掘进被磨损可能导致密封件防水失效,泥浆向盾构机内渗漏,保压系统失衡; (4)盾尾密封:盾尾密封系统的不适应性或受管片及周围土体的磨损影响,导致盾构间隙增大或油脂仓保压失效,盾构机发生渗漏; (5)数据采集系统、传感器失灵:受开挖面恶劣条件影响,盾构工作面数据采集系统、传感器有失效风险,盾构掘进参数或正面舱压等指标无法准确显示; (6)液压推进系统漏油:液压推进系统漏油,推力不足可能导致盾构后退风险; (7)注浆管路堵塞:由于浆液残留结块等原因可能导致注浆管路堵塞,无法进行正常的同步注浆; (8)主轴承断裂:由于主轴承磨损或在掘进复杂地层中偏心力矩致过大可导致主轴承断裂。 2.3江底冒浆风险 由于隧道穿越复合地层、上软下硬地层控制难度大,卵砾石层、粉砂岩层等地层表现为孔隙较大的特点,要依据地层条件及时调整泥浆质量和泥水压力,加

盾构施工控制要点

地铁隧道盾构法施工质量控制重点及措施 摘要:盾构工法是我国城市地铁隧道建设的主要工法,施工人员熟悉和掌握地铁隧道的施工质量控制重点及方法,对保证隧道的安全生产及质量具有重大意义。 关键词:盾构工法;施工质量;控制重点;措施 引言 我国城市地铁隧道建设正步入快速发展的轨道,由于盾构工法具有工期短、造价低、施工领域宽、自动化程度高等特点,因此得到广泛应用。就沈阳地铁2号线土压平衡盾构的施工实践,论述盾构隧道质量的控制方法,并对一些质量控制重点及方法进行探讨。 1 盾构始发阶段 1.1 盾构端头井土体加固(始发)等相关质量控制 在盾构始发时,提高地基强度,防止沉陷,防止地下水突出及土砂等流入端头井内,需进行洞圈周围土体的加固和改良。常用方法有搅拌桩法、药液注入法、冻结法等。无论采取何种方法,加固和改良的效果是质量控制的关键。 (1)加固效果要通过在不同部位、不同深度钻心取样等手段进行验证,确保满足设计要求。 (2)降低地下水位。在始发期间,端头井周围地 下水位要降至洞圈以下1.5—2m,要实施实时监测,并有备用降水井和降水设备。

(3)临时墙拆除。这是在盾构施工中最应引起注意的一道作业,有很大的危险性。国内外有多种始发掘进的方法:①根据地基改良等情况保持始发井前面土体稳定的同时,拆除临时挡土墙进行掘进。②将始发部位做成双层墙结构,边拔除前面的墙边掘进。③用盾构机边直接切削临时墙边掘进。现在多采用第一种方法。拆除临时墙时应掌握门封的具体结构,制定针对性的措施。拆除临时墙的时间应在盾构机调试达到稳定推进条件后。临时墙与盾构机间应预留不小于1.2m的作业空间。拆除临时墙前应钻梅花型探孔(不少于5点)观察,观察时间不少于12h。考虑到综合因素,始发推进尽量选在白天上午。目前正在开发一种盾构机刀盘直接切削的新材料来替代钢筋,可以不必拆除临时墙,无需释放土体应力,就可以使盾构机安全推进,值得关注。 (4)出洞止水密封装置安装。帘布橡胶板上的安装螺栓必须齐全紧固,防翻卷装置加工牢固,帘布橡胶板紧贴洞门,防泥水流失。 (5)始发出洞应做如下工作:①洞门凿除后,盾构机应迅速靠上洞口土体。②观察洞口有无渗漏,如有应及时封堵(应急封堵材料及排水设备)。③盾构机土仓内不得有砼块、钢筋等,临时墙周边钢筋不得伸入盾构切削圆周内。④第一正环拼装时检查最后一负环管片的位置、真圆度等。⑤控制推进千斤顶的使用情况,防止盾构机磕头或上飘。⑥严格控制负环管片的真圆度。 1.2 盾构始发设备 1.2.1 盾构机基座质量控制重点 (1)位置及尺寸。基座设置前,应对洞中的实际净尺、平面位置、直径及高程进行复核,确定基座的位置和高程。盾构姿态的调整,

泥水盾构机安全操作规程汇总

目录 盾构 盾构主机安全操作规程 (3) 土压仓作业安全操作规程 (7) 刀具更换安全操作规程 (9) 人仓作业安全操作规程 (10) 后备套系统管线延伸安全操作规程 (14) 注浆泵安全操作规程 (16) 管片安装机安全操作规程 (17) 油脂泵安全操作规程 (18) 常规 门吊安全操作规程 (20) 门吊钢丝绳使用规范 (21) 机车安全操作规程 (22) 装载机安全操作规程 (24) 挖掘机安全操作规程 (25) 空压机机安全操作规程 (26) 移动空压机安全操作规程 (27) 电动空压机安全操作规程 (29) 通风机安全操作规程 (30) 6M3砂浆车安全操作规程 (30) 18M3矿车安全操作规程 (31)

注浆机安全操作规程 (31) CO2气体保护焊机安全操作规程 (31) 电焊机安全操作规程 (34) 对焊机安全操作规程 (34) 卷扬机安全操作规程 (35) 切割机安全操作规程 (36) 套丝切管机安全操作规程 (37) 折弯机安全操作规程 (37) 充电机安全操作规程 (38) 电气设备安全操作规程 (40) 手持电动工具安全操作规程 (41) 水泵安全操作规程 (43) 厢式变电站安全操作规程 (44) 千斤顶及泵站安全操作规程 (45) 搅拌站安全操作规程 (46)

盾构主机安全操作规程 1、盾构操作人员必须身体健康,能够适应较长时间的洞内工作,无色盲\无视觉及听觉障碍,能吃苦耐劳并具有较强的责任心; 2、盾构操作人员必须具有一定的专业基础并经过专门的专业培训,具有一定的机械、电气及土木工程知识,对盾构机机械结构、电气配置、基本工作原理及盾构施工过程有一定的了解; 3、盾构操作人员必须经过专门的安全知识培训,并且熟悉盾构及地下工程施工的相关安全知识,掌握必备的防护技能。

盾构施工介绍

盾构施工介绍 一、盾构机选型 盾构的机型是指在根据工程地质和水文地质条件,盾构所采用的最有效的开挖面支护形式。 1.选型依据 (1) 土质条件、岩性、(抗压、抗拉、粒径、成分等个参数) (2) 开挖面稳定(自立性能) (3) 隧道埋深、地下水位 (4) 设计隧道的断面 (5) 环境条件、沿线场地(附近管线和建筑物及其结构特性) (6) 衬砌类型 (7) 工期 (8) 造价 (9) 宜用的辅助工法 (10) 设计路线、线形、坡度 (11)电气等其他设备条件 地层渗透系数对于盾构的选型是一个很重要的因素。通常,当地层的渗透系数小于10-7m/s时,可以选用土压平衡盾构机;渗透系数大于10-4 m/s时,一般选用泥水盾构;介于两者之间的既可以用土压平衡的,也可用泥水盾构。根据地层渗透系数与盾构类型的关系,若地层以各种级配富水的砂层、砂砾层为主时,宜选用泥水盾构;其它地层宜选用土压平衡盾构。我们一号井的盾构机选用海瑞克生产的S592盾构机。 二、盾构机介绍 1.TBM概述 机器类型土压平衡盾构安装功率 4000千瓦 TBM长度+后配套长度约88米 TBM重量约750吨 曲率半径(最小) 500米 2.盾构概述 (1)盾构钢结构

前盾(直径) 8800毫米(长度) 2800毫米 中盾(直径) 8785毫米(长度) 3000毫米 盾尾(直径) 8770毫米(长度) 4100毫米加4排密封刷(2)盾尾铰接油缸(被动) 数量 15个 行程 150毫米 标准推力在215巴时6500千牛 (3)掘进 主推进油缸数量 19×2个 行程 2500毫米 推力在350巴时70000牛 (4)人孔闸 数量 1个类型平行闸 前舱容积 2430升前舱容纳人数 2个 主舱容积 4170升主舱容纳人数 4个 工作压力 6巴 (5)螺旋输送机 数量 1台长度 15175毫米 功率 400 千瓦速度 0-22.1/分钟扭矩(额定) 217千牛米 3.刀盘概述 开挖直径 8830毫米重量(含刀具) 116吨 滚刀(一圈) 45 滚刀(中心) 4 滚刀直径 432毫米齿刀 58 中间刀具 1 铲刀 16 磨损保护 3个传感器 4.主驱动概述 主驱动电动马达 14个 功率 14×160千瓦速度 0-4.2 /分钟

泥水平衡盾构机施工总结

泥水平衡盾构机施工总结 本工程是我单位常规直径地铁盾构第一次采用泥水盾构机施工。在施工、操作方面可借鉴经验不多,造成在施工中走过了不少弯路,出现了许多问题。泥水盾构机操作的基本原则是:控制切口压力在技术交底范围内稳定和盾构机姿态在设计要求范围内的前提下,实现盾构机正常掘进。切口压力的稳定是保证地面沉降、安全掘进的前提条件,而盾构机姿态决定隧道走向是否与设计路线符合,成型隧道符合设计要求的先决条件。如果在掘进期间,切口压力不稳定,波动较大的话,轻则沉降较大,重则引起地面塌方。所以在操作泥水盾构机的时候,每一个操作手必须清楚的明白,保证切口压力稳定的重要性。而盾构机姿态是决定我们的施工是否按设计路线施工,如果出现姿态超限,轻则隧道管片出现错台、开裂、漏水等质量问题,重则需要联系设计单位和业主,进行调线。通过一年多的泥水盾构机施工经验,结合自己以前土压平衡盾构机的操作经验,对泥水盾构机的施工和质量控制方面的一些想法做如下总结。 一.工程概况: 东莞市城市快速轨道交通R2线工程(东莞火车站~东莞虎门站段)[2303A标:榴花公园站、茶山站~榴花公园站区间]土建工程施工项目,位于方中路上的茶山站后,正线隧道与出入段线隧道并行约100m由东向西穿越宽约200米的寒溪河,进入东岸大片农田(此时出入段线进入寒溪河东岸的东城车辆段)、通过中间风井及河西岸的数幢别墅后进入莞龙路。线路继续沿莞龙路前行,绕避了数架人行天

桥后到达榴花公园前的榴花公园站结束。 本标段起讫里程YDK2+298.728~ YDK5+502.598,包含1个明挖车站(【榴花公园站】)和1个区间(【茶山站~榴花公园站区间】),1条出段线盾构隧道(【中间风井~出段线盾构井】),1条入段线盾构隧道(【茶山站~入段线盾构井】)。其中正线段茶山站~榴花公园站区间左线起讫里程为:ZDK2+301.000~ZDK3+497.720、 ZDK3+653.485~ZDK4+118.812,左线长1662.041m; 右线起讫里程为:YDK2+298.728~YDK3+434.162、YDK3+601.659~ YDK4+110.000,右线长1643、775m;区间正线总长3406.628m。其中ZDK3+653.485~ZDK3+746.000、YDK3+601.659~ YDK3+690.000采用矿山法开挖,盾构管片衬砌。 二.操作注意事项: (一)泥浆粘度控制 在泥水盾构中,泥浆的作用有两种:维持开挖面稳定和运送弃土。泥水盾构机施工时稳定开挖面的原理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制掌子面变形和地面沉降;在掌子面形成弱透水性泥膜,保持泥水压力有效作用于掌子面。泥浆作为一种运输介质将开挖下来的渣土以流体形式输送,经地面泥水处离处理设备分离,将处理过的渣土运至弃土场。 泥浆的比重和粘度等性能决定它稳定开挖面和携带渣土的能力。(1)泥浆比重 为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥

隧道工程《盾构法施工》超详细讲解

3 盾构法施工 概述 盾构法是以盾构为核心在地面以下暗挖隧洞的一种施工方法。盾构法始于英国,自1925年布鲁诺尔(Brunel)在伦敦泰晤士河下首次用一台矩形盾构开挖水底隧洞以来,已有170余年历史。在一百多年中,世界各国制造了数以千计的各种类型、各种直径的盾构,盾构掘进机从低级发展到高级,从手工操作到计算机监控机械化施工,使盾构掘进机及其施工技术得到了不断发展和完善。现代盾构已经发展成为集机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧洞衬砌、测量导向纠偏等功能的大型的施工机械设备。 ●盾构法作为一种先进的隧洞施工工法具有: (1)对环境干扰少,对交通及居民生活影响小; (2)盾构推进、出土、衬砌等工序循环进行,易于管理,施工人员少; (3)施工不受地形地貌,江河水域等地表环境条件限制; (4)施工不受天气条件(雨雪等)限制; (5)出土量少,对周围环境及地表沉降影响小; (6)在土质差,地下水位高的地方建大埋深隧洞具有优越性。 由于这些优点,盾构法特别适宜于城市隧洞和穿江越海的施工,目前盾构工法已在城市隧洞的构筑中确定了稳固的统治地位。 ●盾构法是一项综合性的施工技术。构成盾构法的主要内容有: (1)先在隧洞某段的一端建造竖井或基坑,以供盾构安装就位。 (2)盾构机主机和配件吊装下井,在预定位置组装成整机并调试使其性能达到设计要求。 (3)盾构从竖井或基坑的墙壁开口处出发,在地层中沿着设计轴线推进。盾构推进中所受到的地层阻力,通过盾构千斤顶传至盾构尾部已拼装的预制衬砌,再传到竖井或基坑的后靠壁上。盾构每推进一环距离,就在盾尾支护下拼装一环衬砌,并及时向盾尾后面的衬砌环外周的空隙中压注浆体,以防止隧洞及地面下沉,在盾构推进过程中不断从开挖面排出适量的土方。 (4)盾构到达预定终点的竖井或基坑时掘进结束,然后检修盾构或解体盾构运出。 ●盾构是进行土方开挖正面支护和隧洞衬砌结构安装的施工机具,它还需要其它施工技术密切配合才能顺利施工。主要有: (1)地下水的降低; (2)稳定地层、防止隧洞及地面沉陷的土壤加固措施; (3)隧洞衬砌结构的制造; (4)隧洞内的运输; (5)衬砌与地层间的充填; (6)衬砌的防水与堵漏; (7)开挖土方的运输及处理方法; (8)配合施工的测量、监测技术; (9)采用气压法施工时,还涉及到医学上的一些问题和防护措施等。 目前在我国主要使用的有土压平衡盾构和泥水平衡盾构。 (1)土压平衡盾构 土压平衡盾构是在机械式盾构的前部设置隔板,在刀盘的旋转作用下,刀具切削开挖面的泥土,破碎的泥土通过刀盘开口进入土仓,使土仓和排土用的螺旋输送机内充满切削下来的泥土,依靠盾构推进油缸的推力通过隔板给土仓内的土碴加压,使土压作用于开挖面以平衡开挖面的水土压力。破碎的泥土通过刀盘开口进入土仓,泥土落到土仓底部后,通过螺旋输送机运到皮带输

泥水平衡盾构机施工方案

针对本项目的特性技术方案简述 施工技术篇 一、工程概述 二、总体施工部署及施工思路 2.1 初步施工安排 2.2 总体计划 2.3 工程管理目标 2.4 施工的前准备工作 2.5 施工组织管理 2.6 项目施工总体思路及工艺 2.7 施工总平面图布置规划 三、重点、关键和难点工程的施工方案、工艺及其措施简述 3.1 重点、关键和难点工程分析及应对措施 3.1.1 城市中心区的和谐施工 3.1.2 交通疏解、管线改迁及征地拆迁对工程前期推进影响大 3.1.3 盾构始发与到达施工难度大 3.1.4 基坑安全施工 3.1.5 顶管施工重难点分析及应对措施 3.1.6 泥水盾构刀盘、刀具设计 3.2 本项目主要工程施工方案及工艺简述 3.2.1 竖井(工作井)施工 3.2.2 顶管施工 3.2.3 盾构施工 3.2.4 管道功能性试验 3.2.5 其他附属及机电安装工程 四、交通疏导方案规划 4.1 交通疏导原则及规定 4.2 交通疏解实施程序 4.3 交通疏解方案

五、地下管线及其他地上地下设施的保护加固措施 5.1 地下管线保护措施 5.2 建构筑物保护措施 六、施工保障措施 6.1 施工质量保障措施 6.1.1 质量目标 6.1.2 质量保证体系 6.1.3 质量保证制度 6.1.4 主要工程施工质量控制措施 6.2 施工安全保障措施 6.2.1 安全目标 6.2.2 安全保证体系 6.2.3 安全保证制度 6.2.4 主要工程施工安全控制措施 6.3 应急预案 6.3.1 应急救援中心的职责 6.3.2 信息报告及处理 6.3.3 应急决策及响应 6.3.4 应急救援的资源配置 6.4 文明施工及环境保护措施 6.4.1 管理体系 6.4.2 文明施工措施 6.4.2 环境保护措施 七、本项目拟配备的机械设备情况

泥水平衡盾构机在不同地质层掘进的操作控制

泥水平衡盾构机在不同地质层掘进的操作控制 摘要:泥水平衡盾构适合多种恶劣环境施工,尤其是穿江越海。本文以南水北调穿黄隧道为实例,简述泥水盾构掘进在不同地质层中的风险和操作控制。 关键字:泥水盾构机;地质层;操作 工程简介 1、工程概况:南水北调中线穿黄隧洞包括3450m过黄河隧洞和800m邙山隧洞,采用一台泥水平衡式盾构机自北向南推进,埋深45m隧道施工。隧道直径9m,采用预制混凝土管片拼装支护方式。 2、工程地质:根据勘探资料,隧道大约由以下地质层构成:1)全土层:由黄土状粉质壤土、古土壤、淤泥、粉质粘土、淤泥质粘土、粉质壤土、淤泥质粉质粘土、砂壤土中的一种或几种组成,所占隧洞总长度的13.2% ;2)全砂层:由粉砂、细砂、中砂、粗砂、含砾砂中的一种或几种组成,所占隧洞总长度的25.6%;3)复合层:由全土层和全砂层中的任何两种或以上组成,所占隧洞总长度的15.0%;4)砂砾石层:只要含有砂砾石层就作为单独的一层,所占隧洞总长度的34.5%;5)钙质结核土层:层中只要含有钙质结构就作为单独的一层,所占隧洞总长度的11.7%;地质结构复杂多变。 盾构机的选择 1、盾构机的分类与区别 隧道掘进机(Tunnel Boring Machine简称TBM)大体分为硬岩掘进机、土压平横盾构机、泥水平衡盾构机和顶管机四类。硬岩掘进机用于地质稳定性较好的隧道工程,比如岩石层,一般用于山体隧道;顶管机一般用于距离短、直径小,地质疏松的小型直线隧道;土压平衡盾构(EPB)一般用于沙、水含量较少的地质,它是通过螺旋输送机出渣同时控制出渣量来保持压力平衡;泥水平衡盾构(slurry)用于地质变化大、条件比较恶劣的环境下,通过进、排泥浆管道出渣同时保持泥浆在气垫仓的液位保持盾构平衡,并且地面配备泥水分离设备。他们的区别主要在于出渣方式不同。本工程可使用加泥式土压平衡盾构和泥水平衡盾构。但土压平衡盾构一般只适应0.3MPa以下的水压,本工程水压高达0.45MPa,因此选用泥水平衡盾构。 2、加压式泥水平衡盾构工作原理 泥水平衡盾构是通过对泥浆压力进行调节和控制建立平衡、保证掘进的,采用膨润土悬浮液(俗称泥浆)作为支护材料。泥浆有两个作用:1)、在隧道开挖仓形成泥膜,支撑掌子面,防止隧道上方坍塌;2)、将掘进开挖出的渣土通过进、排泥浆将渣土悬浮于膨润土浆液中,通过管道泵出至配套的泥水处理设备进行分离。泥浆再通过沉淀调制,重复使用。泥水盾构适用的地质范围较大,从软弱砂

泥水盾构施工管理介绍

5.1盾构机选型 5.1.1盾构机的选型原则和依据 盾构机选型是盾构隧洞能否优质、安全、快速建成的关键工作之一,选型时主要遵照以下原则: (1)选择的盾构机机型和功能必须满足本标段线路条件、工期、施工条件和环境等要求。 (2)选用的盾构机按本标段的地质条件,进行有针对性的设计与制造,要求其性能与本标段内的工程地质、水文地质条件相适应。 (3)选用的盾构机应具有良好的性能和可靠性。 (4)类似地质、施工条件下盾构选型、施工实例及其效果。 (5)盾构机制造商的知名度、业绩、信誉和技术服务。 (6)依据南水北调中线一期穿黄工程上游线隧洞土建及设备安装施工招标文件及第三卷图纸,为选用盾构机机型的重要依据。 5.1.2盾构隧洞线路条件及混凝土管片 (1)隧洞由邙山隧洞段和过黄河隧洞段组成,最大开挖直径9030mm,总长4250m的直线隧洞。 (2)线路纵坡有三:邙山隧洞约4.91%,过河隧洞段有0.1%和0.2%两种,变坡点竖曲线半径为800m。见5.1-1南水北调中线穿黄隧洞示意图

图1 南水北调中线穿黄隧洞示意图 (3)过河段隧洞围土有单一粘土结构、上砂下土结构和单一砂土结构三种。 (4)主要地质问题有: —砂层中石英颗粒含量高40%-70%,刀具磨损加剧; —刀具检查地点和检查方式; —换刀地点及加固方式选择; —常压下换刀作业和气压下的换刀作业; —遇到枯树和大孤石的处理; —局部有抗压强度达16.5MPa砂岩等。 (5)隧洞外层采用通用环混凝土楔形管片衬砌,每环的楔形量为34.8mm。管环外径8.7m,内径7.9m,管片宽度1.6m,由7块管片组成,错缝拼装,每块管片所对应圆心角51.4286度。管片重量约6.2t。 5.2土压平衡式盾构机与混合式盾构机的基本掘进构成 5.2.1土压平衡式盾构机的基本掘进构成 盾构法施工从气压式盾构机开始到当今广泛使用土压平衡式盾

盾构法隧道施工及验收规范GB

1.0.1编制本规范的目的时为了加强盾构隧道工程的施工管理,确保施工过程的工程安全、环境安全和工程质量,统一盾构法隧道工程的施工技术与质量验收标准。本规范不包括盾构隧道的设计、使用和维护方面的内容 1.0.2本规范为规定的内容应按照国家现行相关标准执行。 2术语 本章给出了本规范有关章节引用的19条术语。目前盾构及其施工技术在术语尚存在地区和习惯差异,通过本规范统一盾构法施工及验收的相关术语。 本规范的术语主要参考现行国家标准《地铁设计规范》GB50157、《城市轨道交通岩土工程勘察规范》GB50307、《城市轨道交通工程测量规范》GB50308、《城市轨道交通工程监测技术规范》GB50911、《地下轨道工程施工及验收规范》GB50299及《地下铁道设计与施工》等资料,经编制组集中归纳和整理编入本规范。 本规范的术语时从盾构法隧道施工及验收角度赋予其含义,同时还给出相应的推荐性英文翻译,仅供参考。 3基本规定 3.0.1施工管理体系包括质量管理体系、环境管理体系、职业健康安全管理体系。对于施工现场管理,除应具有健全的施工管理体系外,还要求有相应的施工技术标准、施工质量控制和检验制度,以及施工人员和设备安全保障和环境保护措施。 对具体的施工项目,要求有经审查批准的施工组织设计和施工技术方案,并能在施工过程中有效运行。对于涉及隧道结构安全、人身安全和环境保护的内容,应有明确的规定和相应的措施。 3.0.3本条为强制性条文。规范操作盾构,并制定应急预案,使其在预定条件和正确操作下正常使用时确保盾构法隧道施工的重中之重。因此,在施工前应根据盾构类型、地址条件和工程实践,首先由针对性地进行危险源和环境因素的辨识和评估,根据分解结论制定包括盾构安全操作技术规程、对周边环境的影响及应对措施等在内的专项施工方案和应急预案,确保施工作业在安全和卫生环境下进行。 3.0.7盾构法隧道施工应建立信息管理体系,制定信息管理制度。为便于几时了解施工现场情况,鼓励有条件的施工现场配置地面远程监控系统,将盾构掘进参数实时传递到地面监控中心。 3.0.8盾构法隧道工程施工期间,对重要或有特殊要求的建(构)筑物,应及时采取注浆、加固、支护等技术措施,保证邻近建(构)筑物、地下管线、道路及轨道交通线路等安全。 3.0.9质量验收包括实物检验和资料检查。资料检查包括施工质量验收依据和质量验收记录等。施工质量验收层次为:生产班组的自检、交接检;施工单位质量检验部门的专业检查和评定,监理单位(建设单位)组织的验收。 根据有关规定和工程合同的规定,对工程质量起重要作用或有争议的检验项目,有各方参与见证检验,已确保施工过程中关键部位的质量得到控制。 4施工准备 4.1前期调查 4.1.2~4.1.4位防止资料与实际工况条件不符,施工前应进行工程环境的调查和实地踏勘,位制定施工组织设计提供足够的依据,调查的主要内容有: 1实地踏勘调查各种建(构)筑物的使用功能、结构形式、基础类型及其与隧道的相对位置等; 2道路种类和路面交通情况; 3工程用地情况,主要对施工场地及材料堆放场地、弃土场地、运输路线等做必要的调

盾构法特点总结

地下工程 盾构法施工过程涉及的力学问题分析 专业:土木工程系 班级: 1009 姓名: 日期: 2013/04/27 南京过江隧道(盾构施工) 一、南京过江隧道简介 南京长江隧道于2008年5月开工到2009年8月22日全线胜利贯通,是南京城市总体规划确定的“五桥一隧”过江隧道之一,是南京跨江发展战略的标准基础设施项目,工程位于南京长江大桥和长江三桥之间,南起南京市和西新城区,北至浦口江、珠江镇,全长5853

米,由越江隧道、将西周大桥和接线道路三部分组成,隧道建筑长度3790米,其中盾构段长3020米。 南京长江隧道分左右两条隧道,每条隧道设置三车道,设计行车速度为80Km/h。盾构设计内经,外径。圆形衬砌环用环宽2m、厚、每环由10块管片组成。 图1 南京长江 图2 南京长江越江隧道 图3 隧道盾构段 图4 盾构隧道直径 二、南京过江隧道施工 南京长江隧道是当今世界上直径最大的盾构隧道之一,其江底埋深达60多米,水压高达每平方厘米公斤,兼地质情况复杂,地层透水性强,一次掘进距离长达3公里多,面临着多项世界级难题和挑战,泥水平衡式盾构机(如图6)是水下隧道施工最安全最先进的设备。泥水平衡式盾构机施工隧道(如图;图;图) 图泥水平衡式盾构机施工隧道

图泥水平衡式盾构机施工隧道 图泥水平衡式盾构机施工隧道 图6 泥水平衡式盾构机 三、盾构机设计与工作原理介绍 南京长江隧道,根据本工程的特点和地质条件专门定制了两台超大直径溺水平衡式盾构机进行施工,下面展示这两台盾构机的设计和工作原理: 盾构机主要包括主机和三个后配套车架,总重多达四千多吨,主机最前端是开挖地层的刀盘,直径达米,刀盘上安装有先行刀,重行刮刀和边缘铲刀等类型的刀具200多把,刀盘的六个主刀壁在正常的大气压下进土,维护人员可以通过中心人闸进入主刀壁。 图7 盾构机的直径 图8 刀盘维护人员 对磨损的刀具进行更换,为了检测刀具的磨损,部分刀具内部安装了传感器感应系统,一旦传感器发出信号,整个刀盘上设计有77把可设置常压更换的刀具,这些刀具安装在刀闸中,当刀具磨损,需要更换刀具时,工作人员进入刀盘腹壁内,将刀具通过刀闸回缩,刀

泥水式盾构机发展概况及工作原理

泥水式盾构机发展概况及工作原理 泥水式盾构机 1发展概况 泥水式盾构机是通过有一定压力的泥浆来支撑稳固开挖面;由旋转刀盘、悬臂刀头或水力射流等进行土体开挖;开挖下来的土料与泥水混合以泥水状态由泥浆泵进行输运。泥水式盾构机适用于各种松散地层,有无地下水均可。采用泥水式盾构机进行施工的隧洞工程都说明它是一种低沉降及安全的施工方法,在稳定的地层中其优点更加明显。 最初的泥水盾构要追溯到一百多年前的Greathead及Haag的专利。由于高透水性地层用压缩空气支撑隧洞开挖面非常困难,1874年,Greathead开发了用流体支撑开挖面的盾构,开挖出的土料以泥水流的方式排出。1896年Haag在柏林为第一台德国泥水式盾构申请了专利,该盾构以液体支撑开挖面,其开挖室是有压和密封的。1959年E.C.Gardner成功地将以液体支撑开挖面应用于一台用于建造排污隧洞的直径为3.35m的盾构。1960年Schneidereit引进了用膨润土悬浮液来支撑开挖面,而H.Lorenz的专利提出用加压的膨润土液来稳固开挖面。1967年第一台有切削刀盘并以水力出土、直径为3.1m的泥水盾构在日本开始使用。在德国,第一台以膨润土悬浮液支撑开挖面的盾构由Wayss&Freytag开发并投入使用。 泥水式盾构机的发展有三种历程,即日本历程、英国历程和德国历程。到目前则只有日本和德国两个主要的发展体系。日本的发展历程导致当今的泥水盾构,德国的发展历程导致水力盾构。以日本的泥水盾构为基础发展了土压平衡盾构,而德国的水力盾构导致很多不同的机型,如混合型盾构,悬臂刀头泥水盾构及水 力喷射盾构等。德国和日本体系的主要区别是,德国式的在泥水舱中设置了气压舱,便于人工正面控制泥水压力,构造简单;日本式的泥水密封舱中全是泥水,要有一套自动控制泥水平衡的装置。

盾构常规重难点施工监理管控要点教学内容

盾构施工重难点管控要点一、盾构始发 盾构始发流程见图1.1。

图1.1盾构始发流程图 (1)始发台架安装 在安装始发台架前先由测量组在始发井底板设立控制护桩,根据护桩精确定位始发台的高程和左右位置。在完成定位之后,将始发台架底部结构焊接在埋设好的预埋铁板上,以保证始发台架的整体稳定。 在盾构机主体组装时,在始发台架的轨道上涂硬质润滑油以减小盾构机在始发台上前后平移到的阻力。始发台的坡度(即盾构机的中心坡度)与隧道设计轴线坡度平行,以保证盾构机按照设计的中心和高度进入地层。根据隧道设计轴线定出盾构始发的空间位置,推算出始发基座的位置。始发基架示意图见图1.2. (2)反力架安装 在盾构主体部分吊入始发井后,进行反力架的安装。反力架底部固定在底板预埋件上,支撑固定于端头结构墙埋设的预埋件上,以确保始发过程中反力架的稳定。 反力架示意图见图1.3。 图1.3反力架示意图图1.2 始发基架示意图安装反力架时,先用经纬仪双向校正两根立柱的垂直度,使其形成的平面与盾构机的推进轴线垂直。为了保证盾构机始发姿态,安装反力架和始发台时,反力架左右偏差控制在±10mm之内,高程偏差控制在±5mm之内,上下偏差控制在±10mm之内。始发台水平轴线的垂直方向与反力架的夹角<±2‰,盾构姿态与设计

轴线竖直趋势偏差<2‰,水平偏差<±3‰。 (3)洞门凿除 在洞门凿除前应先对端头加固体进行垂直抽芯检验和水平探孔,以检验端头加固的止水效果和加固体的稳定性。垂直抽芯检验数量为加固桩数的1%,抽芯总数不少于三根。水平探孔以洞门作业面按上、中、下、左、右共布设5个φ50孔位进行,钻孔深度不小于2.5m。经检验合格后方允许进行洞门凿除施工。 凿除施工时在盾构机与掌子面之间搭建脚手架,人工用高压风镐进行凿除围护结构砼施工,凿除按照从上往下、从中间往两边的顺序进行,凿除的范围为预留洞门轮廓线内的围护结构。拆除工作保证围护结构钢筋全部切断,以避免盾构刀盘被围护结构的钢筋挂住。凿除施工完毕后拆除脚手架,快速拼装负环管片,使盾构机抵拢掌子面,避免掌子面暴露太久发生失稳坍塌。 (4)洞门密封装置 为了防止盾构始发掘进时泥浆从盾壳和洞门的间隙处流失,以及盾尾通过洞门后背衬注浆浆液的流失,在盾构始发时需安装洞门临时密封装置,临时密封装置由帘布橡胶、扇形压板、垫片和螺栓等组成。 为了保证在盾构机始发时快速、牢固地安装密封装置,在吊装井施工时在预留洞门处预埋环状钢板。密封装置安装前应对帘布橡胶的整体性、硬度、老化程度等进行检查,对圆环板的成圆螺栓孔位等进行检查,并提前把帘布橡胶的螺栓孔加工好。盾构机进入预留洞门前在外围刀盘和帘布橡胶板外侧涂润滑油以免盾构机刀盘挂破帘布橡胶板影响密封效果。当盾构机刀盘进入洞门后将卡板置于盾体外侧并用螺栓固定;当盾构机主体部分全部通过洞门后将卡板置于负环管片的外表面,起到防止泥水、浆液流失的作用,从而减少始发时的地层损失。 (5)负环管片的安装 按设计要求经精确测量定位后拼装负环管片。在拼装第一环负环管片前,在盾尾管片拼装区下部180度范围内安设7根长1.4m、30mm厚的木条或钢板(盾尾内侧与管片间的间隙为30mm)。在盾构机内拼装好整环后利用盾构机推进千斤顶将管

盾构培训总结docx

浅谈盾构陈国全 盾构在我国发展迅速,尤其是近些年的城市轨道交通建设,盾构显得尤为重要,盾构是集隧道施工中的开挖、出土、支护、衬砌等多项作业于一体的联合施工机械,其将隧道的施工过程形成了工厂化的流水性作业。机械专业性强,人工操作少,施工方便等明显特点。 盾构的分类: 盾构的分类方法很多,常见的有两种分类方法:根据施工环境的不同,盾构的“类型”分为软土盾构和复合盾构两类。 软土盾构是指适用于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩条件下的一类盾构。软土盾构的主要特点是刀盘仅安装切刀和刮刀,无需滚刀。 复合盾构是指既适用于软土、又适用于硬岩的一类盾构,主要用于既有软土又有硬岩的复杂地层施工。复合盾构的主要特点是刀盘既安装有切刀和刮刀,又安装有滚刀 盾构按支护地层的形式主要分为自然支护式、机械支护式、压缩空气支护式、 泥浆支护式、土压平衡支护式五种机型。目前应用最广的是土压平衡盾构(土压 平衡支护式)和泥水盾构(泥浆支护式)两种机型。 土压平衡盾构的工作原理:土压平衡盾构是在机械式盾构的前部设置隔板,在刀盘的旋转作用下,刀具切削开挖面的泥土,破碎的泥土通过刀盘开口进入土仓,使土仓和排土用的螺旋输送机内充满切削下来的泥土,依靠盾构千斤顶的推力通过隔板给土仓内的土碴加压,使土压作用于开挖面以平衡开挖面的水土压力。 泥水平衡盾构的工作原理:泥水加压平衡盾构(slurry pressure balance shield),简称SPB盾构或泥水盾构。是在机械式盾构的前部设置隔板,与刀盘之间形成泥水仓,开挖面的稳定是将泥浆送入泥水仓内,在开挖面上用泥浆形成不透水的泥膜,通过该泥膜的张力保持水压力,以平衡作用于开挖面的土压力和水压力。开挖的土砂以泥浆形式输送到地面,通过泥水处理设备进行分离,分离后的泥水进行质量调整,再输送到开挖面。 泥水盾构根据泥水仓构造形式和对泥浆压力的控制方式的不同,泥水盾构分为:1.直接控制型2.间接控制型.德国采用间接控制型泥水盾构,其泥水系统由泥

泥水盾构施工要点

掌握土压仓内土砂塑性流动性的方法 塑流化改良控制是土压平衡式盾构施工的最重要要素之一,要随时把握土压仓内土砂的塑性流动性。一般按以下方法掌握塑流性状态。 1.根据排土性状 取样测定(或根据经验目视)土砂的坍落度,以把握土压仓内土砂的流动状态。采用的坍落度控制值取决于土质、改良材料性状与土的输送方式。 2.根据土砂输送效率 按螺旋输送机转数计算的排土量与按盾构推进速度计算的排土量进行比较,以判断开挖土砂的流动状态。一般情况下,土压仓内土砂的塑性流动性好,盾构掘进就正常,两者高度相关。 3.根据盾构机械负荷 根据刀盘油压(或电压)、刀盘扭矩、螺旋输送机扭矩、千斤顶推力等机械负荷变化,判断土砂的流动状态。一般根据初始掘进时的机械负荷状况和地层变化结果等因素,确定开挖土砂的最适性状和控制值的容许范围。 泥水平衡盾构掘进中泥浆的作用 泥水平衡式盾构掘进时,泥浆起着两方面的重要作用: 一是依靠泥浆压力在开挖面形成泥膜或渗透区域,开挖面土体强度提高,同时泥浆压力平衡了开挖面土压和水压,达到了开挖面稳定的目的;二是泥浆作为输送介质,担负着将所有挖出土砂运送到工作井外的任务。 因此,泥浆性能控制是泥水平衡式盾构施工的最重要要素之一。 泥水平衡盾构掘进对泥浆的性能指标要求 泥浆性能包括: 物理稳定性、化学稳定性、相对密度、黏度、pH值、含砂率。

土压平衡式盾构出土运输方法与排土量控制 土压平衡式盾构的出土运输(二次运输)一般采用轨道运输方式。 土压平衡式盾构排土量控制方法分为重量控制与容积控制两种。重量控制有检测运土车重量、用计量漏斗检测排土量等控制方法。容积控制一般采用比较单位掘进距离开挖土砂运土车台数的方法和根据螺旋输送机转数推算的方法。我国目前多采用容积控制方法。 泥水平衡式盾构排土量控制方法 泥水平衡式盾构排土量控制方法分为容积控制与干砂量(干土量)控制. 容积控制方法如下,检测单位掘进循环送泥流量Q1与排泥流量Q2,按下式计算排土体积Q3:Q3= Q2-Q1 对比Q3与Q,当Q>Q3时,一般表示泥浆流失(泥浆或泥浆中的水渗入土体);Q<Q3时,一般表示涌水(由于泥水压低,地下水流入)。正常掘进时,泥浆流失现象居多。 干砂量表征土体或泥浆中土颗粒的体积 干砂量控制方法是,检测单位掘进循环送泥干砂量V1与排泥干砂量V2,按下式计算排土干砂量V3,V3= V2-V1 对比V3与V,当V>V3时,一般表示泥浆流失;V<V3时,一般表示超挖。 盾构管片拼装成环方式 盾构推进结束后,迅速拼装管片成环。除特殊场合外,大都采取错缝拼装。在纠偏或急曲线施工的情况下,有时采用通缝拼装。 盾构管片拼装顺序 一般从下部的标准(A型)管片开始,依次左右两侧交替安装标准管片,然后拼装邻接(B型)管片,最后安装楔形(K型)管片。

相关文档
相关文档 最新文档