文档库 最新最全的文档下载
当前位置:文档库 › 高压直流输电技术中的谐波及其抑制

高压直流输电技术中的谐波及其抑制

高压直流输电技术中的谐波及其抑制
高压直流输电技术中的谐波及其抑制

高压直流输电技术中的谐波及其抑制

周泊宇

(华北电力大学,北京市昌平区)

The Harmonic Waves in HVDC and the Control of Harmonic Waves

ZHOU Bo-yu

(North China Electric Power University,Changping district,Beijing )

ABSTRACT:When we use the technology of HVDC,the power electronic devices in converter stations will generate different kinds of harmonic waves. We must solve these problems in order to use HVDC more extensive.In this paper ,I will analysis different kinds of harmonic waves,the measurement of the harmonic waves and the control of the harmonic waves.

KEY WORDS:HVDC,harmonic waves,inverter,filter

摘要:高压直流输电技术在应用中,换流站的电力电子器件会产生不同次数谐波,只有解决好谐波的问题,才能更好的利用高压直流输电技术。在本文中,作者将针对谐波的种类、谐波的测量以及谐波的抑制进行分析。

关键词:高压直流输电技术,谐波,换流器,滤波器

0 引言

高压直流输电系统在建设中会建设大

量的换流站,由于换流站中大量的电力电子器件的应用,会产生一定次数的谐波,这些谐波对系统的安全稳定运行以及通讯设备

的正常使用都会产生严重的影响,比如,引起局部的串并联谐振,放大谐波分量,产生附加损耗和发热;对电机、变压器、电容器、电缆等设备造成振动、过热、绝缘老化,严重影响设备的使用寿命甚至直接造成设备

损坏;干扰邻近通讯系统,影响通讯质量。在低压配电网中这些谐波污染问题显得尤为突出,严重影响到各种大型厂矿的正常生产,如钢铁、煤矿、化工、纺织等企业,以及IT和大规模微电子集成电路企业,造成产品报废、生产线停产、生产设备的寿命骤减甚至损坏。因此,对谐波的研究以及对其抑制的技术的研究,是高压直流输电技术中的重要技术问题之一。

1 谐波的产生及谐波的次数

国际上公认的谐波定义是:“谐波是一个周期电气量的正弦分量,其频率为基波频率的整数倍”。根据法国数学家傅立叶(M. Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量,周期为T = 2π/ω的非正弦电压uωt 可分解为

:

式中频率为nω( n = 2, 3?) 的项即为谐波项,通常也称之为高次谐波。谐波分为偶次与奇次,第3、5、7、9等次的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz 时, 2次谐波为100Hz, 3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。在高压直流输电中,由于换流器分为6脉动和12脉动两种,不同换流器在交流侧产生的特征谐波次数也不同,所以对于实际谐波次数的分析要根据换流器的脉动数而定。

1.1 6脉动换流器的特征谐波电流

假设换流器交流侧电感为零,忽略换相过程影响时各相电流波形由正、负相间的矩形波组成。以a相电流为例,适当选取坐标进行傅里叶分析可知,换流器交流侧电流中只含有6k±1次的谐波。对于直流侧的谐波分析,假定直流电流为不含纹波的直流电流,因此只分析直流侧电压中的谐波分量。通过傅里叶分析,可得到结论,对于6脉波换流器,h=6k。

1.2 12脉动换流器的特征谐波电流

12脉动换流器由两个6脉动换流器通过分别采用Yy(或Dd)和Yd11联结的换流变压

器组合而成,桥侧电源电压移相π/6,根据分析发现5、7、17、19等次谐波在电网侧的总电流中将相互抵消,而只含有12k±1次的谐波。对于12脉动换流器直流侧的特征谐波,其分析方式于6脉动相同,结论为h=12k。

2 谐波电流的测量

准确检测谐波信号是滤除各次谐波的前提,也是保证电力有源逆变器有效补偿的关键,目前电力系统应用的监视测量表计基本上都是按工频正弦量设计,输入信号含有谐波时,测量误差较大。传统的带铁心环形绕组互感器工作于铁心磁化曲线的线性区,可用来测量交流谐波,但它在直流电流作用下会因磁通偏移而产生饱和,故不能用来测量直流谐波。而目前还有一种利用Rogowski线圈电流传感器来测量谐波电流,Rogowski线圈电流传感器不含铁心、无磁饱和、频带宽,从根本上解决了传统谐波测量问题,且体积小、造价低,特别适用于HVDC谐波电流。

但要实际应用于高压直流输电工程中,尚需一些改进。根据实际情况,相对直流而言,各次HVDC谐波电流一般不大,次数较高的仅几A,线圈所感应出的电压信号较小。因而为保证准确有效的测量谐波,要求Rogowski线圈除具有一般线圈的特点外,还必须采取措施加大感应信号以提高信噪比。因Rogowski线圈无铁芯,互感M很小,故有效提高M是提高系统准确度的关键,也是该线圈设计的特殊要求。可采取以下措施提高M:

(1)增加线圈匝疏密度n 用细导线

可使线圈均匀密绕,提高n,从而提高M。但导线不能太细,以免绕制时断线。

(2)增加骨架高度h 增加h则增大M,但也增大了加工难度,影像测量准确度,故h一般取10-30mm。

(3)骨架加大外径b或降低内径a

b/a也与M成正函数。但其后果与增加h的类似,内外径相差过大,均匀密绕很难实现。

(4)线圈多层绕制多层绕制线圈的M提高很多,且自感增加,但杂散电容也随之增大,对传感器的频带宽度有一定影响,同时多层绕制很难保证绕圈均匀密绕。

(5)多个线圈叠加将多个骨架尺寸相同的线圈串联叠加,则随着线圈数量增加,分布电容减小,串联电感增加,这样线圈的频带理论上不受影响。但实际中线圈间会产生一定的分布电容,其频带宽度略有下降,同时传感头体积会相应增大。

以改进后的Rogowski线圈为核心制成的HVDC谐波电流测量系统还应配以检测元件,制成互感器。该互感器分为测量、供电系统两部分,供电系统采用全新的光供电方式,稳定可靠,不受电网影响。

3 谐波的抑制

为保证供电质量、净化电网,防止谐波对电网及各种电力设备的危害,除要对发、供、用电系统加强管理外,还必须采取必要的措施来抑制谐波。换流器直流侧的谐波电压将在直流线路上产生谐波电压、谐波电流分布,使邻近的通信线路受到干扰。特别是高压直流输电系统穿越人口相对集中的区域,对由谐波引起的污染受到社会的高度关注,因此,必须采取有效措施抑制谐波电压和谐波电流造成的危害。

3.1 增加换流装置的脉动数

通过增加换流器的脉动数可以减小特征谐波的组成成分,提高最低此特征谐波的次数,从而达到抑制谐波的目的。对于变流变压器台数较多的企业,建议根据换流变压器的脉动数以及移相角的关系,对6脉动和12脉动变流变压器进行适当的组合,以有效抑制谐波。

目前多采用12脉动,更高的脉动数为了得到相应的换相电压,换流变压器的结构和接线将非常复杂,不但增加了制造困难也增大了投资,不经济。

3.2 合理配置滤波器

对于高压直流输电所产生的谐波有效地抑制方法是采用滤波器和平波电抗器。滤波器又分为有源滤波器和无源滤波器。有源滤波装置实在无源滤波的基础上发展起来的,当直流输电线路穿越人口密集和广泛采用明线通信的地区时,为防止谐波对通信线路的干扰,采用直流有源滤波器具有较好的经济性能。将直流有源滤波器串联或并联在主回路中,产生一个与系统谐波电压幅值相等但相位相反的电压,以抵消谐波电压,从

而起到减小谐波危害的作用。有源滤波器有以下优点:

(1) 对目前不可预见的交流系统扰动所产生的直流侧谐波, 有源滤波器可以提供更好的滤波性能;

(2) 若一组直流滤波器故障停运, 投入备用有源滤波器分组, 对等值干扰电流无影响, 提高了运行的可靠性, 而无源滤波器则无法满足要求。

(3)使用有源滤波器技术, 等值干扰电流保证值可期望达到250/500 mA。

近年来由于有源滤波装置的性价比不高,天广直流工程使用有源滤波器在我国尚属首次,但采用有源滤波并不是一项新开发的技术, 它已广泛应用于冶金、电力拖动等领域, 由于有源直流滤波器在性能指标、可靠性明显优于无源滤波器, 因而, 采用有源直流滤波器是现代直流输电工程的发展方向。

在实际工程中多采用无源滤波装置。无源滤波器由电容器、电抗器和电阻元件组成。目前,在高压直流输电系统中采用双调滤波器和三调滤波器。如下图:

双调滤波器具有抗失谐能力强、较好的高通滤波性能、降低并联谐振幅值和良好的经济效应,同时可起到防止过电压等优点。近年来,在高压直流输电工程中,双调滤波器等到了广泛的应用。

3.3 采用中性点冲击电容器抑制非特征谐波

在换流器的中性点与大地之间装设中性点冲击电容器,其目的是为直流侧以3的倍次谐波为主要成分的电流提供阻抗通道。使用该种电容器不仅对降低整个直流系统

的谐波水平有较明显的作用,还能缓解接地极引线落雷时的过电压。一般来说,该电容器电容值的选择范围应为十几微法至毫法,同时还应避免与接地极线路的电感在临界

频率上产生并联谐振。

4 结束语

随着能源开发、电能传输以及电力系统的规模不断扩大, 采用直流输电的必要性

日益被人们认识。直流输电不仅是一种节省能源损耗的输电方式, 而且在开发利用边

远地区的能源和开发新能源、新发电方式等方面, 直流输电技术更是一种有效的手段,必将越来越广泛地得到采。与交流输电系统相比, 直流输电系统有许多优点: 线路造

价低、适合远距离输电、没有系统稳定问题、调节快速、运行可靠等。随着高压直流输电技术的广泛应用,直流输电系统存在的谐波对系统本身及周边环境的影响不容忽视,

我们应该对其产生的原因、危害、计算分析以及抑制措施进行研究和探讨, 为今后抑

制谐波的工作提供更有效、更合理的途径。只有有效处理谐波对供电系统、用户和周围电气环境造成的危害,才能保证高压直流输电系统的正常运行。

参考文献

[1] 殷培峰,马应魁,马莉。基于直流输电换流器谐波的分析与处理[J]。电力系统及其自动化,2014.

[2] 郑劲,张小武,孙中明,李书芳。特高压直流输电工程的谐波限制标准及滤波器设计[J].电网技术,2007.

[3] 罗隆福,李勇,许加柱,等。新型换流变压器配套滤波装置的设计优化[J].电网技术,2007。

[4] 李锡正。浅谈高压直流输电谐波的危害及抑制[J].工程管理及科学技术。2011。

[5] 温世斌。高压直流输电系统谐波的抑制

[6] 韩民晓,文俊,徐永海。高压直流输电原理与运行[M].北京:机械工业出版社,2009.

[7] 王兆安,刘进军。电力电子技术[M].北京:机械工业出版社,2011。

[8] Gole AM,Meisingset M.Capacitor Commutated Converters for long-cable HVDC Transmission[J].Power Engineering

Journal,2002.

[9] Jos Arrilaga.High V oltage Direct Current

Transmission[M].England:Srort Run presLltd,1998.

[8] M. Takeda, K. Ikeda, and Y. Tominaga, Harmonic Current Compensation with an Active Filter, in Conf. Rec. of IEEE-IAS, 1987, pp. 808~815.

我国特高压直流输电技术的现状及发展

我国特高压直流输电技术的现状及发展 (华北电力大学,北京市) 【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。 【关键词】特高压直流输电,特点,问题,必要性,发展前景 0.引言 特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。 特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 1.特高压直流输电的技术特点 1.1特高压直流输电系统 特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。 1.2 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。 (4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 1.3 与超高压直流输电比较 和±600千伏级及600千伏以下超高压

特高压输电工程简介

特高压输电工程简介 ABSTRACT: Transporting electrical power with ultra-high voltage has been very popular these days, but most people in the society do not know much about it. In this essay, we will have a short cover about ultra-high voltage technology and focus on the necessity and importance of ultra-high voltage for China to develop this technology, some difficulties in this process, and finally some sample projects in destruction. KEY WORDS:ultra-high voltage, electrical power 摘要:特高压输电,作为近年来国家重点发展的示范项目,已经引起了越来越多的关注和讨论,社会中的绝大部分群体对这一新兴概念并不十分了解,本文对我国特高压输电工程进行一个简单的介绍和讨论,重点介绍我国现阶段特高压输电的必要性和重要性、期间面临的一些反对意见和应对措施、我国现阶段对特高压工程的研究进展情况,以及目前已建成的或在建的特高压示范工程规划。 关键词:特高压,电力系统 目前我国常用的电压等级有:220V、380V、6kV、10kV、35kV、110kV、220kV、330kV、500kV。交流220kV及以下的称为高压(HV),330kV到750kV为超高压(EHV),交流1000kV及以上为特高压(UHV),通常把1000KV到1150kV这一级电压称为百万伏级特高压。对于直流输电,±600kV及以下的为高压直流(HVDC),±600kV以上为特高压直流(UHVDC)。 对于我国发展特高压输电的必要性和重要性,主要有以下几个方面: (1)电力快速发展的需要 改革开放30 年以来,我国用电总量快速增长。1978 年,全社会用电量为2498 亿千瓦时,到2007 年达到32565 亿千瓦时,是1978 年的13 倍,年均增长9.45%。改革开放之初,我国逐步扭转了单纯发展重化工业的思路,轻工业得以快速发展,用电增速呈现先降后升的态势,“六五”、“七五”期间年均增长分别达到6.52%、8.62%,其间,在经济体制改革的带动下,我国用电增速曾连续6 年(1982~1987 年)逐年上升,是改革开放以来最长的增速上升周期。1990 年以来,在小平南巡讲话带动下,我国经济掀起了新的一轮发展高潮。“八五”期间,全社会用电增长明显加快,年均增长10.05%。“九五”期间,受经济结构调整和亚洲金融危机影响,用电增速明显放缓,年均增长6.44%,尤其是1998 年,增速仅为2.8%,为改革开放以来的最低水平。进入“十五”以来,受积极的财政货币政策和扩大内需政策拉动,我国经济驶入快速增长轨道,经济结构出现重型化,用电需求持续高速增长,年均增长12.96%,尤其是2003 年、2004 年达到了改革开放以来用电增长高峰,增速分别为15.3%和15.46%。“十一五”前两年,我国用电继续保持快速增长势头,增速均高于14%。 由此可以看出,随着工业化和城镇化的不断推动和发展,我国用电量逐年增加,在工业化和全面建设小康社会的带动下,预计我国到2020 年全社会用电量将达到6.5~7.5 万亿千瓦时,年均增速将达到5.5%~6.6%;人均用电量达到4500~5200千瓦时,相当于日本上世纪80 年代的水平。所以,要求现有的电力系统增大发电容量,满足用电需求。 (2)我国资源和电力负荷分布不均衡 受经济增长,尤其是工业生产增长的强劲拉动,我国电力需求实现高速增长,但是,我国用电增长地区分布不均。总体来看我国东部沿海经济发达地区用电强劲增长,西部地区高耗能产业分布较多的省区用电增长幅度也较大,中部地区增长较慢,我国电力系统的负荷也呈现出结构性变化。但是,我国的资源分布却呈现出相反的情况,水能、煤炭等电力资源主要分布在中西部地区,远离东部的集中用电区域,这同

电网谐波及其抑制

电网谐波及其抑制

电网谐波及其抑制 ㈠电网谐波的有关概念 ⒈电网谐波的含义及其计算 谐波(harmonic),是指对周期性非正弦交流量进行傅里叶级数(Fourier series)分析所得到的大于基波频率整数倍的各次分量,通常称为高次谐波。而基波是指其频率与工频(50Hz)相同的分量。 向公用电网注入谐波电流或在公用电网中产生谐波电压的电气设备,称为谐波源(harmonic source)。 就电力系统中的三相交流发电机发出的电压来说,可认为其波形基本上是正弦量,即电压波形中基本上无直流和谐波分量。但是由于电力系统中存在着各种各样的“谐波源”,特别是随着大型变流设备和电弧炉等的广泛应用,使得高次谐波的干扰成了当前电力系统中影响电能质量的一大“公害”,亟待采取对策。 按GB/T14549-93《电能质量·公用电网谐波》规定,第h次谐波电压含有率

(HRU h)按下公式计算: HRU h=U h / U1× 100% 式中,U h为第h次谐波电压(方均根值);U1为基波电压(方均根值)。 第h次谐波电流含有率(HRI h)按下式计算: HRI h=I h / I1× 100% 式中,I h为第h次谐波电流(方均根值);I1为基波电流(方均根值)。 谐波电压总含量(U H)按下式计算: 谐波电流总含量(I H)按下式计算: 电压总谐波畸变率(THD u)按下式计算: THD u =U H / U1× 100% 电流总谐波畸变率(THD i)按下式计算:

THD i= I H / I1× 100% ⒉谐波的产生与危害 电网谐波的产生,主要在于电力系统中存在的各种非线性元件。因此,即使电力系统中电源的电压为正弦波,但由于非线性元件的存在,结果在电网中总有谐波电流或电压存在。产生谐波的元件很多。例如荧光灯和高压汞灯等气体放电灯、感应电动机、电焊机、变压器和感应电炉等,都要产生谐波电流或电压。最为严重的是大型的晶闸管变流设备和大型电弧炉,他们产生的谐波电流最为突出,是造成电网谐波的主要因素。 谐波对电气设备的危害很大。谐波电流通过变压器,可使变压器的铁心损耗明显增加,从而使变压器出现过热,缩短使用寿命。谐波电流通过交流电动机,不仅会使电动机的铁心损耗明显增加,而且还要使电动机转子发生振动现象,严重影响机械加工的产品质量。谐波对电容器的影响更为突出,谐波电压加在电容器两端时,由于电容器对谐波的阻抗很小,因此电容器很容易发生过负荷甚至造成

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

UPS供电系统中的谐波及其抑制

供电系统中的谐波及其抑制 一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。 供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。 二、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。 在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。 在其它几个环节中,谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还必须向这类负荷产生的谐波提供额外的电能。 接入低压供电系统的非线性设备产生的谐波电流可分为稳定的谐波和变化的谐波两大类。所谓稳定的谐波电流是指由这种谐波的幅度不随时间变化,如视频显示设备和测试仪表等产生的谐波,这类设备对电网来说表现为恒定的负载。由激光打印机、复印机、微波炉等产生的各次谐波的幅值随时间变化,称之为波动的谐波,这类设备对电网来说是一个随时间

供电系统中的谐波及其抑制

供电系统中的谐波及其抑制 发布者:admin 发布时间:2006-6-27 15:48:56 来自:互联网浏览统计:20 减小字体增大字体一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。 供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。 二、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。 在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。 在其它几个环节中,谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还必须向这类负荷产生的谐波提供额外的电能。

换流站与变电站,为何采用高压直流输电

换流站与变电站,为何采用高压直流输电 1.总论 电厂的任务是发电,电厂要能正常发电就需要使用和维护设备,使用和维护设备就是电厂的主要工作内容。 变电站是将电厂发出的电能通过电力设备进行各种变换,然后输送出去。其主要工作任务是: 1、使用和维护电力设备,使之保证长期连续对外供电。 2、监控电力设备运行情况,作好各项监控记录,以便将来作为技术或故障 分析的原始资料。 3、有些变电站还具有监控线路运行状况的功能。 2.换流站 高压直流输电的一种特殊方式,将高压直流输电的整流站和逆变站合并在一个换流站内,在同一处完成将交流变直流,再由直流变交流的换流过程,其整流和逆变的结构、交流侧的设施与高压直流输电完全一样,具有常规高压直流输电的最基本的优点,可实现异步联网,较好地实现不同交流电压的电网互联,将2个交流同步电网隔离,能有效地隔断各互联的交流同步网间的相互影响,限制短路电流,且联络线功率控制简单,调度管理方便。与常规直流输电比较,其优点更突出: 1、没有直流线路,直流侧损耗小; 2、直流侧可选择低压大电流运行方式,以降低换流变压器、换流阀等有关 设备的绝缘水平,降低造价; 3、直流侧谐波可全部控制在阀厅内,不会产生对通信设备的干扰; 4、换流站不需要接地极,无需直流滤波器、直流避雷器、直流开关场、直 流载波等直流设备,因而比常规的高压直流输电节省投资。

换流站是直流输电工程中直流和交流进行相互能量转换的系统,除有交流场等与交流变电站相同的设备外,直流换流站还有以下特有设备:换流器、换流变压器、交直流滤波器和无功补偿设备、平波电抗器。 换流器主要功能是进行交直流转换,从最初的汞弧阀发展到现在的电控和光控晶闸管阀,换流器单位容量在不断增大。 换流变压器是直流换流站交直流转换的关键设备,其网侧与交流场相联,阀侧和换流器相联,因此其阀侧绕组需承受交流和直流复合应力。由于换流变压器运行与换流器的换向所造成的非线性密切相关,在漏抗、绝缘、谐波、直流偏磁、有载调压和试验方面与普通电力变压器有着不同的特点。交直流滤波器为换流器运行时产生的特征谐波提供入地通道。换流器运行中产生大量的谐波,消耗换流容量40%~60%的无功。交流滤波器在滤波的同时还提供无功功率。当交流滤波器提供的无功不够时,还需要采用专门的无功补偿设备。 平波电抗器能防止直流侧雷电和陡波进入阀厅,从而使换流阀免于遭受这些过电压的应力;能平滑直流电流中的纹波。另外,在直流短路时,平波电抗器还可通过限制电流快速变化来降低换向失败概率。 3.变电站 3.1简介 改变电压的场所。为了把发电厂发出来的电能输送到较远的地方,必须把电压升高,变为高压电,到用户附近再按需要把电压降低。这种升降电压的工作靠变电站来完成。变电站的主要设备是开关和变压器。按规模大小不同,称为变电所、配电室等。 3.2组成

特高压直流输电技术研究

特高压直流输电技术研究 发表时间:2017-07-04T11:23:41.107Z 来源:《电力设备》2017年第7期作者:杨帅 [导读] 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 (国网河北省电力公司检修分公司河北省石家庄 050000) 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 关键词:特高压;直流输电;应用 引言 随着国民经济的持续快速发展,我国电力工业呈现加速发展态势,近几年发展更加迅猛。按照在建规模和合理开工计划,全国装机容量 2010 年达到 9.5 亿千瓦,2020 年达到 14.7 亿千瓦;用电量 2010 年达到 4.5 万亿千瓦时,2020 年达到 7.4 万亿千瓦时。电力需求和电源建设空间巨大,电网面临持续增加输送能力的艰巨任务。同时我国资源分布不均匀,全国四分之三的可开发水资源在西南地区,三分之二的煤炭资源分布在西北地区,而经济发达的东部地区集中了三分之二的用电负荷。大容量、远距离输电成为我国电网发展的必然趋势。 同时,特高压输电具有明显的经济效益。特高压输电线路可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价约 10%-15%。特高压线路输电走廊仅为同等输送能力的 500k V 线路所需走廊的四分之一,这对人口稠密、土地宝贵或走廊困难的国家和地区带来重大的经济社会效益。 1特高压直流输电原理 高压直流输电的电压等级概念与交流输电不一样。对于交流输电来说,一般将 220k V 及以下的电压等级称为高压,330 ~ 750k V 的称为超高压 ,1000k V 及以上的称为特高压。直流输电把 ±500k V 和 ±660k V 称为超高压;±800k V 及以上电压等级称为特高压。 直流输电工程是以直流电的方式实现电能传输的工程。直流电必须经过换流(整流和逆变)实现直流电变交流电,然后与交流系统连接。 两端直流输电系统可分为单极系统(正极和负极)、双极系统(正、负两极)和背靠背直流系统(无直流输电系统)三种类型。 2特高压直流输电优点 我国目前发展的特高压输电技术包括特高压交流输电技术和特高压直流输电技术。一般特高压交流输电技术用于近距离的组网和电力输送,直流输电技术用来进行远距离、大规模的电力输送,两者在以后的电网发展中都扮演重要角色。本文对其中的特高压直流输电技术进行简要分析,其优点主要包括以下几个方面。 在直流输电的每极导线的绝缘水平和截面积与交流输电线路的每相导线相同的情况下,输电容量相同时直流输电所需的线路走廊只需交流输电所需线路走廊的2/3,在土地资源越来越紧张的今天,特高压直流输电线路可以节省线路走廊的优点显得更加突出。 在输送功率相同的情况下,直流输电的线路损耗只有交流输电的2/3,长久以往可以节约大量的能源;同时直流输电可以以大地为回路,只需要一根导线,而交流输电需要3根导线,在输电线路建设方面特高压直流输电电缆的投资要低很多。 交流输电网络互联时需要考虑两个电网之间的周期和相位,而直流输电不存在系统稳定性问题,相比交流输电网络,能简单有效地解决电网之间的联结问题。 长距离输电时,采用直流输电比交流输电更容易实现,如800kv的特高压直流输电距离最远可达2500km。 3特高压直流技术存在的不足 (1)直流输电换流站比交流变电所结构复杂、造价高、运行费用高,换流站造价比同等规模交流变电所要高出数倍。(2)为降低换流器运行时在交流侧和直流侧产生的一系列谐波,需在两侧需分别装设交流滤波器和直流滤波器,使得换电站的占地面积、造价和运行费用均大幅度提高。(3)直流断路器没有电流过零点可利用,灭弧问题难以解决。(4)由于直流电的静电吸附作用,使直流输电线路和换电站设备的污秽问题比交流输电严重,给外绝缘问题带来困难。 4特高压直流输电技术的应用分析 4.1拓扑结构 在近些年来,特高压直流输电的拓扑结构主要有多端直流和公用接地极两种,其中,多端直流是通过连接多个换流站来共同组成直流系统,在电压源换流器发展背景下,出现了混合型多端直流和极联式多端直流,前者是将合理分配同一极换流器组的位置,电源端与用户端都是分散分布。公用接地极是通过几个工程公用接地极的方式,来降低工程整体造价成本,提升接地极利用水平,提高工程经济效益、社会效益;但也存在接地电流容易过大、检修较为复杂等不足。 4.2换流技术 在特高压直流输电的换流技术方面,主要有电容换相直流输电技术和柔性直流输电技术两种,其中,电容换相直流输电技术是通过将换相电容器串接到直流换流器与换流变压器中,利用串联电容来对换流器无功消耗进行补偿,减少换流站的向设备,能够有效降低换相失

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法 2008-05-05 23:08:43| 分类:默认分类| 标签:|字号大中小订阅 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(PowerQuality)受到人们的日益重视。例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。 近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。例如,20世纪70年代计算机迅速普遍推广,电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。 国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。在IEEEstd.519—1992标准中明确规定了计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD应低于3%。 1 电网谐波的产生 1.1电源本身谐波--由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。 1.2由非线性负载所致 1.2.1非线性负载---谐波产生的另一个原因是由于非线性负载。当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。 1.2.2 主要非线性负载装置 (1)开关电源的高次谐波:开关电源由五部分组成:一次整流、开关振荡回路、二次整流、负载和控制,这几个部分产生的噪声不完全一样。这几种干扰可以通过电源线等产生辐射干扰,也可以通过电源产生传导干扰。 (2)变压器空载合闸涌流产生谐波:铁心中磁通变化时,会产生8~15倍额定电流的涌流,由于线圈电阻的存在,变压器空载合闸涌流一般经过几个周波即可达到稳定。所产生的励磁涌流所含的谐波成份以3次谐波为主。

电力系统谐波及其抑制方法

电力系统谐波及其抑制方法 发表时间:2019-01-09T10:01:01.477Z 来源:《电力设备》2018年第24期作者:潘国英[导读] 摘要:20世纪80年代以来,随着电力电子技术的发,电力系统的发展及电力市场的开放,各种非线性负载(谐波源)应用普及,产生的谐波对电网的污染日益严重,电能质量问题越来越引起广泛关注。 (佛山禅城供电局广东佛山 528000) 摘要:20世纪80年代以来,随着电力电子技术的发,电力系统的发展及电力市场的开放,各种非线性负载(谐波源)应用普及,产生的谐波对电网的污染日益严重,电能质量问题越来越引起广泛关注。因此,谐波及其抑制技术已成为国内外广泛关注的课题。从对六脉冲整流装置进行了 Matlab仿真,并对某商业企业用电设备谐波及无功进行了现场测试,得出了实际无功损耗和谐波含有量。从而更加清楚的分析了该企业谐波分布及供电系统存在的问题。最后依据测试数据及企业实际情况提出了改造方案,放弃投资较大的有源滤波器,设计使用以无源滤波器为基础的HTEQ系列高速动态消谐无功补偿设备进行无功补偿和谐波消除,通过对方案的可行性验证,验证了该动态补偿装置具有良好的电流跟进性能和补偿性能,在有限的投入下获得最大的效益,很好的解决了企业内谐波及无功的影响。关键词:整流装置;谐波抑制;动态无功补偿;Matlab仿真 一、前言 本文以佛山东方广场翡翠城用户电房谐波产生和处理方案为例,首先简单分析了电力系统无功功率及谐波的产生原因和危害,介绍了当前电力系统谐波抑制的方法,并对各种谐波抑制方法的优点和缺点做了简要的评述。本文采用HTEQ系列高速动态消谐无功补偿设备能够对商业性质用户设备进行高速跟踪无功补偿与谐波抑制,通过对负荷配电系统和运行状况实测结果进行分析计算,确定了无功补偿和谐波治理需求,在此基础上提出了动态消谐无功补偿的技术方案。 二、正文 1、东方广场翡翠城用户电房用电概况。 1.1用电情况简介 根据日常巡视数据得知,翡翠城0.4KV配电房3#变压器,额定容量为1000kV A,主要负载为商业西餐厅用电、广场音响、LED灯等;变压器低压侧配1套低压纯电容无功补偿装置,总安装容量为300kvar,电容器型号为450-30-3,投切器件为接触器,共10条支路;补偿柜投入一路30kvar;整个补偿柜的主刀熔开关为600A。 1.2目前设备概况 存在问题:补偿柜内部器件有导线及元件烧坏而且电容器衰减比较快,无法正常投运。目前,变压器最大负荷电流150A左右,只有一家西餐厅用电较大,偶尔有广场音响及灯;当运行电流为41~125A A时,补偿功率因数为.89~0.94,且补偿柜只投1条支路。 针对导线及元件烧坏及电容器衰减比较快现象进行信息采集,了解低压用配电系统的电能质量情况。 2、测量当前电能质量 1、测试地点:#3变压器低压总开关 2、测试仪器:CA8332电能质量分析仪 3、执行标准: 电能质量公用电网谐波 GB/T 14549 电能质量电压波动和闪变 GB/T 12326 广东鹰视能效科技有限公司 4、变压器总开关出线端电能质量测试数据如下: 变压器总开关测试时其用电情况为:运行电流41~125A,电压395V,视在功率45~58kV A;有功功率56kW;无功功率12kvar;功率因数0.89~0.94;谐波电流畸变率8.6~22.7%,谐波电压畸变率1.2%;主要谐波频谱为3次和5次; 变压器总开关出线端测试数据: 图1:电流值41~125A左右图2:电流谐波总畸变率8.6~22.7% 图3:电压值395V左右图4:电压谐波总畸变率1.2%左右

±800KV+特高压直流输电系统全电压启动过电压研究(已看)

±800KV特高压直流输电系统全电压启动过电压研究 黄源辉,王钢,李海锋,汪隆君 (华南理工大学电力学院,广东广州510640) 摘要:全电压启动过电压是直流输电中直流侧最严重的过电压情况。本文以PSCAD/EMTDC为工具,以正在建设的云广±800kV特高压直流输电系统参数为依据,建立全电压启动过电压仿真计算模型。对各种全电压启动情况进行了仿真计算,讨论了各种因素对全电压启动的影响,并与±500KV HVDC系统的全电压启动过电压作了比较,获得了一些具有实用价值的结论。 关键词:±800KV;特高压直流输电;全电压启动;过电压 0引言 为满足未来持续增长的电力需求,实现更大范围的资源优化配置,中国南方电网公司和国家电网公司提出了加快建设特高压电网的战略方针[1]。随着输电系统电压等级的升高,绝缘费用在整个系统建设投资中所占比重越来越大。对于±800KV特高压直流输电系统,确定直流线路和换流站设备的绝缘水平成为建设时遇到的基本问题之一。在种类繁多的直流系统内部过电压中,全电压误启动多因为的过电压是其中最严重和最重要的一种。它的幅值最大,造成的危害最大,在选择直流设备绝缘水平和制订过电压保护方案时往往以此为条件[2]。因此,对特高压直流系统的全电压启动过电压进行研究和分析具有很大的实际意义。 为降低启动过程的过电压及减小启动时对两端交流系统的冲击,直流输电的正常启动应严格按照一定的顺序进行[3]。正常情况下,在回路完好、交直流开关设备全部投入且交流滤波器投入适量等条件满足后(α≥90°),先解锁逆变器,后解锁整流器,按照逆变侧定电压调节或定息弧角调节规律的要求,由调节器逐步升高直流电压至额定值,即所谓的“软启动”。然而由于某些原因(如控制系统异常),两端解锁过程紊乱,逆变侧换流器尚未解锁而整流侧却全部解锁,此时若以较小的触发角启动,全电压突然对直流线路充电,由此直流侧会产生非常严重的过电压。 1云广直流系统简介 南方电网正在建设的云南-广东特高压直流系统双极输送功率5000MW,电压等级为±800kV,直流线路长度约1438km,导线截面为6×630mm2,两极线路同杆并架。送端楚雄换流站通过2回500kV 线路与云南主网的昆西北变电站相连,西部的小湾水电站(装机容量4200MW,计划2009年9月首台机组投产,2011年全部建成)和西北部的金安桥水电站(总装机2400MW,计划2009年12月首台机组投产,2011年全部建成)均以2回500kV线路接入楚雄换流站。受端穗东换流站位于广东省增城东部,500kV交流出线6回,分别以2回500kV线路接入增城、横沥和水乡站[4]。楚雄换流站接入系统如图1所示。 图1 楚雄换流站接入系统 云南-广东特高压直流系统交流母线额定电压为525kV,整流侧无功补偿总容量为3000MV Ar,逆变侧无功补偿总容量为3040MV Ar。平波电抗器电感值为300mH,平波电抗器按极母线和中性母线平衡布置,各为150mH。直流滤波器采用12/24双调谐方式。避雷器使用金属氧化物模型。每极换流单元采用2个12脉动换流器串联组成。 2云广直流系统模型 本文以PSCAD/EMTDC为工具,以南方电网建设中的云南-广东±800kV特高压直流系统参数为依据,建立了全电压启动过电压仿真计算模型。换流站内的单极配置如图1所示。

基于matlab谐波抑制的仿真研究(毕设)

电力系统谐波抑制的仿真研究 目 录 1 绪论…………………………………………………………………………… 1.1 课题背景及目的………………………………………………………… 1.2国内外研究现状和进展………………………………………………… 1.2.1国外研究现状 …………………………………………………… 1.2.1国内研究现状 …………………………………………………… 1.3 本文的主要内容…………………………………………………………… 2 有源电力滤波器及其谐波源研究……………………………………………… 2.1 谐波的基本概念………………………………………………………… 2.1.1 谐波的定义……………………………………………………… 2.1.2谐波的数学表达………………………………………………… 2.1.3电力系统谐波标准………………………………………………… 2.2 谐波的产生……………………………………………………………… 2.3 谐波的危害和影响……………………………………………………… 2.4 谐波的基本防治方法…………………………………………………… 2.5无源电力滤波器简述…………………………………………………… 2.6 有源电力滤波器介绍…………………………………………………… 2.6.1 有源滤波器的基本原理.……………………………………… 2.6.2 有源电力滤波器的分类.……………………………… 2.7并联型有源电力滤波器的补偿特性…………………………………… 2.7.1谐波源………………………………………………………… 2.7.2有源电力滤波器补偿特性的基本要 求…………………………… 2.7.3影响有源电力滤波器补偿特性的因素…………………………… 2.7.4并联型有源电力滤波器补偿特性……………………………… 2.8 谐波源的数学模型的研究……………………………………………… 2.8.1 单相桥式整流电路非线性负荷………………………………… 2.8.2 三相桥式整流电路非线性负荷.………………………………… 3 基于瞬时无功功率的谐波检测方法…………………………………………… 3.1谐波检测的几种方法比较…………………………………………… 3.2三相电路瞬时无功功率理论…………………………………………… 3.2.1瞬时有功功率和瞬时无功功 率……………………………………… 3.2.2瞬时有功电流和瞬时无功电流……………………………………… 3.3 基于瞬时无功功率理论的p q -谐波检测算法.…………………… 3.4基于瞬时无功功率理论的p q i i -谐波检测法.…………………… 4并联有源电力滤波器的控制策略…………………………………………… 4.1并联型有源电力滤波器系统构成及其工作原理………………………… 4.2并联有源电力滤波器的控制研究.……………………………… 4.2.1并联有源电力滤波器直流侧电压控制…………………… 4.2.2有源电力滤波器电流跟踪控制技术…………………………… 4.2.2.1 P WM 控制原理………………………………………… 4.2.2.2滞环比较控制方

电力系统谐波分析及抑制技术研究

电力系统谐波分析及抑制技术研究 发表时间:2018-04-11T09:51:58.123Z 来源:《电力设备》2017年第32期作者:杜占科杨正张彬[导读] 摘要:谐波的存在会增加电网的供电损耗。并影响电网的安全运行。 (国网新疆电力公司阿克苏供电公司新疆阿克苏市 843000)摘要:谐波的存在会增加电网的供电损耗。并影响电网的安全运行。因此,如何抑制电网谐波引起了广泛的讨论。本文论述了当前电力系统谐波的产生的主要原因,并分析了电力谐波的危害,提出了几种电力谐波的抑制技术,为电力系统谐波问题提供帮助。 关键词:电力系统;谐波;危害;滤波器;抑制在电力系统用电,输电,发电等过程中,谐波已成为不可避免的问题,其已危及电力产生和输送以及用电方的安全运行。鉴此,分析谐波并最大限度地抑制谐波成为电力系统工作的重要课题。下面,就电力系统谐波及其危害进行详细分析,并提出有效的抑制谐波措施。 1.电力系统的谐波 (1)用电技术方面。在现代电力系统中,随着人们节能意识的加强以及电力电子技术的发展,众多通过电力电子开关、以非正弦电流方式高效用电的新型非线性负载得到了广泛的应用。这些以非正弦电流方式用电的新型非线性负载已经成为当今电力负载中最主要的谐波源。1992年,日本电气学会对其国内产生谐波的行业按比例进行了一个统计,除楼宇中的部分照明电源、冶金行业的电弧炉外,其他行业的谐波源大多来自电力电子装置,根据日本电气学会的统计,其比例高达90%。从表中还可以看出,来自楼宇的谐波源所占比例高达40.6%,其谐波主要由办公及家用电器等产生。可见,谐波畸变不再是工业设备所特有的现象,如今谐波现象已经蔓延到电力升降机、不间断电源、电视机、个人计算机等商业和居民用电设施中的电子设备。 (2)发电技术方面。由于当今社会对常规化石能源的需求日益增加,能源耗尽的危机日益严重,人们开始追求对清洁、无污染的新能源的开发利用。在电力生产中,许多利用清洁无污染的可再生能源发电的发电方式,如风能发电、太阳能发电、燃料电池发电等发电方式得到了越来越广泛的应用。这些新型电源大多以非正弦、非工频的方式供电,而传统公用电网是以三相电压、电流的对称正弦要求为发电与用电的品质指标。传统公用电网为了接纳非正弦、非工频的新型电源,一般通过电力电子电能转换装置将非正弦、非工频的电源转换为正弦、工频的交流电源,从而实现不同频率的电源或电网的同步运行。比如在输送风电的过程中,一般采用变频装置将风电接入电网,在此过程中,变频装置将会向电网注入一定数量的谐波,使得电网谐波来源更加复杂。 (3)输电技术方面。为了提高电压质量和系统的稳定性以及解决大容量远距离输电等问题,柔性交流输电技术和高压直流输电技术得到极大的发展和应用。柔性交流输电技术和高压直流输电技术以电力电子技术为支撑,通过电力电子装置实现对电网运行方式的灵活控制、调节,以实现对电能的安全、高效、经济输送。这些电力电子装置主要包括:用于提供无功功率补偿以改进电网电压控制和系统稳定性的静态无功补偿器(SVC);用于提高输电线路输电容量和改善线路运行情况的可控串联补偿装置(TCSC);用于电网潮流控制的统一潮流控制器(UPFC)以及用于高压直流输电技术的高压直流换流器等。上述电力电子装置大多数具有一个共同特性,就是产生谐波。因此,在使用这些装置对输电技术进行改造时,对其产生的谐波不得不进行一个详细的评估。 2.谐波的危害 谐波注入电力系统将会严重恶化电网的电气运行环境,危害电力系统的安全、稳定运行,同时,还会对电网电气设备以及用户用电设备的安全造成危害。 首先,对整个电网来说,谐波的产生与输送,将在输电网中增大网损,降低电能传输的效率;谐波电流在线路中引起畸变压降,降低了电网的电压质量;新型非线性负载的间断性用电方式降低了电源电压的工作效能;谐波电流恶化交流电能传输中的电气环境,易引发系统崩溃。 其次,对电网中的电气设备而言,因为电网中的电气设备是按工频、正弦电流工作方式设计的,谐波电流流过将会影响其最佳工作状态。例如:谐波电流会对电机、变压器等电磁设备的绕组及铁芯引起额外发热,使损耗增加,降低电磁设备的使用寿命;谐波电流会影响功率处理器、互感器的测量精度,引起电力测量的误差;谐波电流有可能造成继电保护装置、自动控制装置的工作紊乱;谐波电流的存在还可能会降低断路器、熔断器等设备的开断能力。 此外,随着工业控制技术的发展,工业生产中许多精密仪器、复杂的控制系统等对电能质量的要求也越来越高。谐波电流对其造成的影响,有可能会使工业生产造成巨大的经济损失。 3.电力系统的谐波抑制技术 如前文所述,电力系统谐波造成低劣的供电电能质量,严重危害电力系统的安全稳定运行和电网电气设备、用户用电设备的安全。在现有的技术水平下,为避免谐波的危害,保障电网及用户的利益,对电力系统的谐波抑制,已经成为电气工程学科的一个热门研究领域。目前对电力系统谐波抑制的方法主要可以分为预防性电力谐波抑制技术和补救性电力谐波抑制技术两种方法。 3.1预防性电力谐波抑制技术 预防性电力谐波抑制技术是指在设计构建系统或设备的过程中,通过选取合理的线路结构及元件参数,避免产生谐波或减少谐波。常见的预防性电力谐波抑制技术有如下几种:(1)利用设备的电气特性。该方法主要是对电气设备采用有效的接线方法或结构形式来减少或消除接入电力系统的设备所产生的谐波。比如对于变压器来说,其绕组采用三角形的接线方式能隔断3倍频谐波电流的流通。 (2)配电网重构。对多个谐波源同时接入电网的情况,可通过对配电网重构的方法,实现降低公共连接点总的谐波限值。这种方法是通过对配电网中的负荷进行再分配,限制负荷中非线性负荷的比例,控制非线性负荷产生的谐波电流在一定的范围内,使公用母线上的谐波电流限值不超过电力部门制定的标准。该方法只是达到降低谐波限值的目的,并没有达到谐波隔离的效果,谐波电流仍会注入电网中,有可能对电网及其他用户造成损害。显然,这并不是一种合理的谐波抑制的方法。(3)多脉波整流技术和高功率因数PWM整流技术。多脉波整流技术是将两个或更多个相同结构的整流电路按一定的规律组合,将整流电路进行移相多重联结,利用各整流负载的谐波电流相位差,使其相互叠加后可削弱或抵消电源输入端的部分谐波电流。例如12脉波整流技术可以有效削弱5次和7次谐波,24脉波整流技术可以有效消除11次和13次谐波。随着技术的发展,多脉波整流技术的脉波数可以达到一个很高的值,但同时也使系统结构更为复杂,需要对其可靠性、经济性等因素进行全面衡量。

相关文档
相关文档 最新文档