文档库 最新最全的文档下载
当前位置:文档库 › SAP2000V14.1自动风荷载工况测试

SAP2000V14.1自动风荷载工况测试

SAP2000V14.1自动风荷载工况测试
SAP2000V14.1自动风荷载工况测试

SAP2000V14.1自动风荷载工况测试

付康

2014年7月最近在学习SAP2000,发现SAP2000可以自动计算结构在风荷载下的响应,由于内嵌的规范是CHINESE2002,想校核一下其与现行规范计算结果的差异。在网上GOOGLE相关资料,发现了曲哲的一篇文章《SAP2000中的自动风荷载工况测试》,其详细描述了

SAP2000自动计算风荷载的两种方法,并对需要定义的参数含义做了解释。在经过自己设计的算例测试后,发现文章中有几处疏漏之处,特别是关于SAP2000风振系数的讨论。个人认为SAP2000在自动风荷载工况中是可以考虑风振系数的,以下是我的算例和结论。

对象:10层钢筋混凝土框架,长*宽=20*10m,高10m。梁截面尺寸400*800mm,柱截面尺寸1000*1000mm,模型图如下。

模态:

结论:

1 采用虚面方式计算风荷载时,需要设置的参数如下图。

中国2002风荷载模式栏:建筑宽度B默认为结构沿X方向的宽度(猜测,含义尚不明确),用户可修改默认值,若用户修改的值小于或等于默认值,程序计算的值均相同,若用户修改的值大于默认值,程序计算的值明显偏小,根据后面的测试结果,个人认为在有合理的解释前,不应修改程序的默认值。风荷载系数栏按《荷载规范》取值,与结构所处地区有关。PHI-Z的来源有模态分析和Z/H比两种,与《荷载规范》规定的相符,但两种情况下程序计算的结果是相同的。第一周期的来源有模态分析和用户定义两种,当用户定义的值为1时,与选择模态分析计算的结果是相同的,当用户定义的值为其他值时,计算的结果与选择模态分析计算的结果不同。猜测用户定义值的含义应该是初步确定的周期值与模态分析得到的周期值的比例,即用户定义的值为1时,用户定义的周期就是模态计算的周期。个人认为在SAP2000中进行分析时,模态分析是默认运行的,风荷载的参数就没有必要采取《荷载规范》中指定的经验值,而直接采用模态分析得到的值,所以在选择PHI-Z和第一周期的来源时,应选择模态分析。阻尼比用来计算风振系数BETA-Z,当设为0时,程序不考虑风振系数,BETA-Z的值为1.0,设为其他值时,程序考虑风振系数。

面风荷载体型系数栏:压力系数Cp是虚面方式计算风荷载的体型系数,根据《荷载规范》确定体型系数的值,正负值与面对象的局部坐标有关,若Cp为正值,则风荷载的作用方向与面对象的局部坐标3轴所指方向相同。“迎风面”与“其他”两种情况下程序计算的结果是相同的,程序默认为“迎风面”,无需改动。

2采用刚性层方式计算风荷载时,需要设置的参数如下图。

风向角度指的是风向与X轴的夹角,可考虑不同风向下结构的响应。体型系数与《荷载规范》定义的相同,按规范取值。其他参数与虚面加载时的参数含义相同,采用刚性层方式计算风荷载时,不用定义面风荷载体型系数栏。

3基本风压1.0KN/m2,地面粗糙度B类,体形系数1.0,阻尼比0.05,分析结构在X方向所受风荷载大小,并与按《荷载规范》计算得到的结果比较,各层风荷载合力由各层的剪力反推得来,结果如下图。刚性层方式计算风荷载时,SAP2000将集中力作用在楼层上,力的大小等于楼层处的风压标准值乘以各楼层的数值范围。对于中间层,范围为上下两层柱的中点之间;对于顶层,范围为顶层的半层层高;对于底层楼面,范围为整个底层和半个二层层高,所以底层的风荷载反而大于二层的风荷载。虚面方式计算风荷载时,每个壳单元上的风压是均匀分布的,压力分配给壳的四个点,所以在底层柱底也会受到集中力的作用。

由下图可以看出,虚面和刚性层方式计算风荷载得到的结果差异很小,仅在底层有较大差异,原因在上段已说明。按12规范计算的风荷载与SAP2000计算的结果相比,是偏小的,但差异不大。按06计算的风荷载与SAP2000计算的结果相比,是偏大的,在靠近顶层处差异明显。对于此结构,用SAP2000自动风荷载工况计算结构的风荷载响应是可行的,与现行结构差异不大,但是对于其他复杂的结构,还需按规范计算结构所受的风荷载,并施加到结构上,分析结构的响应,并与SAP2000自动风荷载工况计算结果对比,以规范所得风荷载下结构的响应为准。

4 计算此算例的SAP2000版本是V14.1,内嵌的规范为CHINESE2002,应该是旧版的规范。现SAP2000的V15.1已内嵌新规范CHINESE2010,V16.1听说还在测试中。在安装了V15.1后,也进行了自动风荷载工况的测试,发现V15.1与V14.1计算的结果几乎完全相同,推断新版本的SAP2000自动风荷载工况计算方式并没有更新,不能盲目的使用SAP2000内嵌的新规范进行计算。个人认为SAP2000的分析功能强大,但与规范结合的并不好,使用SAP2000做设计时,结构上作用的荷载应按现行规范计算,然后将荷载施加在结构上,用SAP2000进行分析。此外,SAP2000的校核功能也应谨慎的对待,例如校核钢结构构件时的计算长度系数取值可能就有问题,所以校核的结果必须按规范自行计算判断。

电动汽车工况总结

一、世界现有工况情况 车辆在道路上的行驶状况可用一些参数(如加速、减速、匀速和怠速等)来反应,对这种运动特征的调查和解析,绘制出能够代表车辆运动状况,表达形式为速度--时间的曲线,即为车辆形式工况图。 行驶工况分类: 按行驶工况构造形式分为:以美国工况FTP-75为代表的实际行驶工况(瞬态工况); 以欧洲工况ECE+EDUC为代表的合成行驶工况(模态工况)。 按行驶工况的使用目的分为: 认证工况:由权威部门颁布,具有法规效用;通用的评价标准,认证工况范围宽,对低于、、地域针对性不强,是一种由大量真实道路工况合成出的具有代表性的工况。如:日本的10.15工况、欧洲经济委员会的ECE-R15工况、美国联邦城市及高速公路循环CSC-C/H,我国的城市客车四工况循环等。 研究工况:研究工况对车辆的影响比认证工况严厉,在车辆设计开发过程中,为了满足研究需要,有地方型或城市型的代表性车辆行驶工况研究。这种工况在速度区间分布上,研究工况范围窄,需要考虑极端的情形。很多地区和典型城市有各自的“实际行驶工况”,如纽约城市工况、纽约公交车工况、北京市公交车工况等。 I/M工况:用于车辆的排放测试,操作时间短,一般不超过10分钟。 世界范围内车辆排放测试用行驶工况分为3组:美国行驶工况(USDC)、欧洲行驶工况(EDC)和日本行驶工况(JDC)。美国FTP(联邦认证程序)为代表的瞬态工况(FTP72)和ECE为代表的模态工况(NEDC)为世界各国采用。 A.美国行驶工况 美国行驶工况种类繁多,用途各异,大致包括认证用(FTP系)、研究用(WVU系)和短工况(I/M系)3大体系,广为熟知的有联邦测试程序(FTP75)、洛杉矶92(LA92)和负荷模拟工况(IM240)等行驶工况。 1、乘用车和轻型载货汽车用行驶工况 (1)1972年美国环保局(简称EPA)用作认证车辆排放的测试程序(简称FTP72,又称UDDS)。FTP72由冷态过渡工况(0"505s)和稳态工况(506 1370s)构成。 (2)1975年在FTP72基础上加上600s热浸车和热态过渡工况(重复冷态过渡工况)。4

一 静力载荷试验

一、 静力载荷试验 1. 试验的目的及意义 (1) 确定地基土的临塑荷载,极限荷载,为评定地基土的承载力提供依据; (2) 确定地基土的变形模量; (3) 估算地基土的不排水抗剪强度; (4) 确定地基土基床反力系数; 2. 试验的适用范围 浅层平板载荷试验适用于浅层地基土;深层平板载荷试验适用于埋深等于或大3m 和地下水位以上的地基土;螺旋板载荷试验适用于深层地基土或地下水位以下的地基土。载荷试验可适用于各种地基土,特适用于各种填土及碎石的土。本节主要介绍浅层平板静力载荷试验。 本实验为浅层平板载荷试验。 3. 试验的基本原理 平板载荷试验是在拟建建筑场地上将一定尺寸和几何形状(方形或圆形)的刚性板,安放在被测的地基持力层上,逐级增加荷载,并测得相应的稳定沉降,直至达到地基破坏标准,由此可得到荷载(p )-沉降(s )曲线(即p -s 曲线)。典型的平板载荷试验p -s 曲线可以划分为三个阶段,如右图所示。 通过对p -s 曲线进行计算分析,可以得到地基土的承载力特征值ak f 、变形模量 E 和基床反力 系数 s k 。 平板载荷试验所反映的相当于承压板下~倍承压板直径(或宽度)的深度范围内地基土的强度、变形的综合性状。 浅层平板载荷试验适用浅层天然地基土,包括各种填土、含碎石的土等。也用于复合地 破坏阶段 剪切变形阶段 直 线变形阶段

基承载力评价。 4.试验仪器及制样工具 仪器设备:载荷试验的设备由承压板、加荷装置及沉降观测装置等部件组合而成。目前,组合型式多样,成套的定型设备已应用多年。 (1)承压板,有现场砌置和预制两种,一般为预制厚钢板(或硬木板)。对承压板的要求是,要有足够的刚度,在加荷过程中承压板本身的变形要小,而且其中心和边缘不能产生弯曲和翘起;其形状宜为圆形(也有方形者),对密实粘性土和砂土,承压面积一般为1000~5000cm2。对一般土多采用2500~5000cm2。按道理讲,承压板尺寸应与基础相近,但不易做到。 (2)加荷装置,加荷装置包括压力源、载荷台架或反力构架。加荷方式可分为两种,即重物加荷和油压千斤顶反力加荷。 1)重物加荷法,即在载荷台上放置重物,如铅块等。由于此法笨重,劳动强度大,加 荷不便,目前已很少采用(图4-3)。其优点是荷载稳定,在大型工地常用。 图3 载荷台式加压装置 (a)木质或铁质载荷台;(b)低重心载荷台;1—载荷台; 2—钢锭;3—混凝土平台;4—测点;5—承压板 2)油压千斤顶反力加荷法,即用油压千斤顶加荷,用地锚提供反力。由于此法加荷方 便,劳动强度相对较小,已被广泛采用,并有定型产品(图4-4)。采用油压千斤 顶加压,必须注意两个问题:①油压千斤顶的行程必须满足地基沉降要求。②下入 土中的地锚反力要大于最大加荷,以避免地锚上拔,试验半途而废。

荷载静力计算

常用结构计算 荷载结构静力计算 荷载 1.结构上的荷载 结构上的荷载分为下列三类: (1)永久荷载如结构自重、土压力、预应力等。 (2)可变荷载如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪活载等。 (3)偶然荷载如爆炸力、撞击力等。 建筑结构设计时,对不同荷载应采用不同的代表值。 对永久荷载应采用标准值作为代表值。 对可变荷载应根据设计要求,采用标准值、组合值、频遇值或准永久值作为代表值。 对偶然荷载应按建筑结构使用的特点确定其代表值。 2.荷载组合 建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载(效应)组合,并应取各自的最不利的效应组合进行设计。 对于承载能力极限状态,应按荷载效应的基本组合或偶然组合进行荷载(效应)组合。 γ0S≤R (2-1) 式中γ0——结构重要性系数; S——荷载效应组合的设计值; R——结构构件抗力的设计值。 对于基本组合,荷载效应组合的设计值S应从下列组合值中取最不利值确定: (1)由可变荷载效应控制的组合 (2-2)

式中γG——永久荷载的分项系数; γQi——第i个可变荷载的分项系数,其中Y Q1为可变荷载Q1的分项系数; S GK——按永久荷载标准值G K计算的荷载效应值; S QiK——按可变荷载标准值Q ik计算的荷载效应值,其中S Q1K为诸可变荷载效应中起控制作用者; ψci——可变荷载Q i的组合值系数; n——参与组合的可变荷载数。 (2)由永久荷载效应控制的组合 (2-3)(3)基本组合的荷载分项系数 1)永久荷载的分项系数 当其效应对结构不利时: 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35; 当其效应对结构有利时: 一般情况下应取1.0; 对结构的倾覆、滑移或漂浮验算,应取0.9。 2)可变荷载的分项系数 一般情况下应取1.4; 对标准值大于4kN/m2的工业房屋楼面结构活荷载应取1.3。 对于偶然组合,荷载效应组合的设计值宜按下列规定确定:偶然荷载的代表值不乘分项系数;与偶然荷载同时出现的其他荷载可根据观测资料和工程经验采用适当的代表值。 3.民用建筑楼面均布活荷载标准值及其组合值、频遇值和准永久值系数(见表2-1)民用建筑楼面均布活荷载标准值及其组合值、频遇值和准永久值系数表2-1 项次类别 标准值 (kN/m2) 组合值系数 ψc 频遇值系数 ψf 准永久值系数 ψq 1 (1)住宅、宿舍、旅馆、办公楼、医院 病房、托儿所、幼儿园 0.5 0.4

综合部分负荷性能系数(IPLV)的计算与限值

综合部分负荷性能系数(IPLV)的计算与限值 综合部分负荷性能系数(IPLV,Integrated Part Load Value)是指:基于机组部分负荷时的性能系数值,按机组在各种负荷条件下的累积负荷百分比进行加权计算获得的表示空气调节用冷水机组部分负荷效率的单一数值。[1] IPLV计算公式 综合部分负荷性能系数(IPLV)计算方法如下: IPLV = 1.2% A + 32.8% B + 39.7% C + 26.3% D(4.2.13) 式中:A——100%负荷时的性能系数(W/W),“冷却水进水温度30℃”且“冷凝器进气干球温度35℃”;B——75%负荷时的性能系数(W/W),“冷却水进水温度26℃”且“冷凝器进气干球温度 31.5℃”;C——50%负荷时的性能系数(W/W),“冷却水进水温度23℃”且“冷凝器进气干球温度28℃”;D一一25%负荷时的性能系数(W/W),“冷却水进水温度19℃”且“冷凝器进气干球温度 24.5℃”。 冷水(热泵)机组IPLV 电机驱动的蒸气压缩循环冷水(热泵)机组的综合部分负荷性能系数(IPLV)应符合下列规定: 1)水冷定频机组的综合部分负荷性能系数(IPLV)不应低于表4.2.11的数值; 2)水冷变频离心式冷水机组的综合部分负荷性能系数(IPLV)不应低于表4.2.11中水冷离心式冷水机组限值的1.30倍; 3)水冷变频螺杆式冷水机组的综合部分负荷性能系数(IPLV)不应低于表4.2.11中水冷螺杆式冷水机组限值的1.15倍。 表4.2.11 冷水(热泵)机组综合部分负荷性能系数(IPLV)

多联式空调(热泵)机组IPLV 采用多联式空调(热泵)机组时,其在名义制冷工况和规定条件下的制冷综合性能系数IPLV(C)不应低于表4.2.17 的数值。 表4.2.17 多联式空调(热泵)机组制冷综合性能系数IPLV(C) IPLV的适用范围

多联机IPLV 测试与负荷组合的关系[改]

多联机IPLV 测试与负荷组合的关系 摘 要 本文指出了综合性能系数(IPLV )与各部分负荷100%、75%、50%、25%之间的含义关系,运用实例说明当采用不同的部分负荷组合进行IPLV 测试时,有时会得到不同的测试结果。 关键词 综合性能系数(IPLV ) 部分负荷系数(PLF ) 能效比(EER ) Relationship of Test on IPLV for multi-connected air-condition unit and the part load combination ABSTRACT This paper points out the relationship among IPLV and part load 100%、75 % 、50 % and 25 % ,gives examples to illustrate that IPLV is very different under different part load selections test condition. KEY WORDS integrated part load value ; part load factor ;energy efficiency ratio 1 引言 国标GB/ T 18837-2002[1] 对多联机综合性能系数( IPLV ) 的测试工况、室内机数量选择和配管安装条件等进行了详细描述。其中关于测试负荷比例的描述如下:多联式空调(热泵) 机组属制冷量可调节系统,机组必须在其Q 1 ( 100 %) 负荷、Q 2(75 % ±10 %) 负荷、Q 3 (50 % ±10 %) 负荷和Q 4 (25 % ±10 %) 负荷的卸载级下进行标定,这些标定点用于计算综合性能系数。 除Q 1负荷外,Q 2 、Q 3 和Q 4 负荷均有±10 %的偏差。也就是说,,只要这3 个负荷不超过±10 %,均符合国家标准的要求。笔者所要讨论的问题是:在保证Q 2 、 Q 3 和Q 4 负荷在国标规定的±10 %偏差范围内,按不同的负荷组合进行IPLV 测试时,将会得到不同的测试结果。在这些测试结果中,也必然存在一个最优的和一个最差的,那么哪一个才代表这台机组的IPLV 呢? 2 不同负荷组合与IPLV 的关系分析 国标GB/T 18837-2002[1] 用下列等式计算综合制冷性能系数IPLV (C): IPLV (C) = (PLF 1 -PLF 2) ( EER 1 + EER 2)/ 2 + ( PLF 2 -PLF 3) ( EER 2 + EER 3)/ 2 + ( PLF 3 -PLF 4) ( EER 3 + EER 4)/ 2 + ( PLF 4) ( EER 4) (1) 式中: PLF 1、PLF 2、PLF 3、PLF 4——由图1确定部分负荷额定工况下( 100 %) 负荷、(75 % ±10 %) 负荷、(50 % ±10 %) 负荷和(25 % ±10 %) 负荷的部分负荷系数; EER 1、EER 2、EER 3、EER 4——表示部分负荷额定工况下100 % 负荷、(75 % ±10 %) 负荷、 (50 % ±10 %) 负荷和(25 % ±10 %) 负荷时的EER 。 对于给定的被测机组,其EER 与负荷的关系EER = F ( Q ) 也必然确定。因Q 1 = 100 % , 则EER 1 值也就确定了。Q 2 、 Q 3 和Q 4 有±10 %的变化,对应的EER 2 、 EER 3 和EER 4 也随之变化,它们分别是负荷Q 2 、 Q 3 和Q 4 的函数,即: EER 2 = F( Q 2);EER 3 = F( Q 3); EER 4 = F( Q 4) 。 国标GB/T 18837-2002[1]对部分负荷系数PLF 函数曲线有明确的规定,图1就是引自国家 标准的部分负荷系数PLF 曲线图。

部分负荷下冷水机组运行方案的优化_蒋小强

第9卷 第3期制冷与空调 2009年6月 REFRIGERATION AND AIR -CONDIT IONING 96-97 收稿日期:2008-07-21 通信作者:蒋小强,Em ail:jx qiang 2007@https://www.wendangku.net/doc/c31808623.html, 部分负荷下冷水机组运行方案的优化 蒋小强 1),2) 龙惟定1) 李敏 2) 1) (同济大学) 2) (广东海洋大学) 摘 要 冷水机组系统在部分负荷运行时,可选择调节冷水机组台数或每台冷水机组的运行功率来应对负荷的变化,但不同运行方案有不同的能耗。以某厂螺杆式冷水机组为例,测试不同负荷下冷水机组的性能参数,分析其总COP 值,与现行运行方案下的冷水机组能耗相比,得到机组运行优化方案。结果表明,采用新运行方案,相对原运行方案可分别节能12%和23%。关键词 冷水机组;部分负荷;运行方案;能耗;优化 Optimization of operation scheme for chiller under part load Jiang Xiaoqiang 1),2) Long W eiding 1) Li M in 2) 1) (T ong ji U niversity) 2) (Guang dong Ocean Univer sity) ABSTRACT Abo ut the chiller operating under par t load,it can adjust their num bers and pow er to meet the chang e of load,how ev er,there is different ener gy consumptio n w ith different oper ation schem e.T aking screw chillers for ex ample,accor ding to the coefficient of perfo rmance of chillers,thro ug h the analy sis of the total COP of system,compared w ith the energy consumption of other schemes,finds an o ptimization contro l scheme w hich realizes the energ y -saving about 12%and 23%.KEY WORDS chiller;par t load;operation schem e;ener gy co nsum ption;optim ization 一个空调系统常设置多台冷水机组,冷水机组容量按最大负荷设计选型。然而,冷水机组实际上绝大部分时间在部分负荷下运行,因此,冷水机组能耗主要是其在部分负荷运行工况下的能耗。空调系统(有多台冷水机组)中冷水机组的能耗不只与开启台数及其功率有关,还与冷水机组自身性能(全负荷性能和部分负荷性能)有关,与部分负荷下冷水机组间的负荷分配方案有关。因此,确定冷水机组选型后,如何找到最佳负荷分配方案,最大程度地降低运行能耗,是空调系统节能的关键[1] 。 笔者以2台相同容量并联运行的螺杆式冷水机组为例,根据其部分负荷性能参数,通过比较不同负荷分配方案下冷水机组的能耗,确定较优的运行方案。 1 研究对象 以北京某建筑空调系统为例,建筑物总冷负荷为800kW 。该空调系统总运行时间为2284 h [3],空调负荷率分布如表1所示。选择2台相同 规格的螺杆式冷水机组并联运行,每台机组冷量为409kW,其部分负荷性能参数见表2。该冷水机组冷量可卸载到90%,80%,70%,60%,50%,40%,30%和20%。为便于分析,近似认为系统负荷即为机组所承担的负荷。 表1 北京地区某建筑物夏季空调负荷率分布 负荷率/%2030405060708090100运行时间/h 649 565 454 277 176 108 43 10 2 表2 某螺杆冷水机组部分负荷性能参数 负荷率/%2030405060708090100实际制冷量/kW 82 123164205246286327368409 输入功率/kW 21 24 27 32 38 46 57 70 116 COP 3.95.16.16.46.56.25.75.33.5 2 不同运行方案下机组全年总能耗2.1 现行运行方案的全年总能耗 目前常见机组运行方案主要有2种[2] :方案

部分负荷系数

N P L V的意义科学评估一台机组的运行费用既要考虑满负荷的效率,更要考虑部分负荷效率。事实上,机组运行在满负荷的时间不到2%,98%的时间运行在部分负荷。 美国制冷空调学会(ARI)为此经过大量研究,提出了一种广泛接受的科学评估方法,即机组综合部分负荷性能指标(NPLV)来全面评价一台机组的综合效率。 NPLV综合考虑机组在100%,75%,50%和25%不同负荷点的性能,并对不同点根据实际运行确定权重,来综合评估机组的效率水平。中国最新颁布的公共建筑节能设计标准也包含了此综合部分负荷效率指标。按此方法计算运行费用更科学,也更接近实际情况。 NPLV全称综合部分负荷性能。根据美国制冷空调学会ARI550/590标准,通过对100%,75%,50% 和25%四个部分负荷性能点计算得出。 NPLV的计算公式如下: NPLV=*A+*B+*C+*D 其中A,B,C,D分别代表机组在100%,75%,50% 和25%四个点的COP值。 IPLV和NPLV的计算方法

根据ARI550-98、ARI560-98、ARI590-98规定IPLV计算公式。 性能系数IPLV计算:IPLV=1/(×A+×B+×C+×D) 能耗系数IPLV计算:IPLV=1/(A+B+C+D) A——100%制冷量时的性能系数COP。(kW/kW) B——75%制冷量时的性能系数COP。(kW/kW) C——50%制冷量时的性能系数COP。(kW/kW) D——25%制冷量时的性能系数COP。(kW/kW) 全年耗电量=(能耗系数IPLV)×(满负荷制冷量)×(年运行时间)

年运行时间按6~9月份四个月,每天12小时统计,年运行1200小时计算。

工况

工况法测油耗市区工况市郊工况解释 所谓市区、市郊工况油耗是在标准状态(标准的温度、湿度、大气压等)下,在实验室里,用标准的仪器设备得到的精确的、可复现、具有可比性的试验数据。而实际道路状态的不确定的影响因素太多,得出的试验数据不能用于具有法律、法规意义的认证等领域。 在实验中,汽车分别要在怠速、减速、换挡、加速、等速等状态下运行。市区工况下,平均车速只有19公里,而且怠速行驶时间较长。市郊工况下,平均车速超过60公里,而且等速行驶时间较长。 汽车燃料消耗量数据是按照国家标准GB/T 19233-2008《轻型汽车燃料消耗量试验方法》,通过在试验室内模拟车辆市区、市郊等典型行驶工况测定的。燃料消耗量试验所采用的行驶工况与排放试验相同,分为市区运转循环和市郊运转循环两部分。市区运转循环由一系列的加速、稳速、减速和怠速组成,主要用于表征车辆在城市市区的行驶状况;其中,最高车速为50km/h,平均车速为19km/h。市区运转循环的行驶里程约为4km。市郊运转循环由一系列稳速行驶、加速、减速和怠速组成,主要用来表征车辆在市区以外的行驶状况;最高车速为120km/h,平均车速为63km/h。市郊运转循环的行驶里程约为7km。 工况法:对于轻型汽车(最大总质量不超过3.5吨的车辆)是指将整车放置在试验台上,模拟车辆在道路上实际行驶的车速和负荷,按照一定的工况(如怠速、加速、等速、减速等工况)运转,测量二氧化碳、一氧化碳和碳氢化合物的排放量,按照碳平衡法测量油耗。 对于重型汽车(最大总质量大于3.5吨的车辆)而言,则是指将发动机放在发动机测功试验台上,按照一定的转速负荷工况运转。 对于符合国Ⅲ和国Ⅳ排放标准的车辆,按照GB 18352.3-2005 轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ),对于符合国Ⅱ排放标准的车辆,按照GB 18352.2-2001轻型汽车污染物排放限值及测量方法(Ⅱ)测量二氧化碳、一氧化碳和碳氢化合物的排放量。 一个市区运转循环单元包括:怠速;怠速、车辆减速、离合器脱开;换挡;加速;等速;以及减速的全过程,其中每个过程都持续一定时间,且每个过程占有不同程度的百分比。 市区工况下,怠速以及怠速、车辆减速、离合器脱开这两个过程的时间较长,所占比重也最高。市郊工况下,等速行驶时间最长。 市区工况油耗 一个市区运转循环单元包括60秒怠速;9秒怠速、车辆减速、离合器脱开;8秒换挡;36秒加速行驶;57秒等速行驶;25秒减速行驶。一个循环共计195秒。其中,怠速以及怠

平板静力荷载试验

静力载荷试验 平板静力载荷试验(英文缩写PLT),简称载荷试验(图1)。它是模拟建筑物基础工作条件的一种测试方法,起源于30年代的苏、美等国。其方法是在保持地基土的天然状态下,在一定面积的承压板上向地基土逐级施加荷载,并观测每级荷载下地基土的变形特性。测试所反映的是承压板以下大约1.5~2倍承压板宽的深度内土层的应力—应变—时间关系的综合性状。 载荷试验的主要优点是对地基土不产生扰动,利用其成果确定的地基承载力最可靠、最有代表性,可直接用于工程设计。其成果用于预估建筑物的沉降量效果也很好。因此,在对大型工程、重要建筑物的地基勘测中,载荷试验一般是不可少的。它是目前世界各国用以确定地基承载力的最主要方法,也是比较其他土的原位试验成果的基础。载荷试验按试验深度分为浅层和深层;按承压板形状有平板与螺旋板(图2)之分;按用途可分为一般载荷试验和桩载荷试验;按载荷性质又可分为静力和动力载荷试验。本节主要讨论浅层平板静力载荷试验。 一、静力载荷试验的仪器设备及试验要点 (一)仪器设备:载荷试验的设备由承压板、加荷装置及沉降观测装置等部件组合而成。目前,组合型式多样,成套的定型设备已应用多年。 1、承压板,有现场砌置和预制两种,一般为预制厚钢板(或硬木板)。对承压板的要求是,要有足够的刚度,在加荷过程中承压板本身的变形要小,而且其中心和边缘不能产生弯曲和翘起;其形状宜为圆形(也有方形者),对密实粘性土和砂土,承压面积一般为1000~5000cm2。对一般土多采用2500~5000cm2。按道理讲,承压板尺寸应与基础相近,但不易做到。 2、加荷装置,加荷装置包括压力源、载荷台架或反力构架。加荷方式可分为两种,即重物加荷和油压千斤顶反力加荷。重物加荷法,即在载荷台上放置重物,如铅块等。由于此法笨重,劳动强度大,加荷不便,目前已很少采用(图4-3)。其优点是荷载稳定,在大型工地常用。

强负荷条件下稳定工况四个关键性问题及对策

强负荷条件下稳定工况四个关键性问题及对策 作者/来源:正大热能 当今,固定床间歇式煤气炉其技术装备水平和自动化程度已今非昔比。工艺水平和操作控制技术也得以同步发展。并已成为了新型设备和自控技术作用发挥的基础和保障。煤气炉及配套设施的大型化和高性能也为煤气炉高炉温、强负荷制气创造了条件。强负荷制气法,为众多合成氨厂实现少开炉,多开机提高热能的转化利用率降低生产成本发挥了很大作用。 每一项新操作方法的诞生和应用都是一次推陈出新的过程。近些年来造气理论的发展创新和工艺技术的更新进步是飞速进行的。上世纪80年代至90年代初还普遍应用的理论依据和操作方法,已经有相当一部分被全新理念作用而产生的新工艺、新操作方法所取代。例如:热风造气技术和过热蒸汽造气技术已有不少业内人士提出了相反的观点。造气技术已经走出探索如何提高半水煤气中一氧化碳加氢的时代,已经细化到有意识调控半水煤气中甲烷含量的境界,煤气炉的运行特点已经走上了高气化强度长周期稳定运行之路。 然而,由于强负荷条件下运行的煤气炉其管理和操作控制的难度都相对增大,要求必须有一套与之相适合的操作方法才能保证其稳、优运行。近期发现有部分厂家采用强负荷制气后炉况波动大,生产难以稳定,经了解了几家的情况后发现有的厂家是由于煤质特性不能保证相对的稳定,这是其一。还有一个共性的问题是管理上和操作上都没有抓住和掌握强负荷条件下最为关键的问题。经常顾此失彼,总起来说就是没能找出重点并抓住重点。今提出强负荷条件下稳定炉内工况的“四要素”希望同行们有所借鉴并希望共同向列深层和更宽的领域探讨、交流已求共同进步。 稳炭层 在合理确定炭层高度的基础上,在各项工艺指标确定后的正常操作中,要求炭层控制必须稳定,这一点是稳定炉内工况和优化工艺条件的首要问题。因操作控制不当造成炭层大范围波动是造气操作的一大忌。煤气炉正常运行中如炭层控制低于了工艺范围,从炉温表的显示上就显示出炉上温度涨幅加快,加煤周期缩短,炉下温度开始下降,炉上和炉下温度出现分叉现象。发气量也会随之逐步变小,出现这个现象的反应原理是:炭层降低后床层阻力变小,蓄热能力下降,风速的加快使火层上移、变薄,热损失增大。使之发气量下降。如不及时纠正操作上的错误,结果将是煤耗升高和生产能力下降。反之如果控制炭层超出了工艺要求,就破坏了确定好的吹风率,吹风阻力增大,炉温逐步降低,灰的成渣率开始下降,灰层内的细灰增多,吹风阻力会进一步加大,生产负荷逐步下降,热量逐步失去平衡。煤气的产量的质量都随之降低。可见操作不当造成的炭层波动对气化条件的影响相当严重,因此在操作和管理上要把稳定炭层高度作为一项主要工艺指标来抓。 然而,在炭层高度确定合理,操作控制也达到了稳定的条件下,入炉煤粒度的变化同样会造成床层阻力和蓄热条件的变化,因此原料加工的工作做不好将会使造气的操作更加复杂化。做到入炉煤的特性和粒度稳定将对稳定炉内工况,优化工艺条件起到很大的帮助作用。所以,将入厂原煤在加工过程中按造气入炉煤国标要求分级利用,是有利于稳定炉况、有利于节煤降耗的举措。这样加工管理的工作量加大了,加工费用稍有增加,但在造气生产中实现的效益是增加的加工费用远不可比的。近些年来,对炭层高度的选择在行业中观点不一,高、中、低炭层都有人坚持,而笔者认为炭层高度这项重要的工艺指标不能做为一种绝对的的概念来生搬硬套,各个厂家要根据装备上的不同特点来合理确定(应依照风机能力、原料特性、流程特点、管网阻力、炉型特点等综合考虑)。正确确定炭层高度的原则是:最大限度地发挥风机能力,不能因炭层确定太高影响吹风效率,但又不能因炭层选择过低而吹翻炭层,影响操作。要恰如其分地掌握好这两点,应该是适合高则定为高,适合低则定为低,不能教条。总之,稳定合理的炭层高度是稳定各项工艺的先决条件。 稳灰层 灰渣层是无活性、无反应的无效层区。而它的厚薄和控制稳定与否都对气化条件有很大的影响。炭层高度稳定后,并不是床层内各层区就能稳定在最佳位置了,还要进行合理的工艺调整和科学有效的操作控制。床层内的主要层区是气化层(俗称火层),而火层位置的合理选择和位置稳定又取决于灰层厚度的合理选择和控制稳定,这两个问题关联性极强。火层位置的调整是靠调节上、下吹时间和调节上、下吹蒸汽用量作为主要手段,但是对火层位置起到巩固作用的还在于灰层厚度的稳定。也就是说正常操作中对火层位置影响最大的一项条件是灰层的变化。很多厂家忽视了对灰层厚度的合理选择,忽视了灰层厚度的变化对气化条件影响的重要性。一味的追求炉顶、炉底温度都不高的良好气化条件,但是在确定制气负荷时必须科学地确定与之相适应的灰层的厚度。如果这项工艺条件选择不合理就人使制气负荷无法提高,气化条件无法优化。例如:强负荷条件下错误的选择了厚灰层,低炉下温度,那么即使炭层高度确定合理了,也会因灰层过厚使炉内的有效层区空间减少,火层必然上移,使吹风阻力增大,吹风效率也低,以上问题的存在限制了一定的生产能力得不到充分发挥。合理的确定了灰层厚度也要同时确定炉下温度的工艺指标。这项重要的工艺指标应在外部条件和操作技能允许的前提下尽量缩小其波动范围,以减少灰层的波动。造气技术提高的目标,首先要求控制指标更加稳定,波动范围进一步缩小,逐步达到恒定各项工艺指标。 控制灰层的方法是精心控制排灰速度,达到灰层的产生和排出的平衡。检测灰层厚度的手段除定期探火外,平常操作的主要依据是炉底温度和灰梨温度的变化,正常操作中在灰层厚度不变的条件下,有时会出现因原料特性突然变化使气化速度加快,在加煤周期固定的条件下炭层出现下降快的现象,这个时候切勿采用减慢排灰速度的方法来提高炭层,要保持灰层厚度稳定,判明煤质变化将会给炉况造成何种影响,采取缩短加煤周期或调节入炉蒸汽用量的方法处理,因为出现这种现象的原因一般是更换的原料活性好,熔点低造成的。这种条件下氧化层内已开始出现局部或大面积的熔融状态。如不及时采取合理措施而去减炉条机转速就使灰层增厚,使火层更加集中,气化层温度还会升高,更加剧了熔态的产生。因此,对灰层的控制要以不变应万变,除非是各项工艺作全面调整之时同时重新确定指标。操作上要具体情况,拿出专门措施,不能乱了整个方寸。只要灰层不变化,火层位置就会稳定,还原层、干馏层、干燥层都得以稳定。也为稳定整个工况创造有利条件,因此说稳定各个层区的关键在于首先要有稳定的灰层。 稳气化剂 炭层的稳定和灰层的稳定为稳定各个层区的位置和保证各层区在同一截面上的均匀分布打下了坚实的基础。但是,要达到气化温度的稳定和半水煤气成份的优化和稳定,还要在力求稳定入炉风量和稳定入炉蒸汽压力和流量上下功夫。 要保证炉内气化温度的稳定首先要保证每一循环都要有稳定的吹风率,在吹风时间一定的条件下,操作上的因不对入炉风量的影响是很大的。除前文提到的炭层变化和入炉煤粒径变化对吹风率的影响外,加氮方式对吹风率的影响也是重要的一个方面。有的厂只有调节回收时间的方法调节氢氮比,而且大幅度的加减回收,集中加氮。

电动汽车工况测试

电动汽车工况测试 作为实现能源革命的重要手段之一,电动汽车已然成为最热门的交通工具,而作为电动汽车核心部件的电驱部分,其性能和稳定性决定了一台电动汽车的品质。电池测试、电机测试、充电桩测试共同构成新能源汽车领域的三大测试项目,今天我们重点聊一聊电机测试。 传统的电机测试主要考察电机的效率及可靠性,常见的测试包括转速测试、扭矩测试、效率测试、温升曲线、堵转以及耐久度测试等。电动汽车电机测试项目与上述测试项目基本一致,新增的重要测试项目为“工况实验”。所谓工况实验就是给电机施加变化的力矩,以模拟电动汽车在实际道路中的运行状况,此过程中测试相关数据最能反映电机性能。长时间工况循环实验也是耐久测试的过程,与传统耐久测试区别在于电机工作在稳态还是非稳态。 电动汽车工况测试参考什么标准呢?国标《GBT 18488.1-2006 电动汽车用电机及其控制器第1部分:技术条件》已明确提到工况实验的测试标准,并且给出工况加载曲线。通过加载和控制扭矩的方式在模拟标准中规定测试中包含的工况,有停车、加速、匀速、减速、上坡、下坡6个工况。让电机工作在额定工况下,测取记录电机转矩、转速随时间的变化曲线。图1、图2是国标《GBT 18488.1-2006 电动汽车用电机及其控制器第1部分:技术条件》提到的相关曲线。 图1市郊循环 图2基本城市循环

但是等我们真正去测试时,翻开最新的2015国标发现上述要求不存在了!其实现在的工况实验这么玩:使用报文记录设备采集车辆在真是路况下的转速、转矩数据,再将此数据输入到电机测试台架中,使负载电机按照此数据进行参数输出。毫无疑问,这种工况测试更加真实。 MPT电机测试系统如何完美解决电动汽车电机工况实验?MPT电机测试系统采用专业的电机测试软件MotoTest,针对工况测试一键化操作,并且支持测试报表导出。功率、效率运算采用致远电子高性能功率分析仪,以保证测试精度。工况实验中,用户只需要配置道路状况,包含平路、上坡、下坡的各项参数,如坡面长度、坡度等,配置汽车参数,如后桥减速比、档位、轮胎半径、重力加速度、风阻系数、截面积等。上位机软件通过数学建模将汽车参数换算出,应该给被测电机所需加载阻力以及转速。控制被测电机按照设置的档位运行,稳定后加载路面文件,模拟道路运行,记录各项数据。除了根据国标进行工况测试,MPT电机测试系统还支持自定义工况实验。实际测试效果如图3、图4。 图3实际软件测试效果界面 图4路面波形和当前扭矩波形 致远电子针对电动汽车电驱部分的核心:逆变器和电机,基于MPT混合型电机测试系统设计出电动汽车电机试验平台解决方案,为电动汽车电机及其逆变器的研发、生产提供专业化的测试系统。有关此测试系统更多信息请登录致远电子官网,致远电子与您共同成长。

部分负荷工况

4.2部分负荷工况 燃油耗的降低首先是由于压缩比由10提高到12所致。通过控制涡流阀,进气涡流能连续调节,EGR相容性得以改善。即使在EGR率相同的情况下,缸内直喷汽油机(BDE)在转速2000r/min和平均有效压力0.2MPa的标准工况下,燃油耗已经比进气道喷射汽油机(MPFI)大约低4%。若EGR率再提高10%,节油效果还能进一步提高2%,因此总的节油效果可达6%(图10)。与竞争者相比,2.2 Direct Ecotec 缸内直喷汽油机352g/KWh 的比油耗在FEV分布带中处于相当优势的地位(图11)。 这种燃油耗优势扩展到宽广的工况范围内(图12),其最低比油耗只有231 g/KWh。 原来的2.2 Ecotec 进气道喷射汽油机是按低HC排放设计的,喷油器在气缸盖上的位臵、尽可能避免或减小燃烧室中的有害容积以及适当的压缩比等都有助于降低HC排放,因此无论与公司内还是与公司外的同类机型相比,这种进气道喷射汽油机在HC排放方面都具有优势。而缸内汽油直喷机型的开发旨在提高功率和降低燃油耗,因而虽然因其高压缩比和高EGR率等系统条件的限制并没能达到进气道喷射机型那样好的HC排放水平,但与竞争机型相比仍处于中等水平,而由于EGR率较高,NOx排放水平较低。 由于结构类型的限制以及燃油系统压力高(4~12MPa),喷油时间较短,缸内直喷式汽油机的喷油器在新的状态下已显现±5%的流量误差。加之,在使用过程中,由于机械老化和喷油嘴积碳,各缸的喷

嘴流量特性会有所变化,从而影响到燃油耗、驱动性能和排放。通过将喷油嘴按流量偏差分成三组,并采用一种新颖的“气缸平衡功能”,上述难题得以解决。这种功能是借助于安装在催化转化器前的宽带λ传感器,在排气门开启后的某个曲轴转角窗口内测量各缸的过量空气系数。每缸用150oCA的曲轴转角窗口就能确保稳定地测出单缸混合气特性。图13表示这种气缸平衡功能调节作用的实例。以将所有气缸一律调节至λ=0.99为目标,测量开始时,气缸2和3的喷油量少了10%,而气缸1和4的喷油量多了10%。从测量一开始,各缸过量空气系数λ就立即进行平衡调节,5 min以后就完成。气缸平衡功能把各缸之间的混合气的不均匀性修正到允许的程度,从而有助于获得长期良好的排放特性。 5.3 全负荷工况 除降低燃油耗外,缸内汽油直喷机型还能提高功率,并特别重视提高中低速扭矩。图14表示能在整个转速范围内大大提高充量系数。在3500r/min以下的低转速范围内可连续调节的涡流阀有助于提高空气流量。 虽然空气流量提高了,同时还将压缩比提高了2,但是与进气道喷射机型相比,燃烧率图的重心位臵还是平均推迟了3o~5oCA(图15),这在进气道喷射机型上相当于压缩比提高大约0.5。其中,汽油缸内直喷的内部冷却效果起了作用,不但提高了充气系数,而且降低了爆燃倾向,最终使全负荷曲线抬高(图15)。低速扭矩提高10%,最大扭矩提高8%,标定功率提高6%,这就大大提高了汽车的驾驶乐

中国不同气候区综合部分负荷性能IPLV系数的计算方法

中国不同气候区综合部分负荷性能IPLV系数的计算方法 IPLV=A×a+B×b+C×c+D×d 式中:A=100%负荷能效比(W/W),冷却水进水温度30℃ B=75%负荷能效比(W/W),冷却水进水温度26℃ C=50%负荷能效比(W/W),冷却水进水温度23℃ D=25%负荷能效比(W/W),冷却水进水温度19℃ 中国主要城市气候分区 以上资料来源:《公共建设节能设计标准(公共建筑部分)》

制冷空调产品标准中的综合部分负荷性能系数 IPLV和NPLV 2007年国家冷标委完成了对GB/T18430.1-2001、GB/T18430.2-2001的修订。形成了新的GB/T18430.1-2007、GB/T18430.2-2008标准,其中主要变化对产品的能效评价指标均采用季节性能效评价指标,用综合部分负荷性能系数来评价机组的能效水平。 其计算公式为IPLV=2.3%A+41.5%B+46.1%C+10.1%D 1、定义 1.1综合部分负荷性能系数 用一个单一数值表示的空气调节用冷水机组的部分负荷效率指标,基于表(1)规定的IPLV 工况下机组部分负荷性能系数值,按照机组在特定负荷下运行时间的加权因素,通过下式获得: IPLV(或NPLV)=2.3%A+41.5%B+46.1%C+10.1%D (1) 1.2非标准部分负荷性能系数 用一个单一数值表示的空气调节用冷水机组的部分负荷效率指标,基于表(1)规定的NPLV 工况下机组部分负荷性能系数,按机组在特定负荷下运行时间加权因素,通过式(1)获得。注:部分负荷性能系数IPLV代表了平均的单台机组的运行工况,可能不代表一个特有的工程安装实例。 A=100%负荷性能系数(KW/KW) B=75%负荷性能系数(KW/KW) C=50%负荷性能系数(KW/KW) D=25%负荷性能系数(KW/KW)

一静力载荷试验

静力载荷试验 1. 试验的目的及意义 (1) 确定地基土的临塑荷载,极限荷载,为评定地基土的承载力提供依据; (2) 确定地基土的变形模量; (3) 估算地基土的不排水抗剪强度; (4) 确定地基土基床反力系数; 2. 试验的适用范围 浅层平板载荷试验适用于浅层地基土; 深层平板载荷试验适用于埋深等于或大 3m 和地 下水位以上的地基土; 螺旋板载荷试验适用于深层地基土或地下水位以下的地基土。 载荷试 验可适用于各种地基土, 特适用于各种填土及碎石的土。 本节主要介绍浅层平板静力载荷试 验。 本实验为浅层平板载荷试验。 3. 试验的基本原理 平板载荷试验是在拟建建筑场地上将一定尺 寸和几何形状(方形或圆形)的刚性板,安放在 平板载荷试验所反映的相当于承压板下?倍承压板直径 的强度、变形的综合性状。 浅层平板载荷试验适用浅层天然地基土, 包括各种填土、含碎石的土等。也用于复合地 基承载力评价。 被测的地基持力层上,逐级增加荷载,并测得相 应的稳定沉降,直至达到地基破坏标准,由此可 得到荷载(p )—沉降(S )曲线(即P-S 曲线)。 典型的平板载荷试验 P-S 曲线可以划分为三个阶 段,如右图所示。 通过对P-S 曲线进行计算分析,可以得到地基 土的承载力特征值 f ak 、变形模量 E 。和基床反力 系数k s 。 直 线 变 形 阶 段 剪切变形阶段 破 坏 阶 段 (或宽度)的深度范围内地基土

4. 试验仪器及制样工具 仪器设备:载荷试验的设备由承压板、加荷装置及沉降观测装置等部件组合而成。目 前,组合型式多样,成套的定型设备已应用多年。 (1)承压板,有现场砌置和预制两种,一般为预制厚钢板(或硬木板)。对承压板的要求是,要有足够的刚度,在加荷过程中承压板本身的变形要小,而且其中心和边缘不能产生弯曲和翘起;其形状宜为圆形(也有方形者),对密实粘性土和砂土,承压面积一般为1000 5000cm2。对一般土多采用2500?5000cm2。按道理讲,承压板尺寸应与基础相近,但不易做到。 (2)加荷装置,加荷装置包括压力源、载荷台架或反力构架。加荷方式可分为两种,即重物加荷和油压千斤顶反力加荷。 1)重物加荷法,即在载荷台上放置重物,如铅块等。由于此法笨重,劳动强度大,加 荷不便,目前已很少采用(图4 —3)。其优点是荷载稳定,在大型工地常用。 图3载荷台式加压装置 (a)木质或铁质载荷台;(b )低重心载荷台;1 —载荷台; 2—钢锭;3—混凝土平台;4 —测点;5—承压板 2)油压千斤顶反力加荷法,即用油压千斤顶加荷,用地锚提供反力。由于此法加荷方便,劳动强度相对较小,已被广泛采用,并有定型产品(图4-4)。采用油压千斤 顶加压,必须注意两个问题:①油压千斤顶的行程必须满足地基沉降要求。②下入 土中的地锚反力要大于最大加荷,以避免地锚上拔,试验半途而废。

静力载荷 试验

一、静力载荷试验 1.试验的目的及意义 (1)确定地基土的临塑荷载,极限荷载,为评定地基土的承载力提供依据;(2)确定地基土的变形模量;(3)估算地基土的不排水抗剪强度;(4) 确定地基土基床反力系数; 2.试验的适用范围 浅层平板载荷试验适用于浅层地基土;深层平板载荷试验适用于埋深等于或大3m 和地下水位以上的地基土;螺旋板载荷试验适用于深层地基土或地下水位以下的地基土。载荷 试验可适用于各种地基土,特适用于各种填土及碎石的土。 本节主要介绍浅层平板静力载荷 试验。 本实验为浅层平板载荷试验 。 3.试验的基本原理 平板载荷试验是在拟建建筑场地上将一定尺寸和几何形状(方形或圆形)的刚性板,安 放在被测的地基持力层上, 逐级增加荷载,并测得相应的 稳定沉降,直至达到地基破坏标准,由此可得到荷载(p ) -沉降(s )曲线(即 p-s 曲线)。典型的平板载荷试验 p-s 曲线可以划分为三个阶段,如右图所示。 通过对p-s 曲线进行计算分析,可以得到地基土的承载力特征值 ak f 、变形模量 E 和基床反力系数 s k 。 平板载荷试验所反映的相当于承压板下 1.5~2.0倍 承压板直径(或宽度)的深度范围内地基土的强度、变形 的综合性状。 浅层平板载荷试验适用浅层天然地基土,包括各种填土、含碎石的土等。也用于复合地 基承载力评价。 破坏阶段 剪切变形阶段 直线变形阶段

4.试验仪器及制样工具 仪器设备:载荷试验的设备由承压板、加荷装置及沉降观测装置等部件组合而成。目前,组合型式多样,成套的定型设备已应用多年。 (1)承压板,有现场砌置和预制两种,一般为预制厚钢板(或硬木板)。对承压板的要求是,要有足够的刚度,在加荷过程中承压板本身的变形要小,而且其中心和边缘不能产生弯曲和翘起;其形状宜为圆形(也有方形者),对密实粘性土和砂土,承压面积一般为 1000~5000cm2。对一般土多采用2500~5000cm2。按道理讲,承压板尺寸应与基础相近,但不易做到。 (2)加荷装置,加荷装置包括压力源、载荷台架或反力构架。加荷方式可分为两种,即重物加荷和油压千斤顶反力加荷。 1)重物加荷法,即在载荷台上放置重物,如铅块等。由于此法笨重,劳动强度大,加 荷不便,目前已很少采用(图4-3)。其优点是荷载稳定,在大型工地常用。 图3 载荷台式加压装置 (a)木质或铁质载荷台;(b)低重心载荷台;1—载荷台; 2—钢锭;3—混凝土平台;4—测点;5—承压板 2)油压千斤顶反力加荷法,即用油压千斤顶加荷,用地锚提供反力。由于此法加荷方 便,劳动强度相对较小,已被广泛采用,并有定型产品(图4-4)。采用油压千斤 顶加压,必须注意两个问题:①油压千斤顶的行程必须满足地基沉降要求。②下入 土中的地锚反力要大于最大加荷,以避免地锚上拔,试验半途而废。

相关文档