文档库 最新最全的文档下载
当前位置:文档库 › 80211帧的抓取以及分析

80211帧的抓取以及分析

80211帧的抓取以及分析
80211帧的抓取以及分析

802.11帧的抓取以及分析

1. 80

2.11 概述

IEEE 802.11是一个协议簇,主要包含以下规范:

1)物理层规范:802.11b, 802.11a, 802.11g;

2)增强型MAC 层规范:802.11i,802.11r,802.11h 等;

3)高层协议规范:802.11f,802.11 n,802.11p,802.11s 等。

802.11中定义了三种物理层规范,分别是:频率跳变扩展频谱(FHSS)PHY规范、直接序列扩展频谱(DSSS)PHY规范和红外线(IR)PHY规范。

802.11同802.3 一样,主要定义了OSI模型中物理层和数据链路层的相关规范,其中数

据链路层又可分为MAC子层和LLC子层,802.11与802.3的LLC子层统一由802.2描述。2. 802.11帧结构分析

2.1 一般帧结构

6 6 2 62304 4

o

2 2 4 1 1 1 1 1 1 1 1

一般802.11MAC 帧

Frame control 字段

1)控制字段

*Protocol version :表明版本类型,现在所有帧里面这个字段都是0x00。

*Type :指明数据帧类型,是管理帧,数据帧还是控制帧。

*Subtype :指明数据帧的子类型,因为就算是控制帧,控制帧还分RTS帧,CTS帧,ACK

帧等等,通过这个域判断出该数据帧的具体类型。

*To DS/From DS :这两个数据帧表明数据包的发送方向,分四种可能情况讨论:

**若数据包To DS 为0,From DS 为0,表明该数据包在网络主机间传输。

**若数据包To DS 为0,From DS 为1,表明该数据帧来自AP。

**若数据包To DS 为1,From DS 为0,表明该数据帧发送往AP。

**若数据包To DS 为1,From DS 为1,表明该数据帧是从AP 发送自AP 的,也就是说这个是个WDS(Wireless Distribution System)数据帧。

*Moreflag :分片标志,若数据帧被分片了,那么这个标志为1,否则为0。

*Retry :表明是否是重发的帧,若是为1,不是为0。

*PowerManage :当网络主机处于省电模式时,该标志为1 ,否则为0。

*Moredata :当AP 缓存了处于省电模式下的网络主机的数据包时,AP 给该省电模式下的网络主机的数据帧中该位为1,否则为0。

*Wep :加密标志,若为1 表示数据内容加密,否则为0。

*Order 这个表示用于PCF 模式下。

2)Duration/ID (持续时间/标识):表明该帧和它的确认帧将会占用信道多长时间;对于帧

控制域子类型为: Power Save-Poll 的帧,该域表示了STA 的连接身份(AID, Association Indentification )。

3)Address (地址域):源地址(SA)、目的地址(DA )、传输工作站地址(TA)、接收工作站地址(RA),SA 与DA 必不可少,后两个只对跨BSS 的通信有用,而目的地址可以为单播地址(Uni cast address)、多播地址(Multicast address)、广播地址(Broadcast address)。

4)Seque nee Con trol (序列控制域):由代表MSDU (MAC Server Data Un it )或者MMSDU (MAC Ma nageme nt Server Data Un it )的12 位序列号(Seque nee Number)和表示MSDU 和MMSDU 的每一个片段的编号的4 位片段号组成(Fragment Number)。

2.2 帧类型

针对帧的不同功能,可将802.11 中的MAC 帧细分为以下 3 类:

1 )控制帧:用于竞争期间的握手通信和正向确认、结束非竞争期等;

2)管理帧:主要用于STA 与AP 之间协商、关系的控制,如关联、认证、同步等;

3)数据帧:用于在竞争期和非竞争期传输数据。

Frame Control (帧控制域)中的Type (类型域)和Subtype (子类型域)共同指出帧的类型,当Type 的B3B2 位为00 时,该帧为管理帧;为01 时,该帧为控制帧;为10 时,该帧为数据帧。而Subtype 进一步判断帧类型。

2.3各种帧类型的结构

控制帧: (1) RTS 帧

2 byte

2 byte

d bjie

6 byte 4 bvte

Frame Control Duratinn

Raceher Address

Traiismitler Address

FCS

(2) CTS 帧

?

』 占 K.VJ ?

1 書、■

Frame Caitrol

Diirahm 】

Receiver AddiVSiti

FCS

2 byte

2 byte & bvtg

0 bvt 障 4 bvte

rrame Control

AID

畤ID

Iransiottcr

Ackire33

FCS

2 byte 2byt 电 6 byte 61nte 6 byte 2 byte 0-2312

4 byte Framt Control

Deration

D A

SA

BSSID

-Ctrl

Frame bodv

FCS

3. 802.11帧的抓取

3.1 配置 wireshark

启动 monitor mode, 抓取wifi 的数据包,如下图

TflylQr

[“g \

far tAyi-ftr 3:

tayXar^ubuntu if cgpf lg "ions up t jiylortpubuntu

wlrp^hark

Frants Duration

Addmsl

Addr?ss2

Address^

S?q- Addrt^s4

Frame FCS

ccticroJ

■■ID

Ctl

body

2 Vvte 2 b 代 6 bvtt 6 byte 6 bvte 6 byte 斗 bvtu

0-2312 2 byte

2 lyle

Frame Durtiticii ConVol

6 byte Receivei , Address

4 byte

*60 Wire&hark: Capture Qpti

Interface :

monO IP aridrew : unknown Link i^/er header rype? BuZ 11 f. us r ju : ?■': — Captune packets in promiscuous mtxle 匚apc

Capture filter : * Next file every :1 『Mb

?国

Next file every 1

-

C^pcure F 昶⑸ Fite: | firowse... |

Use muiltipfe files

Step capture efter 1

: Filets) Stop Capture ... …after

... after

…after

megabyicts) A

--------- I 1:I

minute (5) A

It : packetfsj Display Options

迢 Update list of

in reat time

a Automate strolling in live capture iZ Hide capcure info dialog Name Resolution

建 Enable MAC name resolutfon

Enab

応 Enable transport hame resdution

Help $

cancel 5tort

3.2结果以及分析

1?数据帧:

Version , Type和Subtype的08H,即00001000,后两位00,表明协议版本为0,倒数3、

4位10表明这是一个数据帧,前四位0000是subtype。Frame control后8位0AH,即00001010。To DS=0,From DS=1,表明该数据帧来自AP。More frag=0,表明这是该帧的最

后一段,Retry=1,表明这是重传帧,Pwr. Mgt.=0,表明发送方没有进入节能模式;More data=0 表明没有更多的帧,即No data buffered Protected=0,表明没有加密,Order=0,表明没有严

格的顺序要求。Duration位为d500,低位为00,高位为d5,所以持续时间为00d5H=213 微秒。Address 1 =0022698ea744,接收方的MAC 地址;Address 2= 0611b51a0a05,发送发地址,即AP地址;Address 3= 00005e00040a,远程远端地址;Sequence=3032,高位为32,低位为30,即0011 0010 0011 0010,段号为0,帧号为0011 0010 0011B=803D,Check seque

nce=23093131H,检测结果为正确。

2?控制帧:

RTS

■ ? CMfti ■獅“Aiib&laOTS

HwHajP*拆M 网>02』:l P B*qT~to云r< Fl■■亦

+ *rame 7:51 bye电;on wire (41& b1rs)t B2 byrts captured (41 & bits) [固耳0£|(彳宅通p IH?晶应r #0. IL.ngith寸2

^r^pe/stbcyp-e: necuest-c o-^end (Gelb;

id Fra?e contrail i 0'X O0B4 (Noriul >

ver51on1 0

Type: Cprrcrciil frane Cl^

Subtle: 11

i "&押O K O

■… +00 * OT status; Wt 1 wving DS or net翊呛is op?ratir*g in w HOC mod?1 (TQ os;0 Frew OT: OJ <0^00) …???D■甲

“ i?ore Fragumrs: rhts is che last f「日q?em 0 - Kerry: F「占rue Is r?i being rerrinsmlcied

…D-PwR MfiTs ST A bdUl 处ay up

■ *ort o?ri:气n diet bufftrtdi

H O-..+*A*= Pirotecttd flag:Mta is nor prcreCTed

O TM.=???-Order flag; Not strictly crcleredl

Durat iori: 2*0?

wceiw address< 旳门邸1和_羸电:酣;“ (00;?2-fi9:(e-a^:44)

rf arts nil:ter aiidrs-ss; C-6rll : h5 r la:

b Frane check sequence: Dj{&B24f?E

c [correct]

[?od! True]

[&?d:F?13?l

OOM

□□ DC

20 00

fcf IH

DU CIO 03 1J 殆也3& & 3 DC DO Ki ?.? -OH..?? fOU B ..

o

0020

OOM

Version , Type和Subtype的b4H,即10110100,后两位00,表明协议版本为0,倒数3、4位01表明这是一个控制帧,前四位1011是subtype,表明这是一个RTS Frame control

后8位00H,控制帧的这几位除Pwr.mgt.外必然是0. Pwr.mgt即发送方没有进入节能模式。

CTS帧

Fr-ifft £;吗静肿rlre {』帰4# by c?prrf U强

审nudl Qiip Htider Ltr^Fth )2

V?T3li9n:9

- witT Frw?⑴

12

mi * i W * W 窮■*?皤0*r WWK It 0frtr?ln9 In AP-WG吹?(1? 9 Fr?w g〔;Q][血曲〕

???.r&r?■ i*ort Frjgpwnts; ifiii 1? t^hf list fragpwnt

亠H Mt b电耳常

+ + + s

? IPWR MGT:$TA dill lC*w up ?i *. - w w;M totd buffer nd

?巾???! ??■ PrcKfcied! flaa:Odii 11 not praKcrM

。.… 亠一 -- wde^ H>§! Kdt

eurat MU

■护s;?1w「4dcm>^ li tronTe^j-i;M "Q: fl; 41

Fr?* check TEUEK:伽ildlY"亍([cGrrect]

[5M3h Trtlf]

[lUdt Fkliu]

Version,Type和Subtype的C4H,即11000100,后两位00,表明协议版本为0,倒数3、4位01表明这是一个控制帧,前四位1100是subtype表明这是一个CTS. Frame control 后8位00H,控制帧的这几位除Pwr.mgt.外必然是0. Pwr.mgt即发送方没有进入节能模式。Duration位为6f09,低位为6f,高位为09,所以持续时间为096fH=2415微秒。Receiver Address=70f1al496492,接收方的MAC 地址;Check sequence=a1d1f7e5H,检测结果为正确。ACK 帧:

TEET302, li 阿uEH-fg-Eiend.匸1 a gs ; ■??????"£

Typ? ifpr; cHear-to-senci Cchtlt5

0000 oa 00 00 6f 4B OO 00 dC cd 30 55 00 oa m B. 心…- .,*011...、

i?10 1G 30 &c OS co OS W r 02 D& 00 00 OO DO

tODiratB MjjMlwOteWJWaglli 咖■?, ffbp*—C

*

訓环

IEEE BOZ L II M knovfi edgeaenE e rldqs t "「■■■」(:rypw 'Subtypr: Mknoiil?dgflemT (O&ld) rrM 0R G0D4 (uriml)

version: O

rypMT:control 屮厂里注(1)

&vbirpts 1 I

Egs : O J O

“????>w * M让软銅:wa-T ZiM吟毎&r jmjtwCjrk 1i o^?Far fng 1n w-we 肚刃色(TO t?: d fra* &$i 0) ££?OOJ ---. 用八-i^tire Fr*4ptenii: This Is E*hc 1 Ait Fr啊mr

+ ?■ On * ■tcry: i=『4?

1A?( b4*ng rKrinjiallt^

■ “"0 ■■… ?X MGT: ST* rill 5t?y tip

x .cn.?_?甲* kere tm塔2 w dm buff w*d

4 fi- - J u . ^- -' P『口t?Ct*d F Idigt 仙t* 1 % rust pr^t'KtiMl

€i. i .“? # * dh峠;MM Strictly 4**d4r*4

聲「审書T倂i;:甲

Rttelser (&6;11:1>阳1 施心己吨刃

frjttv clwck $9Qu?nce: Wl??91*f [OTTKI:]

[CMd;TW]

[udi; Palsf]

Version , Type和Subtype的d4H,即11010100,后两位00,表明协议版本为0,倒数

3、4位01表明这是一个控制帧,前四位1101是subtype表明这是一个ACK ; Frame control

后8位00H,控制帧的这几位除Pwr.mgt.外必然是0. Pwr.mgt即发送方没有进入节能模式。Duration位为0000,所以持续时间为0微秒,ACK表明该帧的传送结束,所以持续时间为0, Receiver Address =00:22:69:8e:a7:44,接收方的MAC 地址;Check sequence=6e24f28cH,检测结果为正确。

Block ACK

??-I ww tnmr 6 ?

?M30 . ___

审i …卜-| I- . i .is ' I r r>j

i i r —? | 吗悄r.£l -k-tl

CK) OO CK fit 4ft OO OO 2 <..■' 0*5 ha m DO Ui EM 90 ??> n?: Cr* ffiCl-3 I 叽-心住OO C BI7 Crt C KJ卄上?^P G

Version,Type和Subtype的94H,即10010100,后两位00,表明协议版本为0,倒数

3、4位01表明这是一个控制帧,前四位1001是subtype,表明这是一个Block Ack,这是一

个块确定帧

Frame control后8位00H,控制帧的这几位除Pwr.mgt.外必然是0. Pwr.mgt即发送方没有

进入节能模式。Duration位为9400,低位为94,高位为00,所以持续时间为0094H=148 微秒。Receiver Address =70f1al496492,接收方的MAC 地址。Transmitter Address =3822d67704d3,发送方的MAC地址,Check sequence=d2ed060f,检测结果为正确。其f [?f ?

a->

O H OQOO

iova mj wflC1 i

■ kub ill .

斗7 _ S 孑『4T 4M"

ocw

CW10

MJO

—I科

I O44K4O M I P-7 t 5 訶? A …'??5 円”」

■ n』in r nr r A I g ci ?G C!W < Maad ■

Vw< + ■■ fl?-a 口

? : rant -r-n-l fr <1}

KlffW;审

r i

___ __. . £Mi <—Uli 2 I

snmp协议的分析

竭诚为您提供优质文档/双击可除 snmp协议的分析 篇一:实验三snmp协议分析 实验三snmp协议分析 一、实验目的 (1)掌握嗅探工具ethereal协议分析软件的使用方法(2)利用ethereal软件工具截snmp数据包并完成报文分析 二、实验环境 局域网,windowsserver20xx,snmputil,ethereal,superscan 三、实验步骤(0、snmp的安装配置) 1、理解应用层snmp协议工作原理; 2、使用windows平台上的snmputil.exe程序实现snmp 交互; 3、利用协议分析和抓包工具ethereal抓取分析snmp 协议报文。 四、实验内容 内容一:

1.打开ethereal软件开始抓包, 输入命令: snmputilget[目标主机ip地址]团体 名.1.3.6.1.2.1.1.2.0停止抓包。对snmp包进行过滤。(给出抓包结果截图) 2.找出一对snmp协议请求包和相对应的应答包。给出抓包结果截图。 3.对上面这对请求和应答包进行分析,根据snmp协议数据包格式填值。 请求包报文分析 应答包报文分析 内容二: 1.通过snmptuil.exe与snmp交互: 输入snmputilwalk[目标主机ip地址]团体 名.1.3.6.1.2.1.1命令列出目标主机的系统信息。 2.打开ethereal软件开始抓包,再次输入上面命令后,停止抓包。对snmp包进行过滤。给出抓包结果截图。 3.找出一对snmp协议请求包和相对应的应答包。给出抓包结果截图。 4.对上面这对请求和应答包进行分析,根据snmp协议数据包格式填值。 请求包报文分析

以太网帧格式

以太网帧格式 百科名片 现在的以太网帧格式 以太网帧格式,即在以太网帧头、帧尾中用于实现以太网功能的域。目录

编辑本段 编辑本段历史分类 1.Ethernet V1 这是最原始的一种格式,是由Xerox PARC提出的3Mbps CSMA/CD以太网标准的封装格式,后来在1980年由DEC,Intel和Xerox标准化形成Ethernet V1标准. 2.Ethernet V2(ARPA) 由DEC,Intel和Xerox在1982年公布其标准,主要更改了Ethernet V1的电气特性和物理接口,在帧格式上并无变化;Ethernet V2出现后迅速取

代Ethernet V1成为以太网事实标准;Ethernet V2帧头结构为6bytes的源地址+6bytes的目标地址+2Bytes的协议类型字段+数据。 以太网帧格式 3.RAW 802.3 这是1983年Novell发布其划时代的Netware/86网络套件时采用的私有以太网帧格式,该格式以当时尚未正式发布的802.3标准为基础;但是当两年以后IEEE正式发布802.3标准时情况发生了变化—IEEE在802.3帧头中又加入了802.2 LLC(Logical Link Control)头,这使得Novell的RAW 802.3格式跟正式的IEEE 802.3标准互不兼容. 4.802.3/802.2 LLC 这是IEEE 正式的802.3标准,它由Ethernet V2发展而来。它将Ethernet V2帧头的协议类型字段替换为帧长度字段(取值为0000-05dc;十进制的1500);并加入802.2 LLC头用以标志上层协议,LLC头中包含DSAP,SSAP以及Crontrol字段. 5.802.3/802.2 SNAP 这是IEEE为保证在802.2 LLC上支持更多的上层协议同时更好的支持IP协议而发布的标准,与802.3/802.2 LLC一样802.3/802.2 SNAP也带有LLC头,但是扩展了LLC属性,新添加了一个2Bytes的协议类型域(同时将SAP的值置为AA),从而使其可以标识更多的上层协议类型;另外添加了一个3Bytes的OUI字段用于代表不同的组织,RFC 1042定义了IP报文在802.2网络中的封装方法和ARP协议在802.2 SANP中的实现. 802.3以太网帧格式备注: 前导码(7字节)、帧起始定界符(1字节)、目的MAC地址(6字节)、源MAC地址(6字节)、类型/长度(2字节)、数据(46~1500字节)、帧校验序列(4字节)[MAC地址可以用2-6字节来表示,原则上是这样,实际都是6字节] 图2 IEEE802.3以太帧头

实验二 SNMP协议工作原理验证与分析

实验二SNMP协议工作原理验证与分析 一、实验目的 本实验的主要目的是学习捕获SNMP报文,通过分析该报文理解SNMP协议的工作过程、SNMP的报文结构、MIB-2树的结构、理解管理信息结构SMI及其规定的ASN.1。 二、实验内容 1、分析并验证SNMP协议的工作过程; 2、分析并验证SNMP协议数据单元的格式; 3、分析MIB-2树的结构; 4、分析理解管理信息结构SMI及其规定的ASN.1。 三、实验工具 数据包捕获软件Iris或Wireshark、MIB浏览器AdventNet、或基于UNIX、LINUX/FreeBSD平台的SNMP命令行工具、MIB文件。 四、实验步骤 1、分别打开软件Iris和MIB浏览器; 2、首先设置Iris中捕获报文的过滤条件,将其设置为只捕获管理站和代理之间的SNMP报文。用鼠标单击左侧“Filters”控件,在打开的对话框中分别设置Layer2,3和IP address项。其中,Layer2,3选中DoD IP 和SNMP;IP address加入代理主机和管理站主机的IP地址。“确定”保存该设置;

3、点击Iris中工具栏的start capture,开始捕获SNMP报文; 4、用MIB浏览器MibBrowser访问MIB被管对象,然后观察Iris中右侧内容面板中显示的信息。单击任一信息,右下侧将显示详细的报文数据; 5、用鼠标单击右下侧的报文数据,在右侧会有相关的解析与之对应。 五、实验报告 1、设置iris过滤器,使其只监测管理工作站和代理之间的通信。获取ip 组的ipForwarding对象值,写出管理工作站和代理之间的SNMP通信情况,验证SNMP协议的工作过程。 (1)获取ip组的ipForwarding对象值

snmp报文分析

SNMP报文格式分析 报文格式 snmp简介 snmp工作原理 SNMP采用特殊的客户机/服务器模式,即代理/管理站模型。对网络的管理与维护是通过管理工作站与SNMP代理间的交互工作完成的。每个SNMP从代理负责回答SNMP管理工作站(主代理)关于MIB定义信息的各种查询。 管理站和代理端使用MIB进行接口统一,MIB定义了设备中的被管理对象。管理站和代理都实现相应的MIB对象,使得双方可以识别对方的数据,实现通信。 管理站向代理请求MIB中定义的数据,代理端识别后,将管理设备提供的相关状态或参数等数据转换成MIB定义的格式,最后将该信息返回给管理站,完成一次管理操作。 snmp报文类型 SNMP中定义了五种消息类型:Get-Request、Get-Response、 Get-Next-Request、Set-Request和Trap 。 1.Get-Request 、Get-Next-Request与Get-Response SNMP 管理站用Get-Request消息从拥有SNMP代理的网络设备中检索信息,而SNMP代理则用Get-Response消息响应。Get-Next- Request用于和 Get-Request组合起来查询特定的表对象中的列元素。 2.Set-Request SNMP管理站用Set-Request 可以对网络设备进行远程配置(包括设备名、设备属性、删除设备或使某一个设备属性有效/无效等)。 3.Trap SNMP代理使用Trap向SNMP管理站发送非请求消息,一般用于描述某一事件的发生,如接口UP/DOWN,IP地址更改等。

上面五种消息中Get-Request、Get-Next-Request和Set-Request是由管理站发送到代理侧的161端口的;后面两种Get-Response和Trap 是由代理进程发给管理进程的,其中Trap消息被发送到管理进程的162端口,所有数据都是走UDP封装。 snmp报文格式图 SNMP报文的形式大致如下图所示。 snmp报文编码格式 SNMP(简单网络管理协议)是目前在计算机网络中用得最广泛的网络管理协议,它使用(Abstract Syntax Notation One抽象语法表示法.1)来定义SNMP报文格式和MIB(Management Information Base管理信息库)变量的名称。 是一种描述数据和数据特征的正式语言,它和数据的存储及编码无关。根据标准定义,数据类型分为: a.简单数据类型: boolean布尔值

以太网帧格式 EthernetⅡ和ETHERNET 802.3 IEEE802.2.SAP和SNAP的区别

EthernetⅡ/ETHERNET 802.3 IEEE802.2.SAP/SNAP的区别 1.Ethernet V1:这是最原始的一种格式,是由Xerox PARC提出的3Mbps CSMA/CD 以太网标准的封装格式,后来在1980年由DEC,Intel和Xerox标准化形成Ethernet V1标准; 2.Ethernet V2(ARPA): 这是最常见的一种以太网帧格式,也是今天以太网的事实标准,由DEC,Intel 和Xerox在1982年公布其标准,主要更改了Ethernet V1的电气特性和物理接口,在帧格式上并无变化;Ethernet V2出现后迅速取代Ethernet V1成为以太网事实标准;Ethernet V2帧头结构为6bytes的源地址+6bytes的目标地址 +2Bytes的协议类型字段+数据。 常见协议类型如下: 0800 IP 0806 ARP 8137 Novell IPX 809b Apple Talk 如果协议类型字段取值为0000-05dc(十进制的0-1500),则该帧就不是Ethernet V2(ARPA)类型了,而是下面讲到的三种802.3帧类型之一;Ethernet可以支持TCP/IP,Novell IPX/SPX,Apple Talk Phase I等协议;RFC 894定义了IP报文在Ethernet V2上的封装格式; Ethernet_II中所包含的字段:

在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图所示。其中,前7个字节称为前同步码(Preamble),内容是16进制数0xAA,最后1字节为帧起始标志符0xAB,它标识着以太网帧的开始。前导字符的作用是使接收节点进行同步并做好接收数据帧的准备。 ——PR:同步位,用于收发双方的时钟同步,同时也指明了传输的速率(10M和100M的时钟频率不一样,所以100M网卡可以兼容10M网卡),是56位的二进制数101010101010..... ——SD: 分隔位,表示下面跟着的是真正的数据,而不是同步时钟,为8位的10101011,跟同步位不同的是最后2位是11而不是10. ——DA:目的地址,以太网的地址为48位(6个字节)二进制地址,表明该帧传输给哪个网卡.如果为FFFFFFFFFFFF,则是广播地址,广播地址的数据可以被任何网 卡接收到. ——SA:源地址,48位,表明该帧的数据是哪个网卡发的,即发送端的网卡地址, 同样是6个字节. ----TYPE:类型字段,表明该帧的数据是什么类型的数据,不同的协议的类型字段不同。如:0800H 表示数据为IP包,0806H 表示数据为ARP包,814CH是SNMP 包,8137H为IPX/SPX包,(小于0600H的值是用于IEEE802的,表示数据包的长度。) ----DATA:数据段,该段数据不能超过1500字节。因为以太网规定整个传输包的最大长度不能超过1514字节。(14字节为DA,SA,TYPE) ----PAD:填充位。由于以太网帧传输的数据包最小不能小于60字节, 除去(DA,SA,TYPE 14字节),还必须传输46字节的数据,当数据段的数据不足46字节时,后面补000000.....(当然也可以补其它值) ----FCS:32位数据校验位.为32位的CRC校验,该校验由网卡自动计算,自动生成,自动校验,自动在数据段后面填入.对于数据的校验算法,我们无需了解. ----事实上,PR,SD,PAD,FCS这几个数据段我们不用理它 ,它是由网卡自动产生的,我们要理的是DA,SA,TYPE,DATA四个段的内容.

以太网帧格式

以太网帧格式详解: Etherne II 报头8 目标地址6 源地址6 以太类型2 有效负载46-1500 帧检验序列4 报头:8个字节,前7个0,1交替的字节(10101010)用来同步接收站,一个1010101011字节指出帧的开始位置。报头提供接收器同步和帧定界服务。 目标地址:6个字节,单播、多播或者广播。单播地址也叫个人、物理、硬件或MAC地址。广播地址全为1,0xFF FF FF FF。 源地址:6个字节。指出发送节点的单点广播地址。 以太网类型:2个字节,用来指出以太网帧内所含的上层协议。即帧格式的协议标识符。对于IP报文来说,该字段值是0x0800。对于ARP信息来说,以太类型字段的值是0x0806。 有效负载:由一个上层协议的协议数据单元PDU构成。可以发送的最大有效负载是1500字节。由于以太网的冲突检测特性,有效负载至少是46个字节。如果上层协议数据单元长度少于46个字节,必须增补到46个字节。 帧检验序列:4个字节。验证比特完整性。 IEEE 802.3 根据IEEE802.2 和802.3标准创建的,由一个IEEE802.3报头和报尾以及一个802.2LLC报头组成。 报头7 起始限定符1 目标地址6(2)源地址6(2)长度2 DSAP1 SSAP1 控件2 有效负载3 帧检验序列4 -----------802.3报头--------------§- --802.2报头----§ §-802.3报尾-§

IEEE802.3报头和报尾 报头:7个字节,同步接收站。位序列10101010 起始限定符:1个字节,帧开始位置的位序列10101011。 报头+起始限定符=Ethernet II的报头 目标地址:同Ethernet II。也可以为2个字节,很少用。 源地址:同Ethernet II。也可以为2个字节,很少用。 长度:2个字节。 帧检验序列:4个字节。 IEEE802.2 LLC报头 DSAP:1个字节,指出帧的目标节点的上层协议。Destination Service Access Point SSAP:1个字节,指出帧的源节点的上层协议。Source Service Access Point DSAP和SSAP相当于IEEE802.3帧格式的协议标识符。为IP定义的DSAP和SSAP 字段值是0x06。但一般使用SNAP报头。 控件:1-2个字节。取决于封装的是LLC数据报(Type1 LLC)还是LLC通话的一部分(Type2 LLC)。 Type1 LLC:1个字节的控件字段,是一种无连接,不可靠的LLC数据报。无编号信息,UI帧,0x03。 Type2 LLC:2个字节的控件字段,是一种面向连接,可靠的LLC对话。 对IP和ARP,从不使用可靠的LLC服务。所以,都只用Type1 LLC,控件字段设为0x03。 区分两种帧 根据源地址段后的前两个字节的类型不同。 如果值大于1500(0x05DC),说明是以太网类型字段,EthernetII帧格式。值小于等于1500,说明是长度字段,IEEE802.3帧格式。因为类型字段值最小的是0x0600。而长度最大为1500。 IEEE802.3 SNAP 虽然为IP定义的SAP是0x06,但业内并不使用该值。RFC1042规定在IEEE802.3, 802.4, 802.5网络上发送的IP数据报和ARP帧必须使用SNAP(Sub Network Access Prototol)封装格式。 报头7 起始限定符1 目标地址6 源地址6 长度2 DSAP1 SSAP1 控件1 组织代码3 以太类型2 IP数据报帧检验序列 ----IEEE802.3报头-----------§IEEE8023 LLC报头---§--SNAP报头----§ §802.3报尾§ 0x0A 0x0A 0x03 0x00-00-00 0x08-00 (38-1492字节) Ethernet地址 为了标识以太网上的每台主机,需要给每台主机上的网络适配器(网络接口卡)分配一个唯一的通信地址,即Ethernet地址或称为网卡的物理地址、MAC 地址。 IEEE负责为网络适配器制造厂商分配Ethernet地址块,各厂商为自己生产的每块网络适配器分配一个唯一的Ethernet地址。因为在每块网络适配器出厂时,其Ethernet地址就已被烧录到网络适配器中。所以,有时我们也将此地址称为烧录地址(Burned-In-Address,BIA)。

snmp报文分析

SNMP报文格式分析 1.SNMP报文格式 1.1 snmp简介 1.1.1 snmp工作原理 SNMP采用特殊的客户机/服务器模式,即代理/管理站模型。对网络的管理与维护是通过管理工作站与SNMP代理间的交互工作完成的。每个SNMP从代理负责回答SNMP管理工作站(主代理)关于MIB定义信息的各种查询。 管理站和代理端使用MIB进行接口统一,MIB定义了设备中的被管理对象。管理站和代理都实现相应的MIB对象,使得双方可以识别对方的数据,实现通信。 管理站向代理请求MIB中定义的数据,代理端识别后,将管理设备提供的相关状态或参数等数据转换成MIB定义的格式,最后将该信息返回给管理站,完成一次管理操作。 1.1.2 snmp报文类型 SNMP中定义了五种消息类型:Get-Request、Get-Response、 Get-Next-Request、Set-Request和Trap 。 1.Get-Request 、Get-Next-Request与Get-Response

SNMP 管理站用Get-Request消息从拥有SNMP代理的网络设备中检索信息,而SNMP代理则用Get-Response消息响应。Get-Next- Request用于和Get-Request组合起来查询特定的表对象中的列元素。 2.Set-Request SNMP管理站用Set-Request 可以对网络设备进行远程配置(包括设备名、设备属性、删除设备或使某一个设备属性有效/无效等)。 3.Trap SNMP代理使用Trap向SNMP管理站发送非请求消息,一般用于描述某一事件的发生,如接口UP/DOWN,IP地址更改等。 上面五种消息中Get-Request、Get-Next-Request和Set-Request是由管理站发送到代理侧的161端口的;后面两种Get-Response和Trap 是由代理进程发给管理进程的,其中Trap消息被发送到管理进程的162端口,所有数据都是走UDP封装。 1.1.3 snmp报文格式图 SNMP报文的形式大致如下图所示。

各种不同以太网帧格式

各种不同以太网帧格式 利用抓包软件的来抓包的人,可能经常会被一些不同的Frame Header搞糊涂,为何用的Frame的Header是这样的,而另外的又不一样。这是因为在Ethernet中存在几种不同的帧格式,下面我就简单介绍一下几种不同的帧格式及他们的差异。 一、Ethernet帧格式的发展 1980 DEC,Intel,Xerox制订了Ethernet I的标准; 1982 DEC,Intel,Xerox又制订了Ehternet II的标准; 1982 IEEE开始研究Ethernet的国际标准802.3; 1983迫不及待的Novell基于IEEE的802.3的原始版开发了专用的Ethernet帧格式; 1985 IEEE推出IEEE 802.3规范; 后来为解决EthernetII与802.3帧格式的兼容问题推出折衷的Ethernet SNAP 格式。 (其中早期的Ethernet I已经完全被其他帧格式取代了所以现在Ethernet只能见到后面几种Ethernet的帧格式现在大部分的网络设备都支持这几种Ethernet 的帧格式如:cisco的路由器在设定Ethernet接口时可以指定不同的以太网的帧格式:arpa,sap,snap,novell-ether) 二、各种不同的帧格式 下面介绍一下各个帧格式 Ethernet II 是DIX以太网联盟推出的,它由6个字节的目的MAC地址,6个字节的源MAC地址,2个字节的类型域(用于表示装在这个Frame、里面数据的类型),以上为Frame Header,接下来是46--1500 字节的数据,和4字节的帧校验) Novell Ethernet 它的帧头与Ethernet有所不同其中EthernetII帧头中的类型域变成了长度域,后面接着的两个字节为0xFFFF用于标示这个帧是Novell Ether类型的Frame,由于前面的0xFFFF站掉了两个字节所以数据域缩小为44-1498个字节,帧校验不变。

计算机网络实验报告(以太网帧格式分析)

计算机网络实验报告 学院计算机与通信工程学院专业网络工程班级1401班 学号20姓名实验时间:2016.5.13 一、实验名称: FTP协议分析实验 二、实验目的: 分析FTP 报文格式和FTP 协议的工作过程,同时学习 Serv-U FTP Server服务软件的基本配置和FTP 客户端命令的使用。 三、实验环境: 实验室局域网中任意两台主机PC1,PC2。 四、实验步骤及结果: 步骤1:查看实验室PC1和PC2的IP地址,并记录,假设PC1的IP 地址为10.64.44.34,PC2的IP地址为10.64.44.35。 步骤2:在PC1上安装Serv-U FTP Server,启动后出现图1-20所示界面。 点击新建域,打开添加新建域向导,完成如下操作。 添加域名:https://www.wendangku.net/doc/c19122016.html,;设置域端口号:21(默认);添加域IP地址:10.28.23.141;设置密码加密模式:无加密,完成后界面如图1-21所示。 完成上述操作后,还需要创建用于实验的用户帐号。点击图1.20中

浮动窗口中的“是”按钮,打开添加新建用户向导:添加用户名:test1;添加密码:123;设置用户根目录(登陆文件夹);设置是否将用户锁定于根目录:是(默认);访问权限:只读访问,完成后界面如图1-22所示。 新建的用户只有文件读取和目录列表权限,为完成实验内容,还需要为新建的用户设置目录访问权限,方法为点击导航——〉目录——〉目录访问界面,然后点击添加按钮, 按照图1-23所示进行配置。 步骤3:在PC1 和PC2 上运行Wireshark,开始捕获报文。 步骤4:在PC2 命令行窗口中登录FTP 服务器,根据步骤2中的配置信息输入用户名和口令,参考命令如下: C:\ >ftp ftp> open To 10.28.23.141 //登录ftp 服务器 Connected to 10.28.23.141 220 Serv-U FTP Server v6.2 for WinSock ready... User(none): test1 //输入用户名 331 User name okay, need password. Password:123 //输入用户密码 230 User logged in, proceed. //通过认证,登录成功

实验一 以太网链路层帧格式分析

实验一以太网链路层帧格式分析 实验目的 1、分析Ethernet V2 标准规定的MAC 层帧结构,了解IEEE802.3 标准规定的MAC 层帧结构和TCP/IP 的主要协议和协议的层次结构; 2、掌握网络协议分析软件的基本使用方法; 3、掌握网络协议编辑软件的基本使用方法。 实验学时 3学时 实验类型 验证型 实验内容 1、学习网络协议编辑软件的各组成部分及其功能; 2、学习网络协议分析软件的各组成部分及其功能; 3、学会使用网络协议编辑软件编辑以太网数据包; 4、理解MAC地址的作用; 5、理解MAC首部中的LLC—PDU 长度/类型字段的功能; 6、学会观察并分析地址本中的MAC地址。 实验流程

实验环境 局域网环境,1台PC机。 实验原理 详见《计算机网络》教材(P79和P92)或相关书籍,然后进行说明阐述 实验步骤 步骤1:运行ipconfig命令 1、在Windows的命令提示符界面中输入命令:ipconfig /all,会显示本机的网络信息: 2、观察运行结果,获得本机的以太网地址。

步骤2:编辑LLC信息帧并发送 1、在主机A,打开协议编辑软件,在工具栏选择“添加”,会弹出“协议模版”的对话框,如图所示,在“选择生成的网络包”下拉列表中选择“LLC协议模版”,建立一个LLC帧; 添加一个数据包 2、在“协议模版”对话框中点击“确定”按钮后,会出现新建立的数据帧,此时在协议编辑软件的各部分会显示出该帧的信息。如图所示:

新建的LLC帧 数据包列表区中显示:新帧的序号(为0)、概要信息; 协议树中显示以太网MAC层协议; 数据包编辑区中显示新帧各字段的默认值; 十六进制显示区中显示新帧对应的十六进制信息。 3、编辑LLC帧 在数据包编辑区中编辑该帧;具体步骤为: 编辑LLC帧 填写“目的物理地址”字段; 方法一:手工填写。 方法二:选择”地址本”中主机B的IP地址,确定后即可填入主机B的MAC地址;

网络管理实验SNMP报文解析实验报告

网络管理实验————SNMP报文解析 2010-6-1 4.trap操作: Sniffer软件截获到的trap报文如下图所示:

30 2e SNMP报文是ASN.1的SEQUENCE 类型,报文长度是46个八位组。 02 01 00:版本号为integer类型,取值为0,表示snmpv1。 04 06 70 75 62 6c 69 63:团体名为octet string类型,值为“public” a4 21: 表示pdu类型为trap,长度为33个八位组。 06 0c 2b 06 01 04 01 82 37 01 01 03 01 02:制造商标识,类型为object identifier。 值为1.3.6.1.4.1.311.1.1.3.1.2。 40 04 c0 a8 01 3b:代理的IP地址,类型OCTECT STRING,值为192.168.1.59; 02 01 04:一般陷阱,类型为INTEGER,值为4,代表这是由“authentication Failure (身份验证失败)”引发的TRAP; 02 01 00:特殊陷阱,类型为INTEGER,值为0(当一般陷阱取值不是6时); 43 03 06 63 29:时间戳,类型为TIME TICKS,值为418601 (百分之一秒),即系 统在运行到大约第70分钟时,代理发出了此TRAP; 30 00变量绑定表为空。 5.SNMPv2 GetBulk操作: Sniffer软件截获到的getbulkrequest报文如下图所示:

对该报文的分析如下 : 30 27 SNMP 报文是ASN.1的SEQUENCE 类型,报文长度为46个八位组;

以太网帧格式分析

的IP,而MAC地址是伪造的,则当A接收到伪造的ARP应答后,就会更新本地的ARP缓存,这样在A 看来B的IP地址没有变,而它的MAC地址已经不是原来那个了。由于局域网的网络流通不是根据IP地址进行,而是按照MAC地址进行传输。所以,那个伪造出来的MAC地址在A上被改变成一个不存在的MAC地址,这样就会造成网络不通,导致A不能Ping通B!这就是一个简单的ARP欺骗。 【实验体会】 这次实验最大的感触是体会到了网络通信过程的趣味性。在做ping同学IP的实验时,我发现抓到的包之间有紧密的联系,相互的应答过程很像实际生活中人们之间的对话。尤其是ARP帧,为了获得对方的MAC地址,乐此不疲地在网络中广播“谁有IP为XXX的主机?”,如果运气好,会收到网桥中某个路由器发来的回复“我知道,XXX的MAC地址是YYY!”。另外,通过ping同学主机的实验,以及对实验过程中问题的分析,使我对之前模糊不清的一些概念有了全面的认识,如交换机、路由器的区别与功能,局域网各层次的传输顺序与规则等。还有一点就是,Wireshark不是万能的,也会有错误、不全面的地方,这时更考验我们的理论分析与实践论证能力。 成绩优良中及格不及格 教师签名:日期: 【实验作业】 1 观察并分析通常的以太网帧 1.1 以太网帧格式 目前主要有两种格式的以太网帧:Ethernet II(DIX 2.0)和IEEE 802.3。我们接触过的IP、ARP、EAP和QICQ协议使用Ethernet II帧结构,而STP协议则使用IEEE 802.3帧结构。 Ethernet II是由Xerox与DEC、Intel(DIX)在1982年制定的以太网标准帧格式,后来被定义在RFC894中。IEEE 802.3是IEEE 802委员会在1985年公布的以太网标准封装结构(可以看出二者时间 相差不多,竞争激烈),RFC1042规定了该标准(但终究二者都写进了IAB管理的RFC文档中)。 下图分别给出了Ethernet II和IEEE 802.3的帧格式: ⑴前导码(Preamble):由0、1间隔代码组成,用来通知目标站作好接收准备。以太网帧则使用8个字节的0、1间隔代码作为起始符。IEEE 802.3帧的前导码占用前7个字节,第8个字节是两个连续的代码1,名称为帧首定界符(SOF),表示一帧实际开始。 ⑵目标地址和源地址(Destination Address & Source Address):表示发送和接收帧的工作站的地址,各占据6个字节。其中,目标地址可以是单址,也可以是多点传送或广播地址。

网络管理与维护课内实验报告3-SNMP报文分析

一. 实验目的 1.掌握BER基本编码规则; 2. 利用各种网络管理工具,完成相关SNMP操作,分析并掌握SNMP PDU结构,理解SNMP协议的工作原理。 二. 实验所需设备及材料 1.局域网环境中的计算机2台(1台代理,1台管理站),2台计算机已启动SNMP服务,作为管理站的计算机安装SNMPc软件和snmputil工具; 2.在某一台计算机安装网络嗅探软件。 三. 实验内容 参考实验指导书P324页5.5.2节。如图5-111所示,首先将代理一方的只读团体名、读/写团体名、trap 团体名全部修改为你的8位学号(如何添加团体名,请参考第一次实验的内容)。然后完成以下实验: 1.完成get操作,抓取get 请求报文和其响应报文(注意两个报文“request-id”一致),截图(需要截取哪些信息?请参考P327图5-114),然后对应截图分别完成两个报文的BER编码分析。 2.完成getnext操作,抓取getnext请求报文和其响应报文(注意两个报文“request-id”一致),截图,然后对应截图完成两个报文的BER编码分析。 3.完成set操作,抓取set 请求报文和其响应报文(注意两个报文“request-id”一致),截图,然后对应截图完成两个报文的BER编码分析。 4.构造一个trap,抓取trap报文,截图,然后对应截图完成该报文的BER编码分析。 5.完成SNMPv2 GetBulk操作,抓取GetBulk请求报文和响应报文(注意两个报文“request-id”一致),截图,然后对应截图完成两个报文的BER编码分析。

四.实验过程 1. get操作分析 ●说明如何产生Get操作? 答:管理站检索管理对象的管理信息库中标量对象的值,就产生一个Get操作。 ●Get请求报文抓包截图与BER分析 30 36 ;报文是SEQUENCE类型,长度是54个8位组 02 01 00 ;SNMP版本号,类型为Integer,值为版本号-1 04 08 30 34 31 33 32 30 32 31 ;团体名,类型为OETCTString值为”04132021” A0 27 ;A0表示为GET操作,其后PDU长39个8位组 02 01 01 ;request-id,类型为Integer,值为1 02 01 00 ;错误状态,类型为Integer,值为0 02 01 00 ;错误索引,类型为Integer,值为0 30 1C ;变量绑定表,类型为SEQUENCEOF,长度为28 30 0C ;第一个变量绑定,类型为SEQUENCE,长度为12 06 08 2B 06 01 02 01 01 03 00 ;变量为OID类型,值为.1.3.6.1.2.1.1.3.0 05 00 ;变量值为NULL 30 0C ;第二个变量绑定,类型为SEQUENCE,长度为12 06 08 2B 06 01 02 01 02 01 00 ;变量为OID类型,值为.1.3.6.1.2.1.2.1.0 05 00 ;变量值为NULL

SNMP协议详解

SNMP协议详解 简单网络管理协议(SNMP:Simple Network Management Protocol)是由互联网工程任务组(IETF:Internet Engineering T ask Force )定义的一套网络管理协议。该协议基于简单网关监视协议(SGMP:Simple Gateway Monitor Protocol)。利用SNMP,一个管理工作站可以远程管理所有支持这种协议的网络设备,包括监视网络状态、修改网络设备配置、接收网络事件警告等。虽然SNMP开始是面向基于IP的网络管理,但作为一个工业标准也被成功用于电话网络管理。 1. SNMP基本原理 SNMP采用了Client/Server模型的特殊形式:代理/管理站模型。对网络的管理与维护是通过管理工作站与SNMP 代理间的交互工作完成的。每个SNMP从代理负责回答SNMP管理工作站(主代理)关于MIB定义信息的各种查询。下图10是NMS公司网络产品中SNMP协议的实现模型。 SNMP代理和管理站通过SNMP协议中的标准消息进行通信,每个消息都是一个单独的数据报。SNMP使用UDP (用户数据报协议)作为第四层协议(传输协议),进行无连接操作。SNMP消息报文包含两个部分:SNMP报头和协议数据单元PDU。数据报结构如下图 版本识别符(version identifier):确保SNMP代理使用相同的协议,每个SNMP代理都直接抛弃与自己协议版本不同的数据报。 团体名(Community Name):用于SNMP从代理对SNMP管理站进行认证;如果网络配置成要求验证时,SNMP 从代理将对团体名和管理站的IP地址进行认证,如果失败,SNMP从代理将向管理站发送一个认证失败的Trap消息协议数据单元(PDU):其中PDU指明了SNMP的消息类型及其相关参数。 2. 管理信息库MIB IETF规定的管理信息库MIB(由中定义了可访问的网络设备及其属性,由对象识别符(OID:Object Identifier)唯一指定。MIB是一个树形结构,SNMP协议消息通过遍历MIB树形目录中的节点来访问网络中的设备。 下图给出了NMS系统中SNMP可访问网络设备的对象识别树(OID:Object Identifier)结构。

SNMP报文分析

SNMP报文分析 一、配置SNMP协议的使用环境 1、主机Windows10的配置 ●安装SNMP协议 ●配置并打开SNMP Service服务

2、目标机Windows XP的配置 ●配置过程和Windows10下类似,此处不再赘述 ●目标机的ip地址为192.168.72.129

目标机的计算机名为 二、利用Wireshark抓取SNMP协议包 1、下载安装snmputil.exe和wireshack 2、利用snmputil工具发送snmp数据包 snmputil命令规则: [get|getnext|walk]为消息类型,我们此次进行的操作是get agent指Snmp代理即你想进行操作的网络设备的ip或名称,即192.168.10.191 community:分区域,即密码,默认是public oid:想要操作的MIB数据对象号

示例: snmputil walk 对方ip public .1.3.6.1.2.1.1.5.0列出计算机名snmputil walk 对方ip public .1.3.6.1.2.1.25.4.2.1.2 列出系统进程snmputil walk 对方ip public .1.3.6.1.4.1.77.1.2.25.1.1 列系统用户列表snmputil get 对方ip public .1.3.6.1.4.1.77.1.4.1.0 列出域名 snmputil walk 对方ip public .1.3.6.1.2.1.25.6.3.1.2 列出安装的软件snmputil walk 对方ip public .1.3.6.1.2.1.1 列出系统信息 3、同时在wireshack中抓包

以太网数据帧的格式分析比较

一、 以太网数据帧的格式分析 大家都知道我们目前的局域网大多数是以太网,但以太网有多种标准,其数据帧有多种格式,恐怕有许多人不是太清楚,本文的目的就是通过帧格式和Sniffer捕捉的数据包解码来区别它们。 以太网这个术语一般是指数字设备公司(Digital Equipment)、英特尔公司(Intel)和施乐公司(Xerox)在1982年联合公布的一个标准(实际上它是第二版本,第一版本早在1972年就在施乐公司帕洛阿尔托研究中心PARC里产生了)。它是目前TCP/IP网络采用的主要的局域网技术。它采用一种称作CSMA/CD的媒体接入方法,其意思是带冲突检测的载波侦听多路接入(Carrier Sense, Multiple Access with Collision Detection)。它的速率为10 Mb/s,地址为48 bit。 1985年,IEEE(电子电气工程师协会) 802委员会公布了一个稍有不同的标准集,其中802.3针对整个CSMA/CD网络,802.4针对令牌总线网络,802.5针对令牌环网络。这三者的共同特性由802.2标准来定义,那就是802网络共有的逻辑链路控制(LLC)。不幸的是,802.2和802.3定义了一个与以太网不同的帧格式,加上1983年Novell为其Netware 开发的私有帧,这些给以太网造成了一定的混乱,也给我们学习以太网带来了一定的影响。 1、通用基础 注:* VLAN Tag帧和Gigabit Jumbo帧可能会超过这个限制值 图1-1 图1-1中,数据链路层头(Header)是数据链路层的控制信息的长度不是固定的,根据

snmp报文分析

SNMP报文格式分析 1、SNMP报文格式 1、1 snmp简介 1、1、1 snmp工作原理 SNMP采用特殊得客户机/服务器模式,即代理/管理站模型.对网络得管理与维护就是通过管理工作站与SNMP代理间得交互工作完成得。每个SNMP从代理负责回答SNMP管理工作站(主代理)关于MIB定义信息得各种查询. 管理站与代理端使用MIB进行接口统一,MIB定义了设备中得被管理对象。管理站与代理都实现相应得MIB对象,使得双方可以识别对方得数据,实现通信. 管理站向代理请求MIB中定义得数据,代理端识别后,将管理设备提供得相关状态或参数等数据转换成MIB定义得格式,最后将该信息返回给管理站,完成一次管理操作。 1、1、2 snmp报文类型 SNMP中定义了五种消息类型:Get-Request、Get-Response、Get-Next—Request、Set-Request与Trap . 1.Get—Request、Get—Next-Request与Get-Response SNMP 管理站用Get-Request消息从拥有SNMP代理得网络设备中检索信息,而SNMP代理则用Get—Response消息响应。Get-Next- Request用于与Get—Request组合起来查询特定得表对象中得列元素. 2。Set-Request SNMP管理站用Set-Request可以对网络设备进行远程配置(包括设备名、设备属性、删除设备或使某一个设备属性有效/无效等)。 3.Trap SNMP代理使用Trap向SNMP管理站发送非请求消息,一般用于描述某一事件得发生,如接口UP/DOWN,IP地址更改等.

SNMP协议分析

SNMP协议分析 摘要:当今由路由器、交换机、服务器组成的复杂的网络,确保所有的设备正常运行且处于最佳状态确实是一件困难的事情。为了解决这个问题在1988年正式推出了简单网络管理协议(SNMP)。利用SNMP只需一些“简单”的操作便可实现对网络设备的远程管理。但同时SNMP是威胁安全的十大首要因素之一。 目录: 1SNMP简介 (2) 1.1SNMP版本 (2) 1.2管理端和agent (2) 1.3SNMP 和UDP (2) 2管理对象 (3) 2.1SMI和MIB (3) 2.2OID命名 (3) 2.3管理信息结构 (4) 3SNMP 操作 (5) 4SNMP V3 (5) 4.1SNMPv3的变化 (6) 4.2SNMPv3引擎 (6) 4.3SNMPv3 应用程序 (6) 4.4SNMPv3 安全机制 (6) 5SNMP受到的安全威胁 (7) 5.1拒绝服务攻击DOS (7) 5.2流量分析攻击 (8) 5.3认证机制漏洞 (8)

1SNMP简介 SNMP可以用于管理很多类型的设备,其核心是帮助网络管理员简化对一些 支持SNMP设备设置的操作(也包括这些信息的收集)。例如,使用SNMP可以关闭路由器的一个端口,也可以查看以太网端口的工作速率。SNMP还可以监控交换机的温度,在出现过高现象进行报警。 1.1SNMP版本 IETF负责定义互联网流量监管的标准,这里面包括SNMP。IETF发行的RFCs,对IP领域中的众多协议进行了详细的阐述。下面列举了一些当前的SNMP版本。1)SNMP V1是SNMP协议的最初版本,不过依然是众多厂家实现SNMP基本方式。2)SNMP V2通常被指是基于community的SNMP V2。Community实质上就是密码。3)SNMPv3 是最新版本的SNMP。它对网络管理最大的贡献在于其安全性。增加了对认证和密文传输的支持。 1.2管理端和agent SNMP有2个主体:管理端和agent。 管理端指的是运行了可以执行网络管理任务软件的服务器,通常被称作为网络管理工作站(NMS),NMS负责采样网络中agent的信息,并接受agent的trap。 Agent是运行在可网络设备上的软件。可以是一个独立的程序(在Unix中叫守护进程),也可以是已经整合到操作系统中(比如:锐捷路由器的RGNOS,或者UPS中的底层操作系统)。 NMS和Agent工作示意图 1.3SNMP 和UDP SNMP采用UDP协议在管理端和agent之间传输信息。 SNMP采用UDP 161 端口接收和发送请求,162端口接收trap,执行SNMP的设备缺省都必须采用这些端口。

相关文档 最新文档