文档库 最新最全的文档下载
当前位置:文档库 › 天线阵列在定位中的应用

天线阵列在定位中的应用

天线阵列在定位中的应用
天线阵列在定位中的应用

天线阵列在定位中的应用

12307130317 第五强强12307130103 李熠辉

2012级电子信息科学与技术

摘要:天线作为将高频电流信号转换成电磁波能量并且按要求辐射出去的装置,其特性与光源有相似之处,类比于相干光源的干涉现象,相同激励的天线阵列也会有干涉现象。

通过测量电磁场中某一点的波程差,可以确定采样点和场源之间的位置关系,以此为依据可以将天线阵列应用于定位中。本文从天线阵列产生的电磁场特性出发,研究场中一点电磁量与其位置关系的依赖关系,依此提出一种将天线阵列用于定位的方法,最后利用MA TLAB进行仿真说明。

关键词:天线阵列定位MATLAB

Abstract:As a device which can convert high-frequency current signal into electromagnetic wave energy and radiate out it as required, Antenna is similar to the light source in plenty of ways. Compared with the interference of coherent light source, antenna arrays also have the same phenomenon. By measuring the wave path-difference of a point in the electromagnetic field, the positional relationship can be detected, between the sampling point and field source. Therefore the antenna arrays can be applied to locating. To begin with the characteristics of electromagnetic

field that generated by the antenna arrays, this paper studies the dependence relationship between the electromagnetic calorimeter and position of a point in the field, and proposes a method for locating by an antenna array. The use of MA TLAB simulation is described in the end. Keyword:antenna arrays, locating, MA TLAB

引言

定位技术一直是机器人和自动化领域中至关重要的一部分,只有获取目标的绝对位置后才能做出对应的操作与控制。在室外环境中,多使用卫星定位技术和基于通讯基站的定位技术,而在室内环境中,利用红外、蓝牙、无线局域网、射频ID等方式的定位技术也在研究与完善过程中,在控制和通信方面已经有了较为成熟的应用。

本文提出了一种基于天线阵列的定位技术,通过测量天线阵列激发的场中一点的电场强度,得到天线阵元辐射的波程差,从而确定该点相对天线阵列的位置,实现定位的功能。

- 1 -

1. 天线阵列的辐射特性

天线阵是将若干个天线按照一定规律排列组成的天线系统,这种系统可以获得更接近期望的增益、方向性等。组成天线阵列的独立单元称为阵元,排列方式有直线阵、平面阵等。本文中采用的是最基础的两个相距较近的、取向一致的阵元组成的二元阵,如图1-1所示

图1-1 三维直角坐标系下的二元天线阵1

以天线0的中点作为原点,以天线0的轴向作为z 轴,建立三维直角坐标系(右手系),天线1与天线0平行,相距d ,其中点位于x 轴上,点P 是空间中一点,距离天线0和天线1中心的距离分别是01,r r ,点P 球坐标系下的坐标为(,,)r θφ

设阵元0的激励电流为0I ,阵元1的激励电流为10j I mI e ?=,其中m 是两阵元激励电流的振幅比,?为两阵元激励电流的相位差。

二元阵的辐射场等于两个阵元独立作用的辐射场的叠加。假定P 远离天线阵,那么就

有01,.r d r d >>>>可以近似认为01

,r r 相互平行,并且1001

11

,sin cos .r r d r r θφ≈≈- 那么两个阵元在点P 出的电场强度表达式如下

00

00060(,)jkr I

E e j

F e r θθφ-= (1-1)

11

111

60(,)jkr I

E e j

F e r θθφ-= (1-2)

其中01cos(cos )cos()2(,)(,),sin kl kl F F k θπ

θφθφθλ

-==

=是相位常数,l 为天线臂长。

根据相似条件对(1-1)和(1-2)式进行简化,可以得到

1

图片来源:《电磁场与电磁波(第四版)》高等教育出版社谢处方,饶克谨编

- 3 -

0(sin cos )0

1000

60(,)j jk r d j mI e E e j F e mE e r ?θφψ

θθφ--== (1-3)

式中=sin cos ,kd ψ?θφ+表示点P 处电场01E E

,之间的相位差,sin cos kd θφ为两阵

元辐射的波程差引起的相位差。 点P 处的合成电场为

00000

60=(1)(,)(1)jkr j j I E E me e j F e me r ψψθθφ-+=+ (1-4)

取其模0

00

60||(,I E F r θφ=

(1-5) 由(1-5)式,点P 处的电场强度大小除了和相对天线阵列的位置有关外,还与天线阵元的激励电流、天线臂长、相位常数有关。

2. 天线阵列用于定位的理论基础

在只有两个阵元的天线阵列中,选择01I I =,那么式(1-5)可以简化为

00

60||(,I

E F r θφ= 当天线臂长l 、天线阵元间距d 、相位常数k 、激励电流0I 确定后,点P 处的电场强度大小仅与相对天线阵列的位置有关,也就是只与(,,)r θφ有关。

当点P 和阵元中心均位于xOy 平面时,=

2

π

θ固定不变,那么未知量只有,r φ.

对于这样一种测量方案,首先仅由阵元0激发电磁场,测量一次点P 处的电场强度1||E

,之后由阵元0和阵元1同时激发电磁场,再次测量点P 处的电场强度2||E

,由两次测得的

电场强度可以确定点P 的,r φ. 原理如下

仅由阵元0激发电磁场时,点P 处电场强度大小为

100

60|| = (,)I

E F r θφ (2-2)

阵元0和阵元1同时激发电磁场时,点P 处电场强度大小为

200

60|| = (,I

E F r θφ (2-3)

由于激励电流0I 、0cos(cos )cos()

(,)sin kl kl F θθφθ

-=

均为已知量,所以由(2-2)可以确

定0r ,在r d >>的情况下可以近似认为0r r ≈.

另外,两次测量值的比值

21||||

E E 其中sin kd θ在该测量条件下为定值,所以只要21||

||

E E 和φ为一一映射,就可以由比值唯一确定φ.

一一映射的条件为(1). 1cos(sin cos )0kd θφ+> (2). sin cos [0,]kd θφπ? (3). [0,

]2

π

φ?

(4). sin [0,]kd θπ?

其中,(1)恒成立,(3)&(4)是(2)的充要条件,所以唯一确定点P 位置的条件是

[0,]2

π

φ?且sin [0,]kd θπ?.

对于(3),可以通过天线阵的位置保证点P 在要求的范围内,如下图

在xOy 平面内,A 为阵元0的中心,B 为阵元1的中心,C 为点P 所在处,那么只要点P 在xOy 平面的第一象限内(包括x 轴正半段和y 轴正半段),就满足[0,

]2

π

φ?的条件。

对于(4)

,可以选取合适的激励电流频率、天线长度、天线阵元间距,使得

- 5 -

2sin =[0,]d

kd kd πθπλ

=

?.

在满足(3)和(4)的情况下,P 的位置

0001160(,)60[cos(cos )cos()]

=

=||||sin I F I kl kl r E E θφθθ

- (2-5) 2

21||1arccos[()1]2||

cos =

sin E E kd φθ

-

(2-6) 由于点P 在xOy 平面中,所以=

2

π

θ固定不变,(2-5)和(2-6)可以进一步简化为

0001160(,)60[1cos()]

=

=||||

I F I kl r E E θφ- (2-7) 2

21||1arccos[()1]2||

cos =

E E kd

φ-

(2-8) 由(2-7)和(2-8)即可以确定点P 的坐标,唯一确定点P 的位置。

3. 实际应用研究仿真

3.1. 点P 处的电场强度大小12,E E

点P 处的电场强度随时间的变化如下

160(,)[1cos()]sin()I E r t kl kr t r ω=

--

260(,)[1cos()I E r t kl kr t r

ωβ=---

其中sin(cos )

tan =

1cos(cos )

kd kd φβφ+

选取0.25,75,14

d m f MHz l m λ

===

=,01I A =,则8

kd π

=

.

2

k π

=

,8

=1.5x10

(/)rad s ωπ

对于50,6

r m π

φ==,则12,E E 波形如下图所示

图3-1 点P 处的电场强度随时间的变化情况,可明显看出2E 幅度大于1E ,且相位超前

MATLAB 代码如下:

k=pi/2; l=1; r=50; f=75000000; w=2*pi*f; d=0.25; phi=pi/6;

beta=sin(k*d*cos(phi))/(1+cos(k*d*cos(phi))); I0=1;

t=(0:10^(-11):5*10^(-8));

E1=60*I0/r*(1-cos(k*l))*sin(k*r-w*t);

E2=60*I0/r*(1-cos(k*l))*sin(k*r-w*t-beta)*sqrt(2*(1+cos(k*d*cos(phi)))); plot(t,E1,t,E2); xlabel('时间(t)'); ylabel('点P 处的电场强度');

legend('E1=60*I0/r*(1-cos(k*l))*sin(k*r-w*t','E2=60*I0/r*(1-cos(k*l))*sin(k*r-w*t-b eta)*sqrt(2*(1+cos(k*d*cos(phi))))');

3.2. 定位实例仿真

选取12||||E E ,根据上面得到的幅度进行选取,注意的是21||

[0,2]||

E E

,不妨取1||E =1V/M ,2||E =1.981||E

=1.98V/M ,

其余参数同上,由MATLAB 可计算出该点位置,在直角坐标系中唯一确定该点位置,从而实现定位的功能。

图3-2 点C为最终确定的目标位置,A,B分别为阵元0和阵元1的位置

MTALAB代码如下:

d=0.25;

k=pi/2;

l=1;

I0=1;

E1=1;

E2=1.98;

r=60*I0*(1-cos(k*l))/E1;

phi=acos(acos(((E2/E1)^2)/2-1)/(k*d));

p=phi/pi;

xa=0;

ya=0;

xb=d;

yb=0;

xc=r*cos(phi);

yc=r*sin(phi);

plot(xa,ya,'.',xb,yb,'.',xc,yc,'.')

line([xa,xc],[ya,yc]);

axis([0,50,0,50]);

text(-2.3,-1,'A(0,0)');

text(xb+1,-1,'B(d,0)');

text(xc+1,yc-2,['C(',num2str(xc),',',num2str(yc),')']);

text(5,2,['r=',num2str(r),',phi=',num2str(p),'pi']);

- 7 -

结语

本文从天线阵列的辐射特性出发,研究了天线阵列激发的电磁场在空间中的分布情况,并由此提出了一种利用天线阵列产生的电磁波在空间中电场强度的不同对目标进行定位的方法。首先从理论出发,说明了该定位方法原理的正确性,之后利用MATLAB进行实例仿真,再次证明了该方法的可行性。

该定位方法应用范围较广,室内室外均可应用,可以应用于机器人或者自动化领域,在对人体有极大危险的极限环境(比如火灾现场、低温环境等)中,实现目标搜索和获取,避免了对人体的伤害。另外,在正常的环境中,该定位技术也有广泛的应用前景,假想这样的场景,有一个面积很大的高尔夫球场,为了节省人力,利用机器人来做诸如捡球、维护场地之类的工作,该定位技术就可以指导机器人更快地赶到目标地点,做出相应的工作。

该定位方法是小组成员独立思考的结果,有理论推导与MATLAB仿真的支持,原理正确,创新性强,应用范围广泛。

参考文献

[1].彭宇,王丹. 无线传感器网络定位技术综述[J].电子测量与仪器学报,2011,05.

[2].梁元诚. 基于无线局域网的室内定位技术研究与实现[D]. 电子科技大学,

2009.

[3].余明朗. 面向景区智能导游的室内外一体化定位及位置服务方法研究[D].

南京师范大学,2013.

[4].石绍立. 多环境下移动机器人定位系统的设计和实现[D]. 中国海洋大学,

2012.

[5].丁浩洋. 移动通信系统中射线追踪技术及定位技术的研究[D]. 北京邮电大

学,2013.

[6].崔悦慧. 新型宽带平面基站天线研究[D]. 华南理工大学,2014.

[7].陈客松. 稀布天线阵列的优化布阵技术研究[D]. 电子科技大学,2006.

[8].谢处方,饶克谨. 电磁场与电磁波(第四版)[M]. 高等教育出版社,2006.

[9].Bhag Singh Guru, HuseyinR.Hiziroglu. Electromagnetic Field Theory

Fundamentals [M]. 机械工业出版社,2006.

[10].David K. Cheng. Field and Wave Electromagnetics (Second Edition) [M]. 清

华大学出版社,2007.

感想

- 9 -

电磁场与电磁波的课程论文,对小组成员阅读文献及进行方法研究的能力有很大的提高。在初期选题的时候,确定了感兴趣的领域,阅读了该领域的许多前沿文献资料。然而因为自身的能力限制,难以在前沿研究问题中做出创新性的研究,不得已更改选题方向,转向电磁波在实际生产生活中的应用方向,最终选择了天线阵列应用于定位这一实际应用问题。

首先成员学习了天线阵列的辐射特性,在理论上研究并论证了定位方法的可行性,之后利用MATLAB进行编程仿真,与理论推导得到同样的结果,再次证明了方法的正确性。

本次的选题虽说不是学科前沿问题,但在电磁波的实际应用问题上,小组成员提出了一种定位方法。从一开始的循着他人研究轨迹到最后的自主创新,成员也一定程度上体会到了科学研究的不易,这个经历对于之后的学习研究都非常重要。在之后的学习或者研究中,我们也会坚持严谨认真的态度,一丝不苟地面对遇到的任何困难与挑战。

阵列天线宽波束综合

分类号:TN811 单位代码:10452 毕业论文(设计) 阵列天线宽波束综合 姓名孙冠峰 学号200507230205 年级 2005 专业电子信息工程 系(院)物理系 指导教师韩荣苍 2009年05月15日

摘要 天线阵列设计,其任务集中在考虑前述众多影响因素下,优化阵列口径激励,使其满足工程给定的副瓣要求及其他要求,也就是常说的方向图综合问题。阵列天线综合是指按规定的方向图要求,用一种或多种方法来进行天线系统的设计,使该系统产生的方向图与所要求的方向图良好逼近。它实际上是天线分析的反设计,即在给定方向图要求的条件下设计辐射源分布,要求的方向图随应用的不同而多种变化。 本文从傅立叶变换法、泰勒综合法、伍德沃德(Woodward)法三个方面对方向图设计进行了研究。以均匀线阵为主要研究对象,在理想的条件下,分别对傅立叶变换法、泰勒综合法、伍德沃德(Woodward)综合法三类算法进行了研究。 关键词:阵列天线; 天线综合; 波束赋形 Abstract In array design phase, with them and mandate focus on the many factors to consider foregoing, the array calibre incentive to meet project to be sidelobes requirements and other requirements, that is often said in the synthesis of pattern. The synthesis of array pattern is by using one or more methods for antenna system design, enabling the system top produce the re-quired pattern, the direction of good and just. It is the analysis of the anti-antenna design that, in a given pattern of array, the conditions for the design of radiations sources distribution for the pattern of the different applications and multiple changes. From this important purpose Fourier transform、Talor synthesis、Woodward synthesis for the four areas, areas, the synthesis of array pattern is researched here. Front-line line array for the main study, in ideal conditions, respectively, conducted a study of four algorithms. Keyword: Array antenna; The analysis of the antenna; Beamforming 2

9米卫星天线技术资料汇总

9.0米电动卫星通信天线 WTX9.0-6/4(14/12)型 技术说明书贵州振华天通设备有限公司(4191厂)

1、概述 WTX9-6/4和WTX9-14/12型卫星通信天线是一种具有四口线极化频谱复用馈源系统的9米改进型卡赛格伦天线系统。当天线朝天时,天线的轮廓尺寸为φ9m×10.3m。整个天线具有效率高、旁瓣低、使用维护方便、抗风能力强、造形美观,刚性好,精度高的特点。广泛用于C频段和Ku频段卫星通信地球站。 天线的主反射面均为实体铝板结构,主面直径为9m,副面直径为1.08m。 立柱式座架的设计允许方位连续转动140o,俯仰从5o~90o连续转动。方位轴和俯仰轴由马达驱动,驱动速度为0.03o/秒和0.1o/秒两种。 馈源系统的极化轴也由马达驱动,驱动速度为1.5o/秒,转动范围为180o。 步进跟踪系统由室内天线控制单元、室外马达控制器、变频器和信标接收机组成。轴角显示分辨率为0.01o,跟踪精度为0.06o,步进跟踪系统能使天线随时准确地对准卫星。 本天线的外型图见图1.1。

图1.1 2、天线的主要技术参数 天线主要技术参数与性能指标

三、天线的机械说明 WTX9-6/4和WTX9-14/12型卫星通信天线是一种改进型卡塞格伦天线系统采用高精度实体反射面及立柱式座架。方位可连续转动140°,俯仰从5°到90°连续转动。方位轴和俯仰轴均可由马达驱动,驱动速度均为0.03°/秒和0.1°/秒两种,馈源套筒上装有调整机构,能使极化轴转动±90°极化轴也由马达驱动,驱动速度为1.5°/秒。 天线上装有避雷装置,限位保护装置以及扶梯,工作平台等机构,以便于天线的安全使用。 图1.2

(重要)阵列天线

Progress In Electromagnetics Research, PIER 98, 1–13, 2009
A WIDEBAND HALF OVAL PATCH ANTENNA FOR BREAST IMAGING J. Yu ? , M. Yuan, and Q. H. Liu Department of Electrical and Computer Engineering Duke University Durham, NC 27708, USA Abstract—A simple half oval patch antenna is proposed for the active breast cancer imaging over a wide bandwidth. The antenna consists of a half oval and a trapezium, with a total length 15.1 mm and is fed by a coaxial cable. The antenna performance is simulated and measured as immersed in a dielectric matching medium. Measurement and simulation results show that it can obtain a return loss less than ?10 dB from 2.7 to 5 GHz. The scattered ?eld detection capability is also studied by simulations of two opposite placed antennas and a full antenna array on a cubic chamber. 1. INTRODUCTION Breast cancer is the most common cancer in women, but fortunately early detection and treatment can signi?cantly improve the survival rate. Ultrasound, mammography and magnetic resonance imaging (MRI) are currently used clinically for breast cancer diagnosis [1]. However, these techniques have many limitations, such as high rate of missed detections, ionizing radiation (mamography), too expensive to be widely available, and so on. Compared with conventional mammography, microwave imaging of breast tumors is a nonionizing, potentially low-cost, comfortable and safe alternative [2]. The high contrast of the dielectric property between the malignant tumor and the normal breast tissue should manifest itself in terms of lower numbers of missed detections and false positives [3, 4]. The microwave breast tumor detection also has the potential to be both sensitive and speci?c, to detect small tumors, and to be less expensive than methods such as MRI.
?
Corresponding author: M. Yuan (mengqing.yuan@https://www.wendangku.net/doc/c01940316.html,). Also with National Key Laboratory of EMC, Wuhan, Hubei 430064, China.

基于HFSS的4_24微带阵列天线的研究与设计_惠鹏飞

第26卷第5期 齐 齐 哈 尔 大 学 学 报 Vol.26,No.5 2010年9月 Journal of Qiqihar University Sep.,2010 基于HFSS 的4×24微带阵列天线的研究与设计 惠鹏飞,夏颖,周喜权,陶佰睿,苗凤娟 (齐齐哈尔大学 通信与电子工程学院,黑龙江 齐齐哈尔 161006) 摘要:微带阵列天线的馈电方式有微带线馈电和同轴馈电两种方式,本文利用HFSS软件对微带阵列天线进行了研 究,分析了两种馈电方式的传输损耗及其对天线方向图的影响,利用模块化的设计方法实现了一种基于同轴线馈 电结构的多元矩形微带阵列天线。在HFSS仿真设计环境里对天线进行了物理建模,该微带阵列天线的方向图特性 良好,工程上实现比较方便。 关键词:微带阵列天线;模块化设计;HFSS 仿真;物理建模;方向图 中图分类号:TN820.1 文献标识码:A 文章编号:1007-984X(2010)05-0009-04 随着无线电技术的发展,微带天线在许多领域得到了越来越广泛的应用,主要应用场合包括:卫星通信、多普勒雷达及其它制式雷达、导弹遥测系统、复杂天线中的馈电单元等[1] 。微带天线通常采用天线阵列的形式,由馈电网络控制对天线子阵的激励幅度和相位,以获得高增益、强方向性等特点。 微带阵列天线的馈电方式主要有微带线馈电和同轴线馈电方式两种。利用微带线馈电时,馈线与微带贴片是共面的,因此可以方便地光刻,但缺点是损耗较大,在高效率的天馈系统里的应用受到较大限制[2]。本文首先对微带馈电网络产生的损耗进行了详细分析,利用HFSS 软件设计了2×4结构的微带子阵,采用同轴馈电的方式,利用模块化设计方法和方向图叠加原理最终实现了4×24矩形微带阵列天线,仿真设计结果表明,该大型矩形微带阵列天线的各项指标参数良好,设计思想得到了很好的验证。 1 微带阵列及馈电网络损耗分析 1.1 微带阵列理论 微带天线单元的增益较小,一般单个贴片单元的辐射增益只有6~8 dB,为了实现远距离传输和获得更大的增益,尤其是对天线的方向性要求比较苛刻的场合,常采用由微带辐射单元组成的微带阵列天线,如果对增益要求较高,可采用大型微带阵列天线结构[3]。 首先分析平面微带阵列天线的激励电流与电场分布情况,无论是线天线还是面天线,其辐射源都是高频电流源,天线系统将高频电流源的能量转换成电磁波的形式发射出去,讨论电流源的辐射场是分析天线的基础。假设由若干相同的微带天线元组成的平面阵结构,建立三维坐标系分析阵列天线的场量分布情况。以阵列的中心为坐标原点,天线在x 轴方向和y 轴方向的单元编号分别用m 和n 表示。以原点天线单元为相位参考点,为了简化分析,假设阵列中各单元间互耦影响可以忽略不计,各单元激励电流为 j()e xs ys m n mn I ψψ?+,天线阵在远区的辐射总场(,)E θ?为 ()(,)(,)E f S θ?θ?θ??,= 式中,(,)f θ?为阵元的方向性函数,(,)S θ?为平面阵的阵方向性函数。平面阵因子是两个线阵因子的乘积,可以利用线阵方向性分析的结论来分析平面阵列的方向性。 1.2 馈电网络及损耗分析 天线只有承载高频电流才能有电磁波辐射,馈线指将高频交流电能从电路的某一段传送到另一段所用 的设备,对天线的馈电包括对单元天线的馈电和阵列天线的馈电两种形式。当利用传输线对阵列结构进行 收稿日期:2010-06-06 基金项目:齐齐哈尔市科技局工业攻关项目(GYGG-09011-2) 作者简介:惠鹏飞(1980-),男,辽宁凌源人,讲师,硕士,主要从事雷达极化信息处理的研究,weibo505@https://www.wendangku.net/doc/c01940316.html,。

主流卫星通信天线对比

常用卫星通信天线介绍(一) 原文:寇松江(爱科迪) ★★★★(7020207)添加点图片

天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。 图1 抛物面天线

抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。

阵列天线分析与综合

阵列天线分析与综合 前言 任何无线电设备都需要用到天线。天线的基本功能是能量转换和电磁波的定向辐射或接收。天线的性能直接影响到无线电设备的使用。现代无线电设备,不管是通讯、雷达、导航、微波着陆、干扰和抗干扰等系统的应用中,越来越多地采用阵列天线。阵列天线是根据电磁波在空间相互干涉的原理,把具有相同结构、相同尺寸的某种基本天线按一定规律排列在一起组成的。如果按直线排列,就构成直线阵;如果排列在一个平面内,就为平面阵。平面阵又分矩形平面阵、圆形平面阵等;还可以排列在飞行体表面以形成共形阵。 在无线电系统中为了提高工作性能,如提高增益,增强方向性,往往需要天线将能量集中于一个非常狭窄的空间辐射出去。例如精密跟踪雷达天线,要求其主瓣宽度只有1/3度;接收天体辐射的射电天文望远镜的天线,其主瓣宽度只有1/30度。天线辐射能量的集中程度如此之高,采用单个的振子天线、喇叭天线等,甚至反射面天线或卡塞格伦天线是不能胜任的,必须采用阵列天线。 对一些雷达设备、飞机着陆系统等,其天线要求辐射能量集中程度不是很高,其主瓣宽度也只有几度,虽然采用一副天线就能完成任务,但是为了提高天线增益和辐射效率,降低副瓣电平,形成赋形波束和多波束等,往往也需要采用阵列天线。 在雷达应用中,其天线即需要有尖锐的辐射波束又希望有较宽的覆盖范围,则需要波束扫描,若采用机械扫描则反应时间较慢,必须采用电扫描,如相控扫描,因此就需要采用相控阵天线。 在多功能雷达系统中,既需要在俯仰面进行波束扫描,又需要改变相位展宽波束,还需要仅改变相位进行波束赋形,实现这些功能的天线系统只有相控阵天线才能完成。 随着各项技术的发展,天线馈电网络与单元天线进行一体化设计成为可能,高集成度的T/R组件的成本越来越低,使得在阵列天线中的越来越广泛的采用,阵列天线实现低副瓣和极低副瓣越来越容易,功能越来越强。等等。 综上所述,采用阵列天线的原因大致有如下几点:

第四代移动通信系统中的多天线技术

第四代移动通信系统中的多天线技术[转] (2008-09-15 15:46:44) 转载 分类:信息论与编码 标签: 杂谈 一、引言 由于第三代移动通信系统(3G)还存在一些不足,包括很难达到较高的通信速率,提供服务速率的动态范围不大,不能满足各种业务类型要求,以及分配给3G系统的频率资源已经趋于饱和等,于是人们提出了第四代移动通信系统(4G)的构想。4G的关键技术包括: (1)调制和信号传输技术(OFDM); (2)先进的信道编码方式(Turbo码和LDPC); (3)多址接入方案(MC-CDMA和FH-OFCDMA); (4)软件无线电技术; (5)MIMO和智能天线技术; (6)基于公共IP网的开放结构。 研究表明,在基于CDMA技术的3G中使用多天线技术能够有效降低多址干扰,空时处理能够极大增加CDMA系统容量。凭在提高频谱利用率方面的卓越表现,MIMO和智能天线成为4G发展中炙手可热的课题。 二、智能天线技术 智能天线最初用于雷达、声纳及军事通信领域。使用智能天线可以在不显著增加系统复杂程度的情况下满足服务质量和扩充容量的需要。 1.基本原理和结构 智能天线利用数字信号处理技术,采用先进的波束转换技术(switched beam technology)和自适应空间数字处理技术(adaptive spatial digital processing technology),判断有用信号到达方向(DOA)通过选择适当的合并权值,在此方向上形成天线主波束,同时将低增益旁瓣或零陷对准干扰信号方向。在发射时,能使期望用户的接收信号功率最大化,同时使窄波束照射范围外的非期望用户受到的干扰最小,甚至为零。 智能天线引入空分多址(SDMA)方式。在相同时隙、相同频率或相同地址码的情况下,用户仍可以根据信号空间传播路径的不同而区分。实际应用中,天线阵多采用均匀线阵或均匀圆阵。智能天线系统由天线阵;波束成形成网络;自适应算法控制三部分组成

5g微带阵列天线

5G 微带阵列天线 要求:利用介质常数为2.2,厚度为1mm ,损耗角为0.0009的介质,设计一个工作在5G 的4X4的天线阵列。 评分标准: 良:带宽〈7% 优:带宽〉7%且效率大于60% 1微带辐射贴片尺寸估算 设计微带天线的第一步是选择合适的介质基板,假设介质的介电常数为r ε,对于工作频率f 的矩形微带天线,可以用下式设计出高效率辐射贴片的宽度W ,即为: 1 21()2 r c w f ε-+= 式中,c 是光速,辐射贴片的长度一般取为/2e λ;这里e λ是介质的导波波长,即为: e λ= 考虑到边缘缩短效应后,实际上的辐射单元长度L 应为: 2L L = -? 式中,e ε是有效介电常数,L ?是等效辐射缝隙长度。它们可以分别用下式计算,即为: 1 211 (112)22r r e h w εεε-+-= ++

(0.3)(/0.264) 0.412 (0.258)(/0.8) e e w h L h w h ε ε ++ ?= -+ 2.单元的仿真 由所给要求以及上述公式计算得辐射贴片的长度L=19.15mm,W=23.72mm。采用非辐射边馈电方式,模型如图1所示: 图1 单元模型 此种馈电方式,可以通过移动馈电的位置获得阻抗匹配,设馈电点距离上宽边的偏移量为dx,经仿真得到当dx=4mm时,阻抗匹配最好。另外,之前计算出的尺寸得到的谐振点略有偏移,经过仿真优化后贴片尺寸变为L=19mm,W=23.72mm。仿真结果图如图2,图3所示。

图2 S11参数 图3 增益图 从图中可以看出谐振点为5GHz,计算的相对带宽为2.2%,增益为5.78dB。 2. 2×2阵列设计

卫星通信天线简介

常用卫星通信天线简介 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线 作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。 图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线

卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。 图2 卡塞格伦天线 3.格里高利天线 格里高利天线也是一种双反射面天线,也由主反射面、副反射面及馈源组成,如图3所示。与卡塞格伦天线不同的是,它的副反射面是一个椭球面。馈源置于椭球面的一个焦点F1上,椭球面的另一个焦点F2与主反射面的焦点重

5G阵列天线设计

5G阵列天线设计 5G——第五代无线通信技术,作为全球性的暴热话题已经是不争的事实。如众多专家所述,该技术将带来更低时延、更快速率的数据通信,并将导致互联设备的爆发式增长。 5G网络的更大带宽需求,要求必须彻底重新设计天线阵列,从单元到阵列,到馈电网络,到全模型验证和应用场景评估,都需要做完善的精细化仿真和优化设计。 通过ANSYS HFSS的帮助,只需八个步骤,就能轻松完成5G天线阵列的设计和综合验证。更方便的是,HFSS还能帮助工程师优化各项天线性能指标,如: 增益— 最强的信号辐射方向。 波束控制— 能够将信号辐射控制在某个方向上。 回波损耗— 从天线反射回来的回波能量。 旁瓣电平— 不需要的信号辐射方向。 设计流程结束后,获得的阵列天线聚焦增益更高、回波损耗及旁瓣电平最低,而且方向可控制。 第1步:通过HFSS天线工具箱(ATK)找到天线单元模板 5G天线阵列设计的第1步是通过HFSS天线工具箱(ATK)找到合适的天线单元模板。该天线单元将定义一个最终用于复制成一系列天线(天线阵列)中的相同部分。

先从天线工具箱(ATK)的库中选择一个天线类型,然后输入工作频率及天线基板属性。 数秒后,天线工具箱(ATK)将生成天线单元的初始几何结构。然后,HFSS 还可计算天线单元的增益及回波损耗等指标特性。 第2步:将天线单元代入天线阵列 有了天线单元后,工程师就可将其代入一个周期阵列中。把单元代入一系列复制设计中,有助于提高增益。 在第一步中,天线单元是自行评估的。现在可使用无限大天线阵列的周期单元重复评估这一过程。 很容易理解,阵列内其它天线的距离会影响增益、回波损耗、旁瓣回波及波束控制等特性。当然,也可通过调整天线方位来优化这些特性。 选定最佳阵列方位后,可通过定义阵因子,将无限大阵列改为理想化的有限大阵列。 本例中仿真了一个16x16的正方形天线阵列。 第3步:使用域分解方法设计有限大天线阵列

(完整版)射频微带阵列天线设计毕业设计

射频微带阵列天线设计 摘要 微带天线是一种具有体积小、重量轻、剖面低、易于载体共形、易于与微波集成电路一起集成等诸多优点的天线形式,目前已在无线通信、遥感、雷达等诸多领域得到了广泛应用。同时研究也发现由于微带天线其自身结构特点,存在一些缺点,例如频带窄、增益低、方向性差等。通常将若干单个微带天线单元按照一定规律排列起来组成微带阵列天线,来增强天线的方向性,提高天线的增益。 本文在学习微带天线和天线阵的原理和基本理论,加以分析,利用Ansoft 公司的高频电磁场仿真软件HFSS,设计了中心频率在10GHz的4元均匀直线微带阵列,优化和调整了相关参数,然后分别对单个阵元和天线阵进行仿真,对仿真结果进行分析,对比两者在相关参数的差异。最后得到的研究结果表明,微带天线阵列相较于单个微带天线,由于阵元间存在互耦效应以及存在馈电网络的影响,微带阵列天线的回波损耗要大于单个阵元。但是天线阵列增益明显大于单个微带天线,且阵列天线比单个阵元具有更好的方向性。

关键词:微带天线微带阵列天线方向性增益 HFSS仿真 Design of Radio-Frequency Microstrip Array Antenna ABSTRACT Microstrip antenna is a kind of antenna form with many advantages like,small size, light weight, low profile, easy-to-carrier conformal, easy integration with many other of microwave integrated circuits and so on. Now microstrip array wildly applied in the filed of wireless

线极化微带天线阵列的设计

线极化微带天线阵列的设计 摘要 微带、微波起源于上世纪中期,在上世纪末就已经展开了对实用天线的研究并制成了第一批实用天线,现在微带天线方面,无论在理论还是应用,都已经取得了很大进展,并在深度和广度上都获得了进一步发展。微带天线技术越来越成熟,其应用与我们的生活、军事、科技都息息相关。体积小、重量轻、剖面薄是微带天线优于普通天线的特点,并且它适合用于印刷电路技术大批量生产,所以能够制成与导弹、卫星表面相共型的结构。因此微带天线在军事、无线通信、遥感、雷达等领域得到了广泛的应用。但是根据微带天线自身的结构特点,仍存在一些缺点,例如频带窄、效率低、增益低、方向性差。解决这些问题的方法就是:将若干个天线单元有规律的排列起来,通过利用这些天线单元构成天线阵列,从而来提高天线的增益、增强天线的方向性。 本文在学习微带天线理论及微带天线阵列基本理论的基础上,利用高频电磁仿真软件HFSS对阵列天线进行仿真设计。设计了中心频率在5.8GHz的阵列天线,对天线的特性进行了深入细致的研究。分别对单个天线阵元和天线阵列进行了仿真,天线阵列的增益明显大于单个微带天线,且方向性更好。因此采用天线阵列的形式进行仿真并对结果中各相关参数进行对比分析差异,优化调整了相关参数。仿真天线的各项指标均达到要求,进行了对实物的加工,在微波暗室内测试出天线的相关参数并与设计指标、仿真结果进行比较,最终达到了设计要求。 关键词:微带天线天线阵方向性增益 HFSS仿真

ABSTRACT Microstrip, microwave, originated in the middle of the last century, in the end of la st century has launched the research of practical antenna and made the first batch of pra ctical antenna, the microstrip antenna has made breakthrough progress now, no matter in theory or application on the depth and width of further development, this new antenna has been increasingly mature, its application to our daily life, military, science and techn ology are closely related. Compared with the common antenna microstrip antenna with small volume, light weight, the characteristics of thin section, it can be made with missil e and satellite surface phase structure, and suitable for mass production printed circuit te chnology. Therefore, microstrip antenna has been widely used in wireless communicatio n, remote sensing and radar. However, according to the structure of microstrip antenna, t here are still some shortcomings, such as narrow band, low efficiency, low gain and poo r directivity. The way to solve these problems is to arrange a number of antenna element s in a regular arrangement, and make up the antenna array to improve the gain and direc tion of the antenna. Based on the theory of microstrip antenna and basic theory of microstrip antenna ar ray, HFSS is used to analyze the array antenna. The array antenna with the center freque ncy of 5.8GHZ is designed, and the characteristics of the antenna are studied in detail. T he gain of antenna array is obviously larger than that of single microstrip antenna, and t he direction is better. Therefore, the antenna array was used for simulation and the corr elation parameters in the results were compared and analyzed, and the correlation param eters were optimized and adjusted. Simulation of the antenna of the indicators are up to par, the physical processing, and testing in microwave dark room to the related paramete rs of the antenna, and comparing with design index, the simulation results, finally reach ed the design requirements. Keywords: miccrostrip antennas antenna array directivity gain HFSS simulation

阵列天线分析与综合习题

阵列天线分析与综合习题 第一章 直线阵列的分析 1. 分析由五个各向同性单元组成的均匀线阵,其间距d=2λ/3。求(a) 主瓣最大值;(b) 零点位置;(c) 副瓣位置和相对电平;(d) 方向系数;(e) d 趋于零时的方向系数。 2. 有一单元数目N=100,单元间距d=λ/2的均匀线阵,在(a) 侧射;(b) 端射;(c) 主瓣最大值发生在θ=45o时,求主瓣宽度和第一副瓣电平。 3. 有一由N 个各向同性单元组成的间距为 d 的均匀侧射阵,当kd<<1,Nkd>>1 时,证明其方向系数D =2Nd/λ。提示: 2(sin /)x x dx π∞ ?∞=∫ 。 4. 设有十个各向同性辐射元沿Z 轴均匀排列,d=λ/4,等幅激励。当它们组成(a) 侧射阵;(b) 普通端射阵;(c) 满足汉森—伍德亚德条件的强方向性端射阵时,求相邻单元间相位差、第一零点波瓣宽度、半功率波瓣宽度、第一副瓣相对电平和方向系数。 5. 利用有限Z 变换求出均匀线阵的阵因子,并利用y=Z+Z -1的变量置换分析均匀阵功率方向图的特性。 6. 若有五个各向同性辐射元沿Z 轴以间距d 均匀排列,各单元均同相激励,激励幅度包络函数为[]()1sin /(1)I N d ξπξ=+?。试分别用Z 变换法和直接相加法导出阵因子S(u),并计算S(u) 在0