文档库 最新最全的文档下载
当前位置:文档库 › 分子生物学问答题

分子生物学问答题

分子生物学问答题
分子生物学问答题

1.DNA是遗传物质的两个重要试验的主要步骤?

答:(1)Griffith及Avery细菌发生遗传转化试验证明了

DNA是病毒的遗传物质,其具体步骤为:首先用活S型

肺炎链球菌感染小鼠,小鼠死亡,而活R型感染,小鼠不死

接着用灭活的S型和R型感染小鼠,结果都不致死;

但是用灭活的S型和活R型混合感染小鼠,小鼠死亡,解剖

小鼠发现有活的S型致病菌,分离死S型细菌各组分与活

R型混合感染小鼠,发现

只有S型DNA能使R型

细菌发生转化,获得致病力,此实验证明DNA就是遗传物质。(2)Hershey用噬菌体感染细菌的试验证明DNA

是细菌的遗传物质。其具体步骤为:在含有放射性标记的

35S和32P的氨基酸或核苷酸培养液中培养噬菌体,获得含

放射性标记的噬菌体,用

这些放射性噬菌体感染无放射性大肠杆菌,经过1-2次传代后,子代噬菌体中几乎

不含带35S标记的蛋白质,但还有30%的32P标记说明在

传代过程中发挥作用的是DNA而不是蛋白质。

2、简述中心法则的主要内容?

(1) DNA序列是遗传信息的贮存者,通过自主复制得到永存

;(2) DNA通过转录生成RNA;

(3) 含遗传信息的mRNA通过翻译生成蛋白质来控制生命

现象;(4) 同时某些RNA可以通过逆转录将遗传信息传到DNA;(5) 某些RNA自身

还可进行复制使其遗传信息得以永存。

1、原核和真核生物在基因组DNA结构上有哪些差异?

原核:(1)基因组较小,环状双螺旋DNA与DNA结合

蛋白结合成带有单拷贝基因的单染色体(2结构简练几乎

全部由功能基因和

调控序列组成,几乎每个基因序列都与其所编码的蛋白质呈4)有些原核生物基因组内存在基因重叠现象,但编码序列

一般不重叠。(5

)基因是连续的,没有内含子。

真核:(1)线性DNA与组蛋白结合形成染色体形式

一般有多条。(2)数量庞大含有大量重复序列(3)

基因组中多数为非编码序列

(4含有割裂基因(5具有多态性(6转录产物为单顺

反子(5)具有端粒结构

2、作为遗传物质应该具备哪些特性?为什么说DNA适合

作为遗传物质?

遗传物质特性:贮存并表达遗传信息,能把信息传递给

子代,物理和化学性质稳定,具有遗传变化的能力

DNA特性:各异的碱基序列储存大量的遗传信息,DNA

的复制是其表达和传递遗传信息的基础,通过磷酸二酯键

相连,形成双螺旋结构,生理状态下物理、化学性质稳定,有突变和修复能力,

可稳定遗传是生物进化的基础。

3、简述DNA双螺旋结构的主要特点

双链反向平行,具有5…-3?极性,围绕中轴,螺旋盘旋,

磷酸,脱氧核糖为骨架,以磷酸酯键相连,位于外侧,

碱基互补配对,以氢键相连,位于内侧,大沟,小沟交替

出现。

4、简述真核染色体的组装过程

DNA链盘绕由H2A,H2B,H3,H4组成的组蛋白八聚体核心形成念珠状结构的核小体,两端由H1封阻。核小体之间

以DNA链连接,形成10nm纤丝状结构,螺旋后形成30nm 螺纹管结构,折叠盘绕形成染色体。

5、影响DNA稳定性的因素有哪些

氢键,磷酸酯键,0.2 M Na+ 生理盐条件,碱基堆积力(范德华力) ,疏水作用力

6、请问哪些条件可促使DNA复性(退火)

降低温度、pH值和增加盐浓度可以促进DNA复性(退火) 7、影响Tm的因素有哪些

(1)在A, T, C, G 随机分布的情况下,决定于GC含量,GC含量越高,Tm越大

(2)GC%含量相同的情况下,AT形成变性核心,变性

加快,Tm 值小

(3)对于大片段长短对Tm值的影响较小, 与组成和排列

相关

(4)对于小片段,片段愈短,变性愈快,Tm值愈小

(5)变性液中含有尿素,甲酰胺等可降低Tm

(6)盐浓度和PH值也会影响Tm

1、简述原核和真核DNA复制的特点?

(1)原核为单复制起点,真核为多复制起点(2)原核

复制子大而少,真核复制子小而多(3)真核复制起始受许可因子的控制(4)

真核复制叉移动的速度快,原核速度慢(5)真核冈崎片段小,原核大(6)真核复制存在端粒和端粒酶(7)真核原核DNA聚合酶种类,结构,

作用上有差异(8)真核生物DNA复制的起始需要起始原点识别复合物(ORC)参与

2、线性DNA如何解决末端复制的问题?

(1)通过将线性复制子转变为环状或多聚分子。(2)某种蛋白质可能会介入,在真正的末端上启动。(3)DNA可

形成特殊的结构,如在末端形成发夹。使分子没有游离末端。(4)末端是可变的,而不是精确确定的。

3、列举参与DNA复制过程中的主要酶及其功能

解旋酶:解开双螺旋,推动复制叉向前延伸

SSB:使DNA单链保持一种伸展构象,作为模板;使解开

的单链不形成发卡结构;保护DNA单链不受Dnase水解

螺旋酶:消除正超堆积,减少能量需求,有利于DNA解链

引物酶:合成的引物,减少致死突变。

DNA连接酶:催化双链DNA上的单链断点的5?-与3?-生成

磷酸二酯键,封闭DNA双链断点

DNA聚合酶:聚合作用,3?→5?外切酶活性(校对作用)

,5?→3?外切酶活性(切除修复作用)

4、请以原核生物为例,说明DNA复制的过程

起始蛋白复合体与DNA链复制起始点结合,在解旋酶和单链结合蛋白作用下解旋,启动复制起始

起始形成的复制引发体在后随链上合成多个RNA引物,DNA 聚合酶以核苷酸为底物延伸前导链和后随链。后随链合成的

不连续冈崎片段用

DNA连接酶连接

复制到达复制终止序列,在终止蛋白作用下终止复制。

5、DNA复制过程中如何保证其遗传信息传递的忠实性?(1)碱基配对原则(2)DNApol的3??5?外切酶活性(校正)(3)DNApol只能从引物的3? 端延伸DNA(切除),

需要RNA引物,而RNA引物最终被降解而避免错误(4)

半不连续机制,有利于错配碱基的校正(5)修复系统有多种机制和酶

6、DNA连接酶对于DNA的复制是很重要的,但RNA的

合成一般却不需要连接酶。解释这个现象的原因

在DNA复制时,连接酶对于后随链的合成是重要的,因为

它能将冈崎片段的5?端与它前面的另一条链的3?端连接起来。RNA的合成既能以

DNA为模板(RNA聚合酶活性),又能以RNA为模板(

RNA复制酶活性);相应的,先导链的合成沿着5?→3?

方向进行,不需要连接酶。

7、解释在DNA复制过程中,后随链是怎样合成的

因为DNA聚合酶只能朝着5?→3?的方向合成DNA,

后随链不能象前导链那样总是朝着同一方向合成,滞后链是

以大量独立

片段的形式(冈崎片段)合成的,每个片段都是以5?→3?方向

合成,这些片段最后连在一起形成一连续的多核苷酸链。

每个片段都独立地被引发,聚合和连接

1、列出真核生物mRNA与原核生物mRNA的区别:

原核生物mRNA的半衰期短,多以多顺反子形式存在,5′

端无帽子结构,3′端没有或有较短的polyA尾巴。单在

原核生物起始密码上游具有

能与核糖体16SrRNA3′端反向互补的序列,称SD序列

。原核生物mRNA的起始密码子有AUG、GUG和UUG三种。转录和翻译在同一区域进行

真核生物mRNA半衰期相对较长,多以单顺反子形式存在

,5′端有GTP倒扣形成的帽子结构,3′端有较长的polyA

尾巴。只有AUG一种起始密码子。转录在核内而翻译在核外

进行。

2、概括说明σ因子对启动子调节的辅助功能。

σ因子是RNA聚合酶的别构效应物,能增加聚合酶对启动子

的亲和力,同时降低聚合酶对非启动子区的亲和力。由于

同一个聚合酶可以和几种不同σ因子结合,故可利用选择不同的σ因子起始不同的基因转录。

3、列举原核生物同真核生物转录的差异?

(1)原核生物转录只有一种RNA聚合酶,真核生物转录

根据转录产物不同而由多种RNA聚合酶。(2)原核生物的

启动子具有极高的同源性,而真核生物的启动子差异较大

(3)原核生物的转录

产物是多顺反子mRNA,而真核生物的转录产物是核不均一

RNA,需转录后修饰加工。

4、概括典型原核生物启动子的结构和功能,并解释什么是

保守序列?

启动子是RNA聚合酶结合和转录起始的特殊序列。典型的

原核生物启动子大约40个核苷酸,并由两个重要的序列:

-10区,pribnow box,TATA,和-35区TTGACA,是RNA

聚合酶的结合位点。保守序列指所有启动子的该部位都有

这一序列或十分相似的结构。

5、真核生物启动子的基本结构包括哪些部分?分别有何功能?

真核生物启动子包含核心启动子元件和上游启动子元件

两部分。核心启动子元件即TATA box,其功能是使转录

精确的起始。上游启动子元件包括CAAT box 和GC box,

其功能是控制转录起始的频率。

6、增强子是如何增强转录的?

通过影响染色质DNA-蛋白质结构或改变超螺旋密度而

改变模板的整体结构,从而使得RNA聚合酶更容易与模板

DAN结合,起始基因转录。

7、添加PolyA尾巴的信号序列是什么?简述尾巴结构的

生理意义

基因3′末端转录终止位点上游15~30bp处的保守序列

AATAAA

生理意义:保持mRNA的稳定性,防止被降解;与翻译

起始有关

8、简述转录的常规特点

(1)在依赖DNA的RNA聚合酶作用下进行转录(2)

A=U、C≡G 合成RNA分子

(3)转录合成RNA链的方向为5?→3?,模板单链DNA的

极性(4)方向为3?→5?,而非模板单链的极性方向与RNA

链相同,均为5?→3?。

书写)(5)基因转录方式为不对称转录(一条单链DNA 为

模板,RNA聚合酶的结合)

9、RNA酶促合成的基本特征

(1) 双链DNA分子以单链为模板;(2) 不需引物;(3) 底物

是5`-核苷三磷酸(NTP);

(4) 前一个碱基的3`-OH和后一个碱基的5`-P反应,形成

磷酸二酯键,RNA链延伸;

(5) RNA碱基顺序由模板DNA顺序决定;(6) RNA合成方向是从5`→3`,新生RNA与模板DNA链呈反向平行;

9、简述ρ因子依赖性终止子的作用机理

ρ因子结合:最初结合到RNA终止子上游一个伸展的

(约70个核苷酸)单链区。

ρ因子移动:结合到RNA上后,发挥ATP酶活性以提供

在RNA上滑动的能量,直到它到达RNA-DNA杂合链区域(可能ρ因子沿RNA移动比聚合酶沿DNA移动的速度快),

终止:ρ因子发挥解旋酶活性,使双链体结构

10、比较真核生物与原核生物转录起始的第一步有什么不同细菌中,DNA指导的RNA聚合酶核心酶由四个亚基组成(两个α亚基,一个β亚基,一个β?亚基),核心酶与σ亚基结合产生全酶。核心酶可以催化NTP的聚合,但只有全酶能够引发转录的开始。主要的步骤是:具有特异识别能力的。亚基识别转录起,始点

、上游的启动子特异同源序列,这样可以使全酶与启动子序列结合力增加,形成封闭的二元复合物。关键的作用是RNA

聚合酶与DNA的相互

作用。真核生物中,当含TBP的转录因子与DNA相互作用时,其他因子也结合上来,形成起始复合体,这一复合体再与RNA聚合酶结合,因此

主要是RNA聚合酶与蛋白质之间的作用。

11、转录涉及模板链和编码链的分离,解释在转录中单链DNA是怎样被保护的

转录过程中控板与编码链分离时,聚合酶覆盖了整个转录泡——从解旋位点到螺旋重新形成位点,因此单链的DNA被

保护起来。与复制不同,

转录不需要单链结合蛋白的参与。

12、概括说明σ因子对启动子调节的辅助功能

σ因子(除了RpoN)有识别启动子序列的结构域。作为游离的蛋白质;σ因子并不具备与DNA结合的构象。当σ因子与

核心酶结合后构象发生改变,其N末端游离出与DNA结合

的结构域。σ因子的这一调节方式是为了防止游离的σ因子与启动子区结合,

而阻碍了依赖于全酶的转录启动。另外,这样也可防止形成全酶的σ因子的浓度被稀释,因为每一个细胞中,大约每三个核心酶对应于一个σ因子。

13、为什么只有DNA双螺旋中的一条链能被正常的转录?

如果两条链都被转录,每个基因就能编码两个不同的多肽

14、原核生物的核糖体RNA和DNA相对较稳定并且半衰期

而mRNA却不稳定很快被降解请解释这种稳定性的差异

如果转录物的寿命很长,就不可能通过控制mRNA的合成

速率来调节基因的活性。另一方面,如果tRNA和rRNA的

寿命长的话,就更合算。

15、启动子有何作用特点

(1)一个基因可同时拥有一个及以上启动子(2)启动子

位置不定,一般在转录起始点上游。(3)可与增强子共同

控制转录起始和强度。(4)发挥功能时除需RNA聚合酶外

,还需转录调控因子与启动子区各种调控元件相互作用

16、增强子有何作用特点

①可增强效应十分显著;②增强效应与其位置和取向无关;③大多为重复序列;

④一般具有组织或细胞特异性;⑤无基因专一性;⑥许

多增强子还受外部信号的调控

17、如何通过实验确定启动子与增强子边界及关键序列元件

边界序列确定:从一段特定的含有启动子的DNA片段入手,

从DNA的两侧不断缩短长度直至短到停止产生活性的某一

位置。

保守序列确定:A: 对已知启动子序列,可通过缺失或突变确

定哪些碱基为必需;

B: 还可通过比较不同的启动子间的同源性,

确定哪些序列为保守序列。

18、回答大肠杆菌RNA聚合酶各亚基生物学功能

β和β?共同组成了酶的催化中心。它们的序列与真核生物

RNA聚合酶的最大亚基相关。

β亚基可能是酶和核苷酸底物结合的部位。

β?亚基是酶与DNA模板结合的主要成分。α亚基的功能

可能是识别其相应的启动子。原核生物σ因子的功能:帮助

核心酶辨认启动子;解开DNA的双螺旋

I型内含子发生改变后,可以产生其他酶的活性吗?如果可以

,是哪些活性?这意味着I型内含子的催化中心有什么特点?

可以。这些活性包括:RNA聚合酶、内切核酸酶、磷酸酶、

连接酶的活性将I 型内含子转变成这些酶的能力表明它能

结合于RNA的糖—磷酸骨架并能催化在它前后的几个不同

反应。例如,连接是剪切的相反反应

1、列举核糖体上主要的活性位点,并解释起功能

(1)mRNA结合位点—30S头部:防止mRNA链内碱基结合,

促进mRNA与小亚基结合

(2)肽酰-tRNA位点—P位点:结合起始rRNA,增强A位

活性

(3)氨酰基tRNA 位点—A位点:结合特定氨酰tRNA

(4)脱酰基tRNA和多肽的逐出位点—E位点:E1为脱酰基

tRNA 离开核糖体提供出口;E2对蛋白质合成的准确性起

重要作用;E3为多肽离开核糖体提供出口

其他位点:结合起始,延伸等因子

(5)5s rRNA位点(与tRNA进入有关);(6)EF—Tu(延伸因子

)位点:位于大亚基内,与氨酰基tRNA的结合有关;(7)

EF—G :转位因子结合位点,位于大亚基靠近小亚基的界面处

2、简述蛋白质生物合成的基本过程

1)起始:核糖体小亚基识别起始位点,在起始因子作用下

,与大亚基,氨酰tRNA结合,形成起始复合物2)延伸:

核糖体在mRNA移动,在延伸因子作用下,通过转移肽酰

tRNA到氨酰tRNA,即经过进位,肽键形成

和转移,脱落,移位的循环至终止密码子完成肽链延伸

3)终止:在释放因子作用下,识别终止密码子,肽链从

tRNA上释放,核糖体离开mRNA

3、什么是摇摆假说?

在蛋白质生物合成中转移核糖核酸反密码子的5′位碱基

不严格的特异性的假说。允许反密码子的5′位(第一位)

碱基与信使核糖核酸的密码子3′位(第三位)碱基通过改变

了的氢键配对(如非G-C、A-U 配对),从而识别一种以上的

密码子

4、指出E.coli和真核生物翻译起始的不同

[1]翻译的起始识别

原核的起始tRNA是fMet-tRNA,存在SD序列和核糖体

结合序列作为翻译起始位点,真核生物利用eIF4不同结合

位点结合帽子和尾巴结构,识别起点。

[2]翻译起始:原核生物30s小亚基首先与mRNA模板相结合,再与fMet-tRNA 结合,最后与50s大亚基结合。真核中起始tRNA是

Met-tRNA,40s小亚基首先与Met-tRNA(Met上角标)相结合,再与模板mRNA 结合,

最后与60s大亚基结合生成起始复合物,且真核生物的起始因子较多。

5、N-甲酰甲硫氨酸-tRNA的功能是什么?

作为起始氨酰tRNA,能够识别AUG和GUG作为起始密码子,与IF-2结合成复合体进入小亚基的P位点

6、解释核糖体肽基转移反应

肽基转移酶的活性区位于大亚基,临近肽酰tRNA的氨基酸茎,核糖体P位点和A位点。50S上肽酰转移酶催化P位的肽(氨)酰-tRNA把肽(

或氨酰基)转给A位的AA-tRNA,并以肽键相连的过程

7、简述真核细胞中翻译终止的过程

由于氨酰tRNA上没有反密码子能够与三个终止密码子互补

配对,因此翻译终止。终止需要tRNA的协助,此时没有氨基酸能够连接到位于P位点的肽酰tRNA上,释放因子有助于终止的发生,能使tRNA上的氨基酸C 端不需要

转肽基和脱酰基而发生转位。新生肽直接从P位点离开核糖体。

8、真核与原核核糖体的主要区别是什么?

真核细胞80S核糖体中核糖体蛋白和rRNA数量和体积比原核细胞70S核糖体的大,真核大小亚基(40S和60S)均比原核细胞的大(30S,50S)。原核细胞的RNA含量比真核高,原核细胞核糖体有E位点便于脱酰tRNA的离开。原核中多以多聚核糖体形式存在,真核大多与细胞骨架和内质网膜结合

10、密码子具有哪些特性

(1)连续性:肽链合成起始后,密码子按3个一框读下去不重叠也不跳格,直到终止

(2)简并性:许多氨基酸对应的密码子不止一种

(3)兼职性:AUG(Met)和GUG(Val)两个密码子除代表特定氨基酸外,还兼作起始密码子

(4)普遍性:各物种体内体外都适用

(5)密码子-反密码子识别的摇摆性:在密码子与反密码子的配对中,前两对严格遵守碱基配对原则,而第三对碱基有一定的自由度,可以“摆动”。

简述信号肽作用机制

信号肽便被信号识别颗粒(SRP)识别,SRP与携带新生链的核糖体结合而停止翻译

SRP再与内质网上的船坞蛋白(DP)结合翻译阻滞逆转,并使正在延伸的肽链转

移到内质网腔内,信号肽被切除。

新生肽进入ER腔之后经折叠,修饰(糖基化和羟基化等)后运送到其它的部位。1、酵母双杂交系统原理

不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能,酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作

2、酵母单杂交原理

将已知的顺式作用元件构建到最基本启动子(Pmin)上游,把报告基因连接到Pmin下游。将待测转录因子的cDNA与酵母转录激活结构域(AD)融合表达载体导入细胞,该基因产物如果能够与顺式作用元件结合,而激活Pmin启动子使报告基因表达。

3、简述DNA重组的基本过程?

(1)目的基因的提取:供体生物基因或称外源基因的提取

(2)限制性酶切:目的基因切成不同大小片段

(3)酶接:连接到另一DNA分子上-克隆载体

(4)转化:重组DNA分子转入受体细胞

(5)筛选和鉴定:对吸收了重组DNA的受体细胞进行筛选和鉴定

(6)基因表达:进行培养,检测外源基因是否表达

4、凝胶电泳的工作原理与应用

原理:1)核酸分子之糖-磷酸骨架中的磷酸基团,呈负离子化状态;核酸分子在一定的电场强度的电场中,它们会向正电极方向迁移;

2)电泳中使用无反应活性的稳定的支持介质,电泳迁移率(或迁移速度)与分子大小、介质粘度等成反比;

因此,可在同一凝胶中、一定电肠强度下分离出不同分子量大小或相同分子量但构型有差异的核酸分子。

应用:分离、鉴定和纯化DNA或RNA片段,分子克隆技术核心技术

5、分子杂交的试验流程以及分类

样品及探针制备--样品电泳分离---转膜----预杂交-----杂交----洗膜----分析(压片、显色、荧光观察等)

分类:Southern blot ,Northern blot,Western blot,ISH,FISH

6、简述DNA足迹试验的原理与应用 DNA结合蛋白结合在DNA片段上,能保护结合部位不被DNase破坏,DNA分子经酶切作用后遗留下该片段(亦称“足迹”),进而可以确定它的序列。在电泳凝胶的放射性自显影图片上,相应于蛋白质结合的部位没有放射性标记条带

7、简述凝胶阻滞试验的原理原理:蛋白质与DNA 结合后分子质量将增加,在电泳中移动的速率减小,没有结合蛋白的DNA片段迁移速率大。利用这一原理可分离纯化细胞提取物中特定DNA结合蛋白

8、简述PCR的工作流程,原理与应用原理:利用DNA复制的半保留复制和DNA变性与复性的特性,用特异性引物对模板DNA进行指数扩增。流程:首先待扩增DNA?模板加热变性解链,随之将反应混合物冷却至某一温度,这一温度可使引物与它的靶序列发生退火,再将温度升高使退火引物在DNA聚合酶作用下得以延伸。这种热变性-复性-延伸的过程就是一个PCR循环,PCR就是这种循环的不断重复。使DNA扩增量呈指数上升。应用:基因组中特异片段克隆,不对称PCR,反向PCR,基因的体外诱变,RT-PCR,免疫PCR,基因组的比较研究

9、基因克隆的主要载体有哪些?质粒载体,噬菌体载体, BAC,克隆载体,表达载体,YAC,粘粒等 10、作为表达载体应具备哪些特点?(1)能自主复制;(2)具有一个以上的遗传标记,便于重组体的筛选和鉴定;(3)有克隆位点(外源DNA插入点),常具有多个单一酶切位点,称为多克隆位点;(4)分子量小,以容纳较大的外源DNA。 11、作为DNA重组应用较多的限制性内切酶II,其有哪些特点?(1)识别位点严格专一;(2)识别序列的碱基数一般为4,6,8个bp;(3)识别位点经常是一种回文序列的DNA;(4)仅需 Mg2+ 作催化反应辅助因子,能识别双链DNA特殊序列,并可特异切割DNA,产生特异片段;(5)种类繁多,应用广泛 12、简述基因组文库的构建方法①用适当的限制性内切酶消化基因组DNA,以得到约20kb的片段;②用限制性内切酶切割载体DNA,使其形成与外源DNA相匹配的粘性未端;③用适当的方法除去l噬菌体裂解生长非必需的内部片段;④l噬菌体载体臂与外源DNA片段连接;⑤利用体外包装系统进行噬菌体的组装;⑥重组噬菌体侵染E. coli,每一克隆中含有外源DNA的一种片段,全部克隆构成一个基因文库。 13、简述cDNA文库的构建方法①mRNA的提取和纯化。

②合成cDNA第一链。③将mRNA-cDNA杂交分子转变为双链cDNA分子。④将双链cDNA重组到噬菌体载体或质粒载体上。⑤将重组子体外包装成具有感染力的噬菌体颗粒导入到大肠杆菌寄主细胞中增殖 14、怎样筛选目的基因?(1)核酸杂交(2)PCR筛选(文库,菌落)(3)免疫筛选【解释】 15、基因组文库与cDNA文库有哪些差异?(1)cDNA文库包含着细胞全部mRNA信息,基因组文库包含有生物全部的基因。(2)cDNA文库具有组织细胞特异性,基因组文库无。(3)cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。(4)基因组文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA 1、乳糖操纵子阻遏蛋白的负性调控机制没有乳糖时,1ac操纵子处于阻遏状态。I 基因在自身的启动子PI 控制下,产生阻遏蛋白R。R以四聚体形式与操纵子o 结合,阻碍RNA聚合酶与启动子P的结合。当有乳糖存在时,乳糖与R结合,使R四聚体解聚成单体,失去与o的亲和力,与o解离,基因转录开放。 2、乳糖操纵子CAP的正性调控机制 cAMP含量与葡萄糖的分解代谢有关,当细菌利用

葡萄糖供给能量时,cAMP含量降低;无葡萄糖时,cAMP含量升高。 cAMP与CRP 结合变为CAP,并以二聚体的方式与特定的DNA序列结合。 1ac操纵子的强诱导既需要有乳糖的存在,又需要没有葡萄糖可供利用,通过CAP的正调控作用,细菌才能充分利用乳糖。 3、乳糖操纵子结构特点大肠杆菌乳糖操纵子包括:结构基因:Z、Y和A,调控元件:启动子(P)、操纵区(O)和cAMP-CRP结合位点;调节基因:lacI 4、解释细菌对葡萄糖和乳糖的利用机制 1).当葡萄糖存在,乳糖存在时:尽管乳糖作为诱导剂和阻遏蛋白结合,使阻遏蛋白与操纵序列O解离。但由于cAMP浓度较低,cAMP和CRP结合受阻,基因处于关闭状态。2).当葡萄糖和乳糖都不存在时:CRP可以发挥正调控作用,但由于没有诱导剂,阻遏蛋白的负调控作用使基因仍处于关闭状态。3).当葡萄糖存在,乳糖不存在时:此时无诱导剂存在,阻遏蛋白与DNA结合。而且由于葡萄糖的存在,CRP也不能发挥正调控作用,基因处于关闭状态。 4).当葡萄糖不存在,乳糖存在时:此时CRP可以发挥正调控作用,阻遏蛋白由于诱导剂的存在而失去负调控作用,基因被打开,启动转录。 5、色氨酸操纵子的阻遏蛋白的负调节机制细菌通常需要自己经过许多步骤合成色氨酸,但是一旦环境能够提供色氨酸时,细菌就会充分利用外界的色氨酸。合成色氨酸所需酶类的基因E、D、C、B、A,受其上游调控蛋白R基因的调控。R并没有与O结合的活性,只有当环境能提供足够浓度的色氨酸时,R与色氨酸结合后而活化,能够与O结合,阻遏结构基因的转录,

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

分子生物学简答题

分子生物学:研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学。 C值反常:也称c值谬误,指c值往往与种系进化复杂性不一致的现象,及基因组的大小与遗传复杂性之间没有必然的联系,某些较低等的生物c值却很大。DNA重组技术:又称基因工程。将不同的DNA片段按照预先的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状的技术。 GU-AG法则:多数细胞核mRNA前体中内含子的5’边界序列为GU,3’边界为AG,因此,GU表示供体衔接点的5’端,AG 表示接纳点的3’端序列,习惯上,把这种保守序列模式称为GU-AG法则。 RNA干涉:是利用双链小RNA高效,特异性降解细胞内同源MRNA,从而阻断体内靶基因的表达,使细胞内出现靶基因缺失表性的方法。 摆动假说:crick为解释反密码子中子某些稀有成分的配对(如I)以及许多氨基酸中有两个以上密码子而提出的假设。编码链/有义链:在DNA双链中,与mRNA 序列(除t/u替换外)和方向相同的那条DNA,又称有义链 模板链:指双链DNA中能够作为模板通过碱基互补原则指导mRNA前体的合成的DNA链,又称反义链 操纵子:原核生物中由一个或多个相关基因以及转录翻译调控原件组成的基因表达单元。 反式作用因子:能直接或间接识别或结合在各类顺式作用元件中核心序列上参与调控靶基因转录效率的pro。 基因定点突变:向靶DNA片段中引入所需的变化,包括碱基的添加,删除,或改变基因家族:在基因组进化中,一个基因通过基因重复发生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物 基因敲除技术:针对一个序列已知打包功能未知的基因,从DNA水平上设计实验,彻底破坏该基因的功能或消除其表达机制,从而推测该基因的生物学功能 基因组DNA文库:某一生物体全部或部分基因的集合,将某个生物的基因组DNA 或cDNA片段与适当的载体体外重组后,转化宿主细胞,所谓的菌落或噬菌体的集合即为…… 基因治疗:是将具有治疗价值的基因即“治疗基因“装配于带有在人体细胞中表达所必备元件的载体中,导入人体细胞,通过靶基因的表达来治疗遗传疾病 聚合酶链反应:指通过模拟体内DNA复制方式在体外选择性的将DNA某个特定区域扩增出来的 魔斑核苷酸:在应急反应过程中,由大量GTP合成的ppGpp和pppGpp,它们的主要作用可能是影响RNA聚合酶与启动子结合的专一性,诱发应急反应,帮助细菌度过难关 弱化子:原核生物操纵子中能明显减弱甚至终止转录作用的一段核苷酸序列 同工tRNA:几个代表AA,能够被一个特殊的氨酰—tRNA合成酶识别的Trna 顺式作用元件:存在于基因旁侧序列中能影响基因表达的序列,包括启动子,增强子等,本身不编码任何pro,仅提供一个作用位点,与反式作用因子相互作用参与基因表达调控 原位杂交技术:用标记的核苷酸探针,经放射自显影或非放射检测体系,在组织,细胞及染色体水平上对核苷酸进行定位和相对定量研究的手段 转座/移位:遗传信息从一个基因座转移至另一个基因座的现象,由可移问位因子介导的遗传物质的重排 管家基因:维持细胞正常生长发育的必需基因,所以细胞中均需表达的一类基因转座子:是存在染色体上的可自主复制和移位的基本单位,参与转座子易位及DNA 链整合的酶称为转座酶 原癌基因:正常细胞中与病毒癌基因具有显著同源性的基因,本身没有致癌作用,但是经过致癌因子的催化下激活成为致 癌基因,使正常细胞向恶性转化。 SP序列:mRNA中用于结合原核生物核糖 体的序列 无义突变:在蛋白质的结构基因中,一个 核苷酸的改变可能是代表某个AA的密码 子变成终止密码子(UAG UGA UAA),使 pro合成提前终止,合成无功能或无意义 的多肽,这称— 错义突变:由于结构基因中某个核苷酸的 变化使一种AA的密码子变成另外一种AA 的密码 指导RNA:与已正确编码的RNA序列互补 的一小段RNA,被用来作为向未经编辑的 RNA中插入碱基的模板。 上游启动子元件:将TATA区上游的保守 序列称为— 启动子:与基因表达启动相关的顺式作用 原件,是结构基因的重要成分。它是一段 位于转录起始位点5’端上游区大约 100~200bp以内的具有独立功能的DNA序 列,能活化RNA聚合酶,使之与模板DNA 准确地相结合并具有转录起始的特异性。 细菌转化:是一种细菌菌株由于捕获了来 自供体菌株的DNA而导致性状特征发生 遗传改变的过程,提供转化DNA的菌株叫 做供体菌株,接受转化DNA的菌株被称作 受体菌株。 实时定量PCR技术:利用带荧光检测的 PCR仪对整个PCR过程中扩增DNA的累积 速率绘制动态变化图。 基因工程:在体外将核算分子插入病毒, 质粒或其他载体分子,构成遗传物质的新 组合,使之进入新的宿主细胞内并获得持 续稳定增殖能力和表达。 应答原件:能与某个(类)专一蛋白因子 结合,从而控制基因特异表达的DNA上游 序列。 增强子:是指能使与它连锁的基因转录频 率明显增加的DNA序列(1.5分)。它可 以在启动子的上游,也可以在启动子的下 游,绝大多数增强子具有组织特异性(1.0 分)。 分子伴侣:是结合其他不稳定蛋白质并稳 定其构象的一类蛋白质(1.0分)。通过 与部分折叠的多肽协调性地结合与释放, 分子伴侣促进了包括蛋白质折叠、寡聚体 装配、亚细胞定位和蛋白质降 负调控:阻遏蛋白结合在操作子位点,阻 止基因的表达。没有调节蛋白时操纵元内 结构基因是表达的,而加入调节蛋白后结 构基因的表达活性被关闭,这种调节称为 负调节。 应急因子:是指与核糖体相结合的蛋白质 RelA,当空载的tRNA进入A位时,它催 化GTP形成pppGpp或催化GDP形成 ppGpp。 信号肽:在蛋白质合成过程中N端有 15~36个氨基酸残基的肽段,引导蛋白质 的跨膜。 密码的简并性:由一种以上密码子编码同 一个氨基酸的现象称为密码的简并性 移码突变(frame-shift mutation):在 mRNA中,若插入或删去一个核苷酸,就 会使读码发错误,称为移码,由于移码而 造成的突变、称移码突变 简答题 1原核生物与真核生物基因组的不同? 答:原核基因组:常仅由一条环状双链DNA 分子组成,结构简单;基因组中只有一个复 制起点;具有操纵子结构,转录的RNA为多 顺反子;有重叠基因(1、基因内基因 2、部 分重叠基因 3、一个碱基重叠);无内含子; 编码pro的DNA在基因组中所占比例较大; 结构基因为单贝 真核基因组:真核基因组庞大,一般都远 大于原核生物;真核基因组存在大量的重复 序列;真核基因组的大部分为非编码序列, 占整个基因组序列的90%以上;真核基因组的 转录产物为单顺反子;真核生物为断裂基因、 有内含子结构;真核基因组存在大量的顺式 作用原件;真核基因组中存在大量的DNA多 态性;真核基因组具有端粒结构。 2比较RNA转录与DNA复制的异同? 答:相同:都以DNA链作为模板;合成方向 均为5’—3’;聚合反应均是通过核苷酸之间 形成的3’,5’—磷酸二酯建使核苷酸链延长 不同:复制转录 模板:两条链均复制;模板链转录(不对称 转录) 原料:dNDP ; NTP 酶:DNA聚合酶;RNA聚合酶 产物:子代双链DNA;mRNA,tENA,rRNA 配对:A---T ,G---C; A—U,T---A,G---C 引物:RNA引物;无 试比较转录与复制的区别。: 1,目的不同,所使用的酶、原料及其它辅助 因子不同,转录是合成RNA,复制是合成DNA; 2,方式不同:转录是不对称的,只在双链DNA 的一条链上进行,只以DNA的一条链为模板, 复制为半不连续的,分别以DNA的两条链为 模板,在DNA的两条链上进行;3,复制需要 引物,转录不需要引物;,4复制过程存在校 正机制,转录过程则没有;5转录产物需要加 工,复制产物不需要加工;6复制与转录都经 历起始、延长、终止阶段,都以DNA为模板, 新链按碱基互补原则,5'→3’方向合成。 3、 RNA转录的基本过程? 转录的基本过程包括:模板识别、转录起始、 转录的延伸和终止。 模板识别:RNA聚合酶与启动子DNA双链相互 作用并与之结合; 转录起始:RNA聚合酶结合在启动子上以后, 是启动子附近的DNA双链解旋并解链,形成 转录泡以促使底物核糖核苷酸与模板DNA的 碱基配对,当RNA链上第一个核苷酸键产生 标志着转录的起始,一旦RNA聚合酶成功地 合成9个以上核苷酸并离开启动子区,转录 就进入正常的延伸阶段。 转录的延伸:RNA聚合酶释放因子离开启动子 后,核心酶沿模板DNA链移动并使新生成RNA 链不断伸长,在解链区形成RNA—DNA杂合物。 转录终止:当RNA链延伸到转录终止位点时, RNA聚合酶不再形成新的磷酸二酯建,DNA— RNA杂合物分离,转录泡瓦解,DNA恢复成双 链状态,DNA聚合酶和RNA链都从模板上释放 出来,转录终止。 4.DNA复制的过程和机制? 答:分三个阶段:即复制的起始、延伸、终 止。 复制的起始:DNA解旋解链,形成复制叉,引 发体组装,然后在引发酶的催化下以DNA链 为模板合成一段短的RNA引物。 延伸:DNA链的延伸由DNA聚合酶催化以亲代 DNA链为模板引发体移动,从5’—>3’方向 聚合子代DNA链,前导键的合成以5’—>3’ 方向随着亲本双链体的解开而连续进行复 制,后随链在合成过程中,一段亲本DNA单 恋首先暴露出来,然后以与复制叉移动相反 方向,按5’—>3’方向合成一系列冈崎片段。 终止:当子链延伸到终止位点时,DNA复制终 止,切除RNA引物,填充缺口,在DNA连接 酶的催化下将相邻的DNA片段连接起来形成 完整的DNA长链。 5、真核生物与原核生物在翻译的起始过程中 有哪些区别? 答:真核生物的起始tRNA是met-tRNA met 原核是fmet-tRNA fmet; 真核生物核糖体小亚基识别mRNA的帽子结 构,而原核生物通过与mRNA的SD序列结合; 真核生物小亚基先与met-tRNAmet结合再与 mRNA结合,而原核生物小亚基先与mRNA结合 再与fmet-tRNAfmet结合;真核生物有较多 的起始因子参与,且核糖体较大为80S,而原 核生物有较少的起始因子参与,且核糖体较 小为70S 6.简述蛋白质生物合成过程。,以大肠杆菌为 例: (1)氨基酸的活化:游离的氨基酸必须经过活 化以获得能量才能参与蛋白质合成,由氨酰 -tRNA合成酶催化,消耗1分子ATP,形成氨 酰-tRNA。 (2)肽链合成的起始:由起始因子参与,mRNA 与30S小亚基、50S大亚基及起始甲酰甲硫氨 酰-tRNA(fMet-tRNAt)形成70S起始复合物, 整个过程需GTP水解提供能 (3)肽链的延长:起始复合物形成后肽链即开 始延长。首先氨酰-tRNA结合到核糖体的A 位,然后,由肽酰转移酶催化与P位的起始 氨基酸或肽酰基形成肽键,tRNA f 或空载tRNA 仍留在P位.最后核糖体沿mRNA5’→3’方 向移动一个密码子距离,A位上的延长一个氨 基酸单位的肽酰-tRNA转移到P位,全部过程 需延伸因子EF-Tu、EF-Ts,能量由GTP提供 (4)肽链合成终止,当核糖体移至终止密码 UAA、UAG或UGA时,终止因子RF-1、RF-2 识别终止密码,并使肽酰转移酶活性转为水 解作用,将P位肽酰-tRNA水解,释放肽链, 合成终止。 7.试比较真核生物与原核生物mRNA转录的主 要区别。 答:转录单元:原核生物常为多顺反子转录, 真核生物常为单顺反子转录。酶:RNA聚合酶 核心酶加p因子,原核生物为RNA聚合酶Ⅱ 聚合酶加转录因子。转录产物:真核生物不 需加工与翻译相偶联真核生物需加工与翻译 分开。转录过程:无核小体的结局和组装的 过程,原核生物有核小体的结局和组成的过 程。转录终止“原核生物两种方式分别是依 赖P因子的终止和不依赖P因子的终止,真 核生物转录的终止加尾修饰同步进行。反应 部位:原核生物在类核,真核生物在核内。 8.比较原核和真核生物mRNA的区别? 答:(1)、原核生物mRNA5’端无帽子结构,3’ 端没有或只少较短的polyA结构,真核生物 5’端存在帽子结构,3’端具有polyA尾巴. (2)、许多原核生物mRNA可能以多顺反子形 式存在,而真核生物几乎都是单顺反子(3)原 核生物mRNA的半衰期短,转录与翻译是紧密 相连的,两个过程不仅发生在同一细胞间里, 而且几乎是同步进行的,真核生物mRNA的录 翻译是发生在不同空间和时间范畴内的。(4) 原核生物以AUG作为起始密码有时以GUG, UUG作为起始密码,真核几乎永远以AUG作为 起始密码。 9.乳糖操纵子调控机理 答:是大肠杆菌中控制半乳糖苷酶诱导合成 的操纵子。包括调控元件P(启动子)和O(操 纵基因)阻遏子(I),以及结构基因lacZ(编 码半乳糖苷酶)、lacY(编码通透酶)和lacA (编码硫代半乳糖苷转乙酰基酶)。转录时 RNA聚合酶首先与启动子结合,通过操纵区向 右转录,转录从O区中间开始,按Z→Y→A 方向进行,每次转录出来的一条mRNA上都带 有这3个基因,转录的调控是在启动区和操 纵区进行的。 1、无乳糖时,调节基因lacI编码阻遏蛋白, 与操纵子基因O结合后抑制结构基因转录, 不产生代谢乳糖的酶。 2、只有乳糖存在时,乳糖可以与lac阻遏蛋 白结合,而使阻遏蛋白不与操纵基因结合, 诱导结构基因转录,代谢乳糖的酶产生以代 谢乳糖。 3、葡萄糖和乳糖同时存在时,葡萄糖的降解 产物能降低cAMP的含量,影响CAP与启动基 因结合,抑制结构基因转录,抑制代谢乳糖 的酶产生。 10、色氨酸操纵子及机制? 答:负责色氨酸的生物合成,当培养基中有 足够的色氨酸时,这个操纵子自动关闭,缺 乏时操纵子打开,trp基因表达,色氨酸或与 其代谢有关的某种物质在阻遏过程中起作 用。由于trp体系参与生物合成而不是降解, 它不受葡萄糖或cAMP-CAP的调控。 弱化作用:当色氨酸达到一定浓度、但还没 有高到能够活化R使其起阻遏作用的程度时, 产生色氨酸合成酶类的量已经明显降低,而 且产生的酶量与色氨酸的浓度呈负相关。先 导序列起到随色氨酸浓度升高降低转录的作 用,这段序列就称为衰减子或弱化子。在trp 操纵元中,对结构基因的转录阻遏蛋白的负 调控起到粗调的作用,而衰减子起到细调的 作用。 11.原核生物和真核生物复制的差异? 答:原核真核 复制起点:一般为单复制起点;一般为多复 制起点 主要的酶:DNA聚合酶Ⅲ;DNA聚合酶& 单链复制叉复制速度:快;慢 复制的延伸:无核小体的解聚及诚信组装; 有核小体…… 终止:两个复制叉相遇终止复制(环形DNA); 端粒酶复制末端完成复制(线性DNA) 12原核细胞和真核细胞在合成蛋白质的 起始过程有什么区别。 .(1)起始因子不同:原核为IF-1,IF-2, IF-2,真核起始因子达十几种。 (2)起始氨酰-tRNA不同:原核为 fMet-tRNA f ,真核Met-tRNAi (3)核糖体不同:原核为70S核粒体, 可分为30S和50S两种亚基,真核为80S 核糖体,分40S和60S两种亚基

分子生物学试题及答案

分子生物学试题及答案

分子生物学试题及答案一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。

除了5’ 3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。3.原核生物中有三种起始因子分别是(IF-1)、( IF-2 )和(IF-3 )。4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。 5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、( DNA重组技术)三部分。 7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:( hnRNA在转变为mRNA 的过程中经过剪接,)、

分子生物学试题及答案

生命科学系本科2010-2011学年第1学期试题分子生物学(A)答案及评分标准 一、选择题,选择一个最佳答案(每小题1分,共15分) 1、1953年Watson和Crick提出(A ) A、多核苷酸DNA链通过氢键连接成一个双螺旋 B、DNA的复制是半保留的,常常形成亲本——子代双螺旋杂合链 C、三个连续的核苷酸代表一个遗传密码 D、遗传物质通常是DNA而非RNA 2、基因组是(D ) A、一个生物体内所有基因的分子总量 B、一个二倍体细胞中的染色体数 C、遗传单位 D、生物体的一个特定细胞内所有基因的分子总量 3、下面关于DNA复制的说法正确的是(D ) A、按全保留机制进行 B、按3'→5'方向进行 C、需要4种NTP加入 D、需要DNA聚合酶的作用 4、当过量的RNA与限量的DNA杂交时(A ) A、所有的DNA均杂交 B、所有的RNA均杂交 C、50%的DNA杂交 D、50%的RNA杂交 5、以下有关大肠杆菌转录的叙述,哪一个是正确的?(B ) A、-35区和-10区序列间的间隔序列是保守的 B、-35区和-10区序列距离对转录效率非常重要 C、转录起始位点后的序列对于转录效率不重要 D、-10区序列通常正好位于转录起始位点上游10bp处 6、真核生物mRNA转录后加工不包括(A ) A、加CCA—OH B、5'端“帽子”结构 C、3'端poly(A)尾巴 D、内含子的剪接 7、翻译后的加工过程不包括(C ) A、N端fMet或Met的切除 B、二硫键的形成 C、3'末端加poly(A)尾 D、特定氨基酸的修饰

8、有关肽链合成的终止,错误的是(C ) A、释放因子RF具有GTP酶活性 B、真核细胞中只有一个终止因子 C、只要有RF因子存在,蛋白质的合成就会自动终止 D、细菌细胞内存在3种不同的终止因子:RF1、RF2、RF3 9、酵母双杂交体系被用来研究(C ) A、哺乳动物功能基因的表型分析 B、酵母细胞的功能基因 C、蛋白质的相互作用 D、基因的表达调控 10、用于分子生物学和基因工程研究的载体必须具备两个条件(B ) A、含有复制原点,抗性选择基因 B、含有复制原点,合适的酶切位点 C、抗性基因,合适的酶切位点 11、原核生物基因表达调控的意义是(D ) A、调节生长与分化 B、调节发育与分化 C、调节生长、发育与分化 D、调节代谢,适应环境 E、维持细胞特性和调节生长 12、乳糖、色氨酸等小分子物质在基因表达调控中作用的共同特点是(E ) A、与DNA结合影响模板活性 B、与启动子结合 C、与操纵基因结合 D、与RNA聚合酶结合影响其活性 E、与蛋白质结合影响该蛋白质结合DNA 13、Lac阻遏蛋白由(D )编码 A、Z基因 B、Y基因 C、A基因 D、I基因 14、紫外线照射引起DNA损伤时,细菌DNA修复酶基因表达反应性增强,这种现象称为(A ) A、诱导 B、阻遏 C、正反馈 D、负反馈 15、ppGpp在何种情况下被合成?(A ) A、细菌缺乏氮源时 B、细菌缺乏碳源时 C、细菌在环境温度太高时 D、细菌在环境温度太低时 E、细菌在环境中氨基酸含量过高时

分子生物学问答题

1.什么是转座? 转座因子在一个DNA分子内部或者两个DNA之间不同位置 间的移动。 2.病毒基因组有哪些特点?答:不同病毒基因组大小相差较大;不同病 毒基因组可以是不同结构的核酸;除逆转录病毒外,为单倍体基因组;病毒基因组有的是连续的,有的分节段;有的基因有内含子;病毒基因组大部分为编码序列;功能相关基因转录为多顺反子mRNA有基因重叠现象。 3.原核生物基因组有哪些特点?答:基因组由一条环状双链DNA组成; 只有一个复制起始点;大多数结构基因组成操纵子结构;结构基因无重叠现象;无内含子,转录后不需要剪接;基因组中编码区大于非编码区;重复基因少,结构基因一般为单拷贝;有编码同工酶的等基因;基因组中存在可移动的DNA序列;非编码区主要是调控序列。 4.真核生物基因组有哪些特点?答:每一种真核生物都有一定的染色 体数目;远大于原核基因组,结构复杂,基因数庞大;真核生物基因转录为单顺反子;有大量重复序列;真核基因为断裂基因;非编码序列多于编码序列;功能相关基因构成各种基因家族。 5.基因重叠有什么意义?答:利用有限的核酸储存更多的遗传信息,提 高自身在进化过程中的适应能力。 6.质粒有哪些特性? 答:在宿主细胞内可自主复制;细胞分裂时恒定地 传给子代;所携带的遗传信息能赋予宿主特定的遗传性状;质粒可以转移。 7.什么是顺式作用元件? 答:基因中能影响基因表达,但不编码RNA 和蛋白质的DNA序列。顺式作用元件主要包括启动子、增强子、负调控元件等。 8.简述原核基因表达的特点。答:(1)只有一种RNA聚合酶。(2)原核 生物的基因表达以操纵子为基本单位。(3)转录和翻译是偶联进行的。(4)mR

《分子生物学》期末试卷及答案(C)

《分子生物学》期末试卷(C) 一、术语解释(20分,每题2分) 1、操纵子 2、增强子 3、启动子 4、内含子 5、外显子 6、顺式作用元件 7、反式作用因子 8、转录因子 9、单顺反子mRNA 10、多顺反子mRNA 二、选择题(20分) 1.指导合成蛋白质的结构基因大多数为: ( ) A.单考贝顺序 B.回文顺序 C.高度重复顺序 D.中度重复顺序 2. 下列有关Shine-Dalgarno顺序(SD-顺序)的叙述中错误的是: ( ) A.在mRNA分子的起始密码子上游7-12个核苷酸处的顺序 B.在mRNA分子通过 SD序列与核糖体大亚基的16s rRNA结合 C.SD序列与16s rRNA 3'端的一段富含嘧啶的序列互补 D. SD序列是mRNA分子结合核糖体的序列 3.原核生物中起始氨基酰-tRNA是: ( ) A.fMet-tRNA B.Met-tRNA C.Arg-tRNA D.leu-tRNA 4.下列有关TATA盒 (Hognessbox)的叙述,哪个是错误的: ( ) A. 保守序列为TATAAT B.它能和RNA聚合酶紧密结合 C. 它参与形成开放转录起始复合体 D.它和提供了RNA聚合酶全酶识别的信号 5. 一个mRNA的部分顺序和密码的编号是 140 141 142 143 144 145 146 CAG CUC UAU CGG UAG AAC UGA 以此mRNA为模板,经翻译生成多肽链含有的氨基酸为: ( ) A.141 B.142 C.143 D.144 6. DNA双螺旋结构模型的描述中哪一条不正确:( ) A.腺嘌呤的克分子数等于胸腺嘧啶的克分子数 B.同种生物体不同组织中的DNA碱基组成极为相似 C.DNA双螺旋中碱基对位于外侧 D. 维持双螺旋稳定的主要因素是氢键和碱基堆集力。 7. DNA聚合酶III的描述中哪条不对:( ) A.需要四种三磷酸脱氧核苷酸作底物 B.具有5′→3′外切酶活性 C. 具有5′→3′聚合活性 D. 是DNA复制中链延长反应中的主导DNA聚合酶

分子生物学复习题

1、分子生物学的定义。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。 2、简述分子生物学的主要研究内容。 a.DNA重组技术(基因工程) (1)可被用于大量生产某些在正常细胞代谢中产量很低的多肽 ; (2)可用于定向改造某些生物的基因组结构 ; (3)可被用来进行基础研究 b.基因的表达调控 在个体生长发育过程中生物遗传信息的表达按一定时序发生变化(时序调节),并随着内外环境的变化而不断加以修正(环境调控)。 c.生物大分子的结构和功能研究(结构分子生物学) 一个生物大分子,无论是核酸、蛋白质或多糖,在发挥生物学功能时,必须具备两个前提: (1)拥有特定的空间结构(三维结构); (2)发挥生物学功能的过程中必定存在着结构和构象的变化。 结构分子生物学就是研究生物大分子特定的空间结构及结构的运动变化与其生物学功能关系的科学。它包括3个主要研究方向: (1) 结构的测定 (2) 结构运动变化规律的探索 (3) 结构与功能相互关系 d.基因组、功能基因组与生物信息学研究 3、谈谈你对分子生物学未来发展的看法? (1)分子生物学的发展揭示了生命本质的高度有序性和一致性,是人类认识论上的重大飞跃。生命活动的一致性,决定了二十一世纪的生物学将是真正的系统生物学,是生物学范围内所有学科在分子水平上的统一。 (2)分子生物学是目前自然学科中进展最迅速、最具活力和生气的领域,也是新世纪的带头学科。

(3)分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以及信息科学等多学科相互渗透、综合融会而产生并发展起来的,同时也推动这些学科的发展。 (4)分子生物学涉及认识生命的本质,它也就自然广泛的渗透到医学、药学各学科领域中,成为现代医药学重要的基础。 1、DNA双螺旋模型是哪年、由谁提出的?简述其基本内容。 DNA双螺旋模型在1953年由Watson和Crick提出的。 基本内容: (1) 两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,两条链均为右手双螺旋。 (2) 嘌呤与嘧啶碱位于双螺旋的内侧,3′,5′- 磷酸与核糖在外侧,彼此通过磷酸二酯键相连接,形成DNA分子的骨架。 (3) 双螺旋的平均直径为2nm,两个相邻碱基对之间相距的高度即碱基堆积距离 为0.34nm,两个核苷酸之间的夹角为36。。 (4) 两条核苷酸链依靠彼此碱基之间形成的氢键相连系而结合在一起,A与T相配对形成两个氢键,G与C相配对形成3个氢键。 (5) 碱基在一条链上的排列顺序不受任何限制,但根据碱基互补配对原则,当一条多核苷酸的序列被确定后,即可决定另一条互补链的序列。

分子生物学问答题1

1↓参与复制所需要的酶和蛋白因子有哪些。 2↓ (1) RNA 指导的DNA 聚合酶活性; (2) DNA 指导的DNA 聚合酶活性; (3) RNase H 的活性是指它能够从5→'3'和3→'5'两个方向水解DNA-RNA 杂合分子中的RNA 。 ↓转录与复制的区别。 (1)转录只合成与模板互补的单链(不对称转录)。 (2)转录得到的链是由NTP 组成的,而不是dNTP 。 (3)RNA 聚合酶不需要引物,可以从头起始转录。 (4)RNA 产物不与模板保持互补状态。相反,RNA 聚合酶在NTP 添加处的几个核苷酸之后,便将正在延长的链从模板上置换下来。这一置换对于同步进行的翻译至关重要,同时也使得一个基因可以同时转录成多条RNA 。 (5)转录的精确度(10-4)不如复制(10-7),因为它缺乏广泛的校正机制。 ↓简述转录延长特点。 ① 核心酶负责RNA 链延长反应; ② RNA 链从5'-端向3' -端延长,新的核苷酸都是加到3'-OH 上; ③ 对DNA 模板链的阅读方向是3'-端向5'-端,合成的RNA 链与之呈反向互补,即酶是沿着模板链的3'向5'方向或沿着编码链的5'向3'方向前进的; ④ 合成区域存在着动态变化的8 bp 的RNA-DNA 杂合双链; ⑤ 模板DNA 的双螺旋结构随着核心酶的移动发生解链和再复合的动态变化。 ↓简述细菌的转录终止机制 称为终止子(terminator )的序列引发RNA 聚合酶从DNA 上脱离并释放已合成的RNA 链。细菌有两种类型的终止子。 Rho 非依赖型终止子或称固有终止子,通过其转录产物形成的发夹结构而终止转录。 Rho 依赖型终止子需要一个称为Rho 的蛋白质来诱发终止反应。 ↓逆转录酶和逆转录过程; 逆转录酶:能催化以RNA 模板合成双链DNA 的酶,全称依赖RNA 的DNA 聚合酶; 逆转录过程:分三步:首先是逆转录酶以病毒基因组RNA 为模板,催化d NTP 聚合生成DNA 互补链,产物是RNA/DNA 杂化双链;然后,杂化双链中的RNA 被逆转录酶中有RNase 活性的组分水解,被感染细胞内的Rnase H(H=Hybrid )也可水解RNA 链。RNA 分解后剩下的单链DNA 再用做模板,由逆转录酶催化合成第二条DNA 互补链。 ↓原核生物的转录过程; 一、转录起始需要RNA 聚合酶全酶;1. RNA 聚合酶全酶(α2ββ'σ)与模板结合,形成闭合转录复合体;2. DNA 双链局部解开,形成开放转录复合体;3. 在RNA 聚合酶作用下发生第一次聚合反应,形成转录起始复合物: 二、 RNA pol 核心酶独立延长RNA 链;1. σ亚基脱落,RNA –pol 聚合酶核心酶变构,与模板结合松弛,沿着DNA 模板前移;2. 在核心酶作用下,NTP 不断聚合,RNA 链不断延长。 三、原核生物转录延长与蛋白质的翻译同时进行; 四、原核生物转录终止分为依赖ρ(Rho)因子与非依赖ρ因子两大类;转录终止指RNA 聚合酶在DNA 模板上停顿下来不再前进,转录产物RNA 链从转录复合物上脱落下来。 ↓真核生物的转录终止; 真核生物的转录终止和加尾修饰同时进行. 真核生物转录终止,和转录后修饰密切相关。转录不是在poly A 的位置上终止,而是超出数百个乃至上千个核苷酸后才停顿。在读码框架的下游,常有一组共同序列AATAAA ,再下游还有相当多的GT 序列。这些序列称为转录终止的修饰点。 ↓试述转录因子的分类及其作用特点。 一、通用转录因子,是RNA 聚合酶结合启动子所必需的一组蛋白因子,决定三种RNA(mRNA 、tRNA 及rRNA)转录的类别。 二、特异转录因子,为个别基因转录所必需,决定该基因的时间、空间特异性表达。 ↓细胞内信号转导分子种类。 (1)第二信使:在细胞内传递信息的小分子物质,如:Ca2+、DAG 、IP3、Cer 、cAMP 、 cGMP 、花生四烯酸及其代谢产物等。环核苷酸是重要的细胞内第二信使。 特点:①分子的浓度或分布在细胞外信号作用下发生迅速改变; ②类似物可模拟细胞外信号的作用; ③阻断该分子的变化可阻断细胞对外源信号的反应。 ④作为别位效应剂在细胞内有特定的靶蛋白分子。 (2)许多酶可通过其催化的反应而传递信号,作为信号转导分子的酶主要有两大类。 ①催化小分子信使生成和转化的酶,如腺苷酸环化酶、鸟苷酸环化酶、磷脂酶C 、 磷脂酶D (PLD )等 ②蛋白激酶,作为信号转导分子的蛋白激酶主要是蛋白酪氨酸激酶和蛋白丝/苏氨酸 激酶。 ↓Ca2+在信息传递中如何发挥作用? 一、Ca 2+能与胞浆内的PKC 结合聚集至质膜,在DAG 和膜磷脂共同诱导下,PKC 被激活。 二、可激活钙离子/钙调蛋白依赖的蛋白激酶(Ca 2 / CaM-PK)。 三、可与细胞内其它钙结合蛋白结合,直接导致其构象改变,而表达其信息效应。 ↓试述cAMP 信息传递途径。 cAMP -PKA 途径-活化:①信号分子与受体结合,引起受体构象变化②受体活化G 蛋白(结合GTP ,α与βγ解离)③活化后的G 蛋白激活腺苷酸环化酶(AC )④AC 催化ATP 生成cAMP ⑤cAMP 活化PKA (依赖cAMP 的蛋白激酶)⑥PKA 使目标蛋白磷酸化,调节代谢酶的活性或调节基因的表达 cAMP -PKA 途径-失活:信息分子与受体解离,受体失活→G 蛋白失活(GTP 被水解成GDP ,αβγ亚基重新聚合)→AC 失活→cAMP 被磷酸二酯酶水解→PKA 失活。 ↓IP3、DG 在信号转导中的作用; 由PIP2水解产生的IP3是水溶性的小分子物质,离开细胞膜后能在细胞质内很快地扩散, IP3与内质网膜上的特异Ca2+-通道结合后,就能使内质网腔里的Ca2+释放到细胞质,而且释放的Ca2+具有正反馈效应,即释出的Ca2+结合到Ca2+通道,再促进Ca2+释放。 DG 的重要作用是激活蛋白激酶C(protein kinase C, PKC),PKC 是一类Ca2+依赖的蛋白激酶,能使选择性的靶蛋白的丝氨酸/苏氨酸残基磷酸化。因IP3作用升高的细胞质内Ca2+能使PKC 从细胞质转移到细胞膜胞质面。在Ca2+,DG 和细胞膜磷脂成分中的磷脂酰丝氨酸的共同作用下激活PKC 。哺乳动物中脑细胞的PKC 浓度最高,其作用是使神经细胞的离子通道蛋白磷酸化,从而改变神经细胞膜的兴奋性。在许多细胞中,PKC 能通过激活磷酸化级联反应,最后使一些转录因子磷酸化并激活,从而调控相关基因的表达。 ↓酵母双杂交原理 酵母双杂交系统的建立得力于对真核细胞调控转录起始过程的认识。研究发现,许多真核生物的转录激活因子都是由两个可以分开的、功能上相互独立的结构域组成的。例如,酵母的转录激活因子GAL4,在N 端有一个由147个氨基酸组成的DNA 结合域(BD),C 端有一个由113个氨基酸组成的转录激活域(AD)。GAL4分子的DNA 结合域可以和上游激活序列(UAS)结合,而转录激活域则能激活UAS 下游的基因进行转录。但是,单独的DNA 结合域不能激活基因转录,单独的转录激活域也不能激活UAS 的下游基因,它们之间只有通过某种方式结合在一起才具有完整的转录激活因子的功能。 ↓翻译机器的组成及其作用。 翻译机器由4种基本成分组成:mRNA 、tRNA 、氨基酰-tRNA 合成酶和核糖体。 在遗传信息传递中,翻译远比DNA 到RNA 的转录复杂,因为mRNA 不可能直接作为模板指导多肽链的合成。 (1)mRNA 的蛋白编码区由称为密码子的三核苷酸单位组成,密码子决定氨基酸的顺序。 (2)tRNA 介导氨基酸与密码子的相互作用。 (3)氨基酰-tRNA 合成酶使氨基酸与tRNA 结合起来。 (4)核糖体协调mRNA 与tRNA 的识别,并催化肽键的合成。 ↓叙述使翻译生成的新生多肽链成为有功能的蛋白质所需要经过的加工步骤。 加工步骤包括:化学修饰、折叠、亚基聚合等,其中最重要的是折叠。蛋白质合成后经靶向运输到达细胞的特异空间。 (1) 氨基酸残基的化学修饰:个别氨基酸可进行甲基化和乙酰化修饰;蛋白质糖 基化是一种复杂的化学修饰; 某些蛋白质加入异戊二烯基团;结合蛋白质加入辅基; 大多数蛋白质有二硫键的形成。 (2)肽链的折叠是按等级进行的: ① 在数毫秒内二级结构即沿多肽链形成。蛋白形成紧密但未折叠的结构,将其疏水基团置于内部,与水隔离; ② 其后的数秒或数分钟内,二级结构相互作用,通常经过一系列中间体构象,三级结构逐渐成形。 ③ 多肽链通过非极性残基间疏水作用的介导,自动折叠成一个称之为“熔球”的紧密结构。 ↓遗传密码的特点; 1.方向性:翻译时遗传密码的阅读方向是5'→3',即读码从mRNA 的起始密码子AUG 开始,按5'→3'的方向逐一阅读,直至终止密码子。 2.连续性:编码蛋白质氨基酸序列的各个三联体密码连续阅读,密码子及密码子的各碱基之间既无间隔也无交叉。 3.简并性:一种氨基酸可具有2个或2个以上的密码子为其编码。这一特性称为遗传密码的简并性。 4.摆动性:反密码子与密码子之间的配对有时并不严格遵守常见的碱基配对规律,这种现象称为摆动配对; 5.通用性:从简单的病毒到高等的人类,几乎使用同一套遗传密码,因此,遗传密码表中的这套“通用密码”基本上适用于生物界的所有物种,具有通用性。 ↓试述(乳糖)操纵子的组成和功能。 大肠杆菌乳糖操纵子含Z 、Y 、A 三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵元件O ,一个启动子P 和一个调节基因I (是调节基因,编码产生阻遏蛋白)。 ↓试述乳糖操纵子的负性、正性调节机制。 一、阻遏蛋白的负性调节:没有乳糖存在时,I 基因编码的阻遏蛋白结合于操纵序列O 处,抑制RNA 聚合酶与启动子结合,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。所以,乳糖操纵子的这种调控机制为可诱导的负调控。 二、CAP 的正性调节:lac 启动子是弱启动子,在启动子上游有CAP 结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP 浓度升高,与CAP 结合,使CAP 发生变构,CAP 结合于乳糖操纵子启动序列附近的CAP 结合位点,激活RNA 聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。 ↓以乳糖操纵子例,说明细菌基因表达的调控原理; 1、乳糖操纵子(lac operon )的组成:大肠杆菌乳糖操纵子含Z 、Y 、A 三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵元件O ,一个启动子P 和一个调节基因I (是调节基因,编码产生阻遏蛋白)。 2、阻遏蛋白的负性调节:没有乳糖存在时,I 基因编码的阻遏蛋白结合于操纵序列O 处,抑制RNA 聚合酶与启动子结合,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。所以,乳糖操纵子的这种调控机制为可诱导的负调控。 3、CAP 的正性调节:lac 启动子是弱启动子,在启动子上游有CAP 结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP 浓度升高,与CAP 结合,使CAP 发生变构,CAP 结合于乳糖操纵子启动序列附近的CAP 结合位点,激活RNA 聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。 4、协调调节:乳糖操纵子中的I 基因编码的阻遏蛋白的负调控与CAP 的正调控两种机制,互相协调、互相制约。 ↓当培养基中葡萄糖和乳糖共同存在时,细菌先利用哪一种糖?为什么? 1)乳糖操纵子由启动子、操作基因和编码β-半乳糖苷酶、通透酶和乙酰基转移酶的结构基因组成(这三个酶参与乳糖代谢)。若葡萄糖和乳糖共同存在时,细菌首先利用葡萄糖。 2)当葡萄糖存在时,其代谢产物使得cAMP 的浓度降低,使CAP 处于失活状态(其不能单独结合于CAP 位点),RNA 聚合酶不能结合于乳糖操纵子上,使得三个酶的基因不能转录,从而细菌也不能利用乳糖。葡萄糖对Lac 操纵子的阻遏作用称为分解代谢阻遏。

相关文档