文档库 最新最全的文档下载
当前位置:文档库 › 红外瓦斯传感器在煤矿监测系统中的应用

红外瓦斯传感器在煤矿监测系统中的应用

红外瓦斯传感器在煤矿监测系统中的应用
红外瓦斯传感器在煤矿监测系统中的应用

红外瓦斯传感器在煤矿监测系统中的应用

【摘要】红外瓦斯传感器是预防煤矿井下瓦斯灾害事故,确保生产安全的重要监测系统,对于煤矿生产具有重要意义。本文从目前较为典型的集中瓦斯监测手段入手,分析了其利弊,以综合性能优势较为典型的红外瓦斯传感器技术为例,分析了其应用优势,希望能为煤矿安全生产提供帮助。

【关键词】煤矿;安全生产;瓦斯事故;红外瓦斯传感器

经济社会的快速发展促使人类对于能源的需求量不断提升,煤炭作为最主要的应用能源之一,社会地位愈加重要。煤矿开开采作为向社会提供煤炭的关键手段,近些年来瓦斯事故频发,引发了极大的社会关注,不仅造成了重大经济财产损失,同时也严重威胁着井下人员的生命安全,因此,煤矿安全生产的关键在于有效控制和预防瓦斯事故,将其危害降到最低。瓦斯作为煤矿安全第一杀手,其事故预防和处理要从形成规律、爆炸特性等入手,加强对瓦斯的监控,目前煤矿生产中多应用红外瓦斯传感器来监测,其灵敏度和可靠性对确保安全生产有着至关重要的意义,是煤矿安全生产系统的眼睛和重要组成部分。下面我们结合煤矿安全生产实际,分析一下红外瓦斯传感器在煤矿监测系统中的应用,希望能为煤矿安全生产工作提供参考。

一、瓦斯检测手段与问题

我国国内瓦斯传感器最初主要以热催化型、光干涉型、热导型、气敏半导体型和红外气体吸收型为主。

热催化型虽然实现瓦斯监测,但是稳定性较差,需要频繁校对,且使用寿命短,从安全和成本两方面来考虑,并非最佳选择。光干涉型监测手段对气体浓度的检测较为敏感,通过空气中光波的利用来监测瓦斯浓度,现场使用较为方便,但是如果空气中氮氧分配比例不足,就会容易出现误差,无法长时间大范围使用[1]。热导型是利用热导原理检测空气与所测气体之间的导率差来实现检测,其结构简单,应用安全,寿命长,有众多优点,但是由于其受加工精度影响较大,对于低浓度瓦斯的监测常出现失误,水蒸气、氧气浓度也会干扰其正常工作。气敏半导体型是近年来发展较快的一种检测方法,具有寿命长、能耗少、灵敏度高等特点,但是由于受材料材质、温度等因素影响,应用性较差,在准确度和精度上也有待提高,仍需加强实践与研究[2]。

红外气体吸收型即是目前应用较广的红外瓦斯传感技术,它利用红外光谱对不同气体的吸收强度来检测气体浓度,可靠性、灵敏度高,寿命长,与上面几种技术相比,在各种性能上都有着较为突出的表现,也是目前应用性最强的一种技术[3]。这种技术传入国内时由于受到我国矿井特殊环境影响,使用成本高,兼容性差,但是借由中国煤炭科工集团的深入研究与自主研发,终于成功推出了适合我国井下环境性能可靠的红外瓦斯传感器监测技术,在国际上也达到了领先水准。

传感器的技术应用与发展前景

传 感 器 的 技 术 应 用 与 发 展 趋 势 院系:新联学院 专业:10电子信息工程 姓名:王俊锋 学号:1002174050

传感器的技术应用与发展趋势 摘要:随着信息科学、生物科学以及材料科学的日益进步,传感器技术也随着发展很迅速, 日常生活的各个领域它已越来越受到广泛的关注。将来的传感器技术会向微型化、多功能化、智能化以及网络化的方向发展。 关键词:传感器技术;应用; 现状;发展趋势;微型化;多功能化;智能化;网络化随着科学技术的迅猛发展, 在机械制造、交通运输、石油化工以及医疗卫生等领域,传感器技术的应用越来越广泛,它正逐渐地渗透到人们的日常生活中去。 从某种程度上来讲, 衡量一个国家科学技术现代化程度的重要标志是传感器技术水平的高低,主要体现在传感器能够较好地实现自动控制水平和测试技术的高低。作为测量与自动控制的重要环节的传感器,不仅是新技术革命的重要技术基础,而且还是当今信息社会的重要技术基础。笔者就当前一些重要的领域里,讲述了传感器技术的应用情况,并按照目前传感器技术的发展现状,对其将来的发展方向加以预测。 一、传感器的定义以及分类 (一)传感器的定义 从广义上来说,传感器是指将被测量对象的某一确定的信息具有定量检出与感知功能,而且根据一定的规律能够转化为与之相符的有价值认识信号的装置或者元器件。从狭义上来说,可以感受被测量,而且可以根据特定的规律把其转化为性质相同或不同的输出信号的装置。 (二)传感器的分类 1.传感器种类及品种繁多,原理也各式各样。 2.按照输入物理量的分类,传感器常以别测物理量命名,如位移传感器,速度传感器、温度传感器、压力传感器等; 3.按照工作原理分类,传感器的命名常能够根据工作原理,如应变式、电容式、电感式、热点式、光电传感器等; 4.按输出信号分类,可分为模拟传感器和数字式传感器。若输出量为模拟量则成为模拟式,输出量为数字式则称为数字式传感器等。 5.按照被测量的性质,可分为物理传感器、化学传感器和生物传感器三大类。 (1)物理传感器原理及应用 物理传感器是利用某些物理效应,把被测量转化成为便于处理的能量形式的信号装置,其输出的信号和输入的信号有确定的关系。常用的物理传感器有光电式传感器、压电式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。 (2)化学传感器原理及应用 化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,将被测信号量的微小变化转换成电信号。常用的有气敏、湿敏和离子传感器。 (3)生物传感器原理及应用 生物传感器是利用生物分子探测生物反应信息的器件。换句话说,它是利用生物的或有生命物质分子的识别功能与信号转换器相结合,将生物反应所引起的化学、物理变化变换成

传感器的应用现状及发展趋势-论文2011-11-16

传感器技术的研究应用现状与发展前景 传感器技术作为信息技术的三大基础之一,是当前各发达国家竞相发展的高技术是进入21 世纪以来优先发展的十大顶尖技术之一。传感器在科学技术领域、工农业生产以及日常生活中发挥着越来越重要的作用。人类社会对传感器提出的越来越高的要求是传感器技术发展的强大动力,而现代科学技术突飞猛进则提供了坚强的后盾。传感器是信息系统的源头, 在某种程度上是决定系统特性和性能指标的关键部件。本文回顾了传感器技术的发展历史,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究应用状况,并通过简述当前的应用实例,展望了现代传感器技术的发展和应用前景。 1.引言 传感器是将物理、化学、生物等自然科学和机械、土木、化工等工程技术中的非电信号转换成电信号的换能器。当今社会的发展是信息化社会的发展,在信息时代人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理,而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统,它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的大脑,把通信系统比喻为传递信息的神经系统,那么传感器就是感知和获取信息的感觉器官。传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置现代传感器技术具有巨大的应用潜力拥有广泛的开发空间,发展前景十分广阔。 2.传感器的发展历史及分类 2.1传感器技术的发展历史 传感器技术是20世纪的中期才刚刚问世的,在那时与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段并没有投入到实际生产与广泛应用转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目

n-红外瓦斯传感器微弱信号处理电路设计

2010年 第6期 仪表技术与传感器 Instrum ent T echn i que and Sensor 2010 N o 6 基金项目:科技部国际科技合作重点项目 矿井瓦斯浓度、温度监测与安 全预警传感网络研究 (2006DFB72510) 收稿日期:2009-09-15 收修改稿日期:2010-03-15 红外瓦斯传感器微弱信号处理电路设计 刘东旭1 ,王志斌1,2 ,张记龙 1,2 ,李 晓1,2,田二明 1,2 (1.中北大学山西省光电信息与仪器工程技术研究中心,山西太原 030051;2.中北大学仪器科学与动态测试教育部重点实验室,山西太原 030051) 摘要:为提高红外瓦斯传感器的检测灵敏度和系统信噪比,基于微弱信号检测原理,采用单光路双波长的实验方案,设计了以差动放大电路为核心的微弱信号数据处理电路,提高了系统的检测灵敏度,电路结构简单、实用、可靠。在实验室条件下,对该系统进行了瓦斯浓度的性能测试,并对实验数据进行了数据拟合处理,给出了瓦斯浓度与电压的关系式。试验结果表明,该电路能够有效地提取瓦斯浓度变化量信息,满足系统要求的0 5%检测灵敏度。关键词:红外瓦斯传感器;微弱信号检测;差动放大电路;数据处理 中图分类号:TP212 文献标识码:A 文章编号:1002-1841(2010)06-0069-03 D esign of Fai nt Signal Processi ng C ircuit Based on InfraredM ethane Sensor L I U D ong xu 1,WANG Zh i b i n 1,2,ZHANG Ji l ong 1,2,L I X iao 1,2,T I AN Er m i ng 1,2 (1.Engineering Technol ogy Research Cen ter of Shanxi Prov i nce for O p to E lectron ic In for m ati on and Instru m ent ,North Un i versity of Ch ina ,Ta i yuan 030051,Ch ina ;2.K ey Laboratory of In strum en tation Sc ience &D yna m ic M easure m en t ,M i n istry of Edu cation ,North Un iversity of Ch i na ,Taiyuan 030051,Ch ina) Abstract :In orde r to i m prove si gna l noise ra ti o and sensiti v ity o f i nfrared me t hane gas sensor ,t he fa i nt si gnal process i ng cir cu itw ith d ifferen ti a l a mp lifier as t he core was designed based on de tecti on pr i nc i ple of fa i nt s i gna.l W ith the experi m ental sche m e o f si ng l e bea m path and doub le w ave length ,detecti on sens iti v ity w as enhanced .The c i rcu it has the fea t ures o f si m p lic i ty ,utilit y and credibility .P erfor m ance test w as m ade under laboratory conditi ons ,exper i m enta l data was data fitting and relati on bet w een m ethane concentration and vo ltage was g i ven .T he resu lt o f expe ri m en t i ndicates t hat the c ircu it can get t he va riab l e quantity ofm ethane con centrati on i nfo r ma ti on effec tive l y ,m eeti ng 0.5%sensiti v ity o f the syste m requ irement . K ey word s :i n frared m ethane gas senso r ;fa i nt si gnal detecti on ;d ifferentia l amp lifier ;data process i ng 0 引言 瓦斯是易燃、易爆气体,在大气中的爆炸下限为5 3%,上限是15 0% [1] 。随着开采规模不断扩大,瓦斯事故,特别是重、 特大瓦斯事故在煤矿事故中的比例也越来越高。 瓦斯实时测量对瓦斯浓度监控和煤矿安全生产有重要意义。现有的瓦斯检测手段主要有载体催化式、电化学式、光干涉式和光谱吸收型等几种[2-3],其中基于红外光谱吸收原理的瓦斯传感器已日趋成熟,具有灵敏度高、寿命长、安全防暴、不存在中毒现象等特点。 文中利用红外光谱吸收原理,设计了一种探测范围为0-5%、探测灵敏度达到0 5%的瓦斯传感器微弱信号处理电路。基于瓦斯气体在3 33 m 处存在较强的吸收线,采用廉价的I RL 715为红外光源,T PS2534热电堆为探测元件,设计了差动式瓦斯气体微弱信号检测电路。由于探测器输出电信号只有十几个 V,并且淹没于背景噪声,研究了微弱信号检测技术,采取有效的噪声抑制措施,确保检测电路能够有效地提取信号,满足探测灵敏度要求。 1 气体红外检测原理 当红外辐射通过被测气体时,气体分子吸收光能量,不同气体对红外光有着不同的吸收光谱,气体的特征光谱吸收强度与该气体的浓度有关。利用这一原理可以测量某种气体的浓度[7]。气体分子对红外光的选择性吸收遵循朗伯-比尔(L a m bert-Beer)定律[4],假定气体分子在波长 处存在吸收峰,则有 I ( )=I 0( )e - ( )c l (1) 式中:I ( )为透射光强;I 0( )为入射光强; ( )为波长在 处的吸收系数;c 为待测气体浓度;l 为光和气体作用长度即吸收长度。 每种气体都有其特定的吸收峰,而对吸收峰以外波长的光吸收极少[5]。为此,采用双波长测量方法,引入了不被探测气体吸收的光作为参考光。设I m ( !)和I m0( !)为参考光 !的出射光强和入射光强,则有 I m ( !)=I m0( !) (2) 把式(1)和式(2)相除并取对数,可以得到 l n I m ( !)I ( )= ( )cl +ln I m 0 ( !) I 0( ) (3)从式(3)上可以看出,测量系统从理论上完全消除了光路的干扰因素,并且还消除光源输出光功率不稳定的影响。

红外感应器(总结)

1 红外辐射,红外探测器原理,菲涅尔透镜(介绍红外很全面) 以及应用。 2 应用 红外线技术在测速系统中已经得到了广泛应用,许多产品已运用红外线技术能够实现车辆测速、探测等研究。红外线应用速度测量领域时,最难克服的是受强太阳光等多种含有红外线的光源干扰。外界光源的干扰成为红外线应用于野外的瓶颈。针对此问题,这里提出一种红外线测速传感器设计方案,该设计方案能够为多点测量即时速度和阶段加速度提供技术支持,可应用于公路测速和生产线下料的速度称量等工业生产中需要测量速度的环节[1] 。 红外线对射管的驱动分为电平型和脉冲型两种驱动方式。由红外线对射管阵列组成分离型光电传感器。该传感器的创新点在于能够抵抗外界的强光干扰。太阳光中含有对红外线接收管产生干扰的红外线,该光线能够将红外线接收二极管导通,使系统产生误判,甚至导致整个系统瘫痪。本传感器的优点在于能够设置多点采集,对射管阵列的间距和阵列数量可根据需求选取。 红外技术已经众所周知,这项技术在现代科技、国防科技和工农业科技等领域得到了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;(5)混合系统,是指以上各类系统中的两个或者多个的组合。 红外传感器发展前景 咨询公司INTECHNOCONSULTING的传感器市场报告显示,2008年全球传感器市场容量为506亿美元,预计2010年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长最快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景。 一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传感器、MEMS(MICRO-ELECTRO-MECHANICALSYSTEMS,微机电系统)传感器、生物传感器等新兴传

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

传感器技术的应用及其发展

传感器技术的应用及其发展 摘要:传感器是新技术革命和信息社会的重要技术基础,传感器技术是实现测试与自动控制的重要环节,而测试技术与自动控制水平 高低,是衡量一个国家科学技术现代化程度的重要标志。本文列举了传感器技术在当前一些重要领域里的应用,并讲述了其发展趋势。 关键词:传感器技术应用现状发展趋势 一、引言 传感器技术是当今世界令人瞩目,迅速发展的高新技术之一,也是当代科学发展的一个重要标志,与通许技术、计算机技术共同构成21世纪信息产业的三大支柱。如果说计算机是人类大脑的扩展,那么传感器就是人类五官的延伸。因此各发达国家都将传感器技术作为本世纪重点技术加以发展。随着国内工业自动化、信息化和国防现代化的发展,传感器的年需求量持续增长。传感器的应用也越来越广泛、已渗透到各个专业领域。但是目前国内传感器技术的创新和新产品开发能力落后于国内外先进水平,制约了我国工业自动化和信息化技术的发展。 二、传感器介绍 传感器一般由敏感元件、传感元件和其他辅助件组成,有时也将信号调节与转换电路、辅助电源作为传感器的组成部分。传感器通常可以按照一系列方法进行分类。根据输入物理量的分类,传感器常以别测物理量命名,如位移传感器,速度传感器、温度传感器、压力传感器等;根据工作原理分类,传感器常可以依据工作原理进行命名,如应变式、电容式、电感式、热电式、光电传感器等;按输出信号分类,可分为模拟传感器和数字式传感器。输出量为模拟量则称为模拟式,输出量为数字式则称为数字式传感器等等。 三、主要传感器技术分类 传感器技术是当前代表国家综合科研水平的重要技术,传感器技术的具体应用是传感器技术转化的重要途径和方法。加强对传感器技术应用的研究也是了解传感器技术发展现状并对其未来发展进行预测的基础和前提。 3.1 光电传感器技术

红外甲烷传感器

红外甲烷传感器

红外甲烷传感器特点: ★整机体积小,重量轻 ★专业精选进口传感器,可以搭载电化学,催化燃烧,红外原理,热导原理等传感器。★高精度,高分辨率,响应迅速快. ★本安电路设计,可带电热拔插操作。 ★数据恢复功能,免去误操作引起的后顾之忧. ★自动温湿度补偿功能,出厂精准标定,无须再使用标定。.★模拟电压或电流和串口同事输出,方便客户调试和使用。★最精密的电路设计和制造工艺,生产复杂,使用简单。★可与电脑连接通讯,自行标定校准。 ★自带零点微调功能,方便选定参照数据。 ★低功耗产品,可异动电源供电可大量用于分析仪仪器,大气,环境无人机监测。 红外甲烷传感器结构尺寸图: 红外甲烷传感器直视图和PIN 脚定义图 红外甲烷传感器 工作电压DC5V±1%/DC24±1%波特率9600测量气体甲烷CH4气体 检测原理红外NDIR 采样精度±2%F.S 响应时间<30S 重复性±1%F.S 工作湿度0-95%RH,(无冷凝)工作温度-30~50℃长期漂移≤±1%(F.S/年) 存储温度-40 ~ 70℃ 预热时间30S 工作电流≤50mA 工作气压86kpa-106kpa 安装方式8脚拔插式质保期1年输出接口8pin 外壳材质铝合金使用寿命2年外型尺寸(引脚除外) 33.5X3121.5X31 测量范围详见选型表 输出信号 TTL(标配)0.4-2.0VDC(常规)定制RS485/4-20mA

红外甲烷传感器串口和电压采集连接定义图 : 红外甲烷传感器I2C 连接定义图: 引脚名称说明 1+5V 电源接入PIN 脚 2EN Rs485(3.3V),可接MCU Tx 3Rx/A 串口RX(3.3V),可接MCU Rx 5Scl I2C,Scl(3.3v)引脚6SDA I2C(3.3V)引脚7GND 电源GND 引脚 8 VOUT 电压输出,0-5V/0.4-2.0V

利用红外线传感器实现接近感应应用重点

利用红外线传感器实现接近感应应用 利用红外线传感器实现接近感应应用 类别:传感与控制 在消费电子产品中,接近感应作为一种探测用户身体或手部存在的方法,越来越为人们所接受。该技术也能够用于动作感应,如检测用户手势。用户手势作为一种输入,可以应用于许多设备,如手机、计算机和其他家用电子产品。要理解动作感应系统设计的理论基础,需要了解红外线(IR)与可见光的差异,探讨接近和动作感应系统如何在单一LED 下运行,以及动作感应在使用多个LED 进行多接近测量时如何工作。当我们谈及“光”时,通常指的是来自太阳或灯具的可见光,然而,可见光仅占光谱范围中的一小部分。我们把可见光定义为人眼可以识别的所有光线,通常人眼可以识别的光线波长为380-750nm。那么,人眼无法识别的非可见光(如波长为850 nm 光)又如何呢?IR 辐射光的波长为750nm-1000μm,IR 光与可见光有着相同的特性,例如反射率,而且它可以通过特殊灯泡或发光二极管生成。因为人眼无法看到IR 光,所以我们可以用它来完成一些特殊的人机界面任务,例如接近检测,而无需用户与系统进行任何直接接触。IR 接近传感系统能够检测附近物体的存在,并根据检测结果做出反应。IR 接近检测的应用无处不在。例如,手机可以使用接近传感技术检测通话时手机是否接近面部。当你把手机靠近耳边时,手机将检测到头的存在,从而自动关闭屏幕以节省电能。其他接近感应系统的例子包括皂液器和饮水机,你可以把手放在传感器附近(通常在皂液管或水龙头附近),以“非接触”而又卫生的方式获取皂液或水。 在高端汽车上,外部防碰撞系统也使用接近检测,当汽车与其他汽车或者物体太靠近时,接近检测会提醒司机注意。有些车辆还可以使用车内接近感应系统检测乘客的存在,从而调整安全装置(如安全气囊)。接近检测通过专门设计的IR LED 实现。与IR LED 相对应的是光电二极管,它一般用来检测LED 发出的IR 光。当IR LED 和光电二极管同方向放置时,光电二极管将不会检测到任何IR 光,除非有物体在 LED 的前面,将光反射回光电二极管。反射回光电二极管的光强与物体到光电二极管的距离逆向相关。图 1:一维空间动作检测单一 LED 和光电二极管相结合可以检测一些动作,例如可以检测物体是否靠近或远离光电二极管,这仅仅是一维空间检测。假设一个系统,其布局如图1 所示,单一LED 系统仅使用LED1 与IR 传感器。图2 是三个手势动作过程中Silicon Labs Si1120 传感器感应IR LED 后的输出值,其中Y 轴是反射的 IR 光强,X 轴是时间。三个手势包括沿图1 X 轴从左到右的滑动,沿Y 轴从底部到顶部的滑动,以及沿Z 轴由远及近,然后由近及远的往复动作。图2 表明,单一LED 系统不能区分这些手势,使用单一 LED,系统只能检测到物体正在接近或远离传感器,而不能判别其方向。图 2:单一LED 系统性能分析二维空间检测由位于不同位置的两个LED 和单个光电二极管组成。从LED1 得到一个测量值,然后快速从LED2 获得另一个测量值,两个测量值被用于计算二维空间上的物体位置。其中一维空间是接近 LED1

传感器技术发展现状及趋势

传感器技术发展现状及趋势 桂林航天工业学院 课程论文 题目:传感器技术发展现状及趋势 专业:工商企业管理(生产运作与质量管理) 姓名:罗并 学号:20190820Z00102 指导教师:陈少航 2019年 6月12日 传感器技术发展现状及趋势 在信息化社会,几乎没有任何一种科学技术的发展和应用能够离得开传感器和信号探 测技术的支持。生活在信息时代的人们,绝大部分的日常生活与信息资源的开发,采集, 传送和处理息息相关。分析当前信息与技术发展状态,21世纪的先进传感器必须具备小型化,智能化,多功能化和网络化等优良特征。 为了能够与信息时代信息量激增,要求捕获和处理信息的能力日益增强的技术发展趋 势保持一致,对于传感器性能指标(包括精确性,可靠性,灵敏性等)的要求越来越严格; 与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标 准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被 各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小,重量轻,反应快,灵敏度高以及成本低等优点。 目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD) 的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本,高性能的 新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能 够满足科技发展需求的微型化的方向发展。 智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新 型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用 领域,如分布式实时探测,网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。,智能化传感器具有以下优点: (1)智能化传感器不但能够对信息进行处理,分析和调节,能够对所测的数值及其误 差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行

利用红外线传感器实现接近感应应用

利用红外线传感器实现接近感应应用 在消费电子产品中,接近感应作为一种探测用户身体或手部存在的方法,越来越为人们所接受。该技术也能够用于动作感应,如检测用户手势。用户手势作为一种输入,可以应用于许多设备,如手机、计算机和其他家用电子产品。 要理解动作感应系统设计的理论基础,需要了解红外线(IR)与可见光的差异,探讨接近和动作感应系统如何在单一LED 下运行,以及动作感应在使用多个LED 进行多接近测量时如何工作。当我们谈及“光”时,通常指的是来自太阳或灯具的可见光,然而,可见光仅占光谱范围中的一小部分。我们把可见光定义为人眼可以识别的所有光线,通常人眼可以识别的光线波长为380-750nm。那么,人眼无法识别的非可见光(如波长为850 nm 光)又如何呢? IR 辐射光的波长为750nm-1000μm,IR 光与可见光有着相同的特性,例如反射率,而且它可以通过特殊灯泡或发光二极管生成。因为人眼无法看到IR 光,所以我们可以用它来完成一些特殊的人机界面任务,例如接近检测,而无需用户与系统进行任何直接接触。 IR 接近传感系统能够检测附近物体的存在,并根据检测结果做出反应。IR 接近检测的应用无处不在。例如,手机可以使用接近传感技术检测通话时手机是否接近面部。当你把手机靠近耳边时,手机将检测到头的存在,从而自动关闭屏幕以节省电能。其他接近感应系统的例子包括皂液器和饮水机,你可以把手放在传感器附近(通常在皂液管或水龙头附近),以“非接触”而又卫生的方式获取皂液或水。在高端汽车上,外部防碰撞系统也使用接近检测,当汽车与其他汽车或者物体太靠近时,接近检测会提醒司机注意。有些车辆还可以使用车内接近感应系统检测乘客的存在,从而调整安全装置(如安全气囊)。接近检测通过专门设计的IR LED 实现。与IR LED 相对应的是光电二极管,它一般用来检测LED 发出的IR 光。当IR LED 和光电二极管同方向放置时,光电二极管将不会检测到任何IR 光,除非有物体在 LED 的前面,将光反射回光电二极管。反射回光电二极管的光强与物体到光电二极管的距离逆向相关。 图 1:一维空间动作检测 单一 LED 和光电二极管相结合可以检测一些动作,例如可以检测物体是否靠近或远离光电二极管,这仅仅是一维空间检测。假设一个系统,其布局,单一LED 系统仅使用LED1 与IR 传感器。图2 是三个手势动作过程中Silicon Labs Si1120 传感器感应IR LED 后的输出值,其中Y 轴是反射的 IR 光强,X 轴是时间。三个手势包括沿图1 X 轴从左到右的滑动,沿Y 轴从底部到顶部的滑动,以及沿Z 轴由远及近,然后由近及远的往复动作。图2 表明,单一LED 系统不能区分这些手势,使用单一 LED,系统只能检测到物体正在接近或远离传感器,而不能判别其方向。 图 2:单一LED 系统性能分析二维空间检测由位于不同位置的两个LED 和单个光电二极管组成。从LED1 得到一个测量值,然后快速从LED2 获得另一个测量值,两个测量值被用于计算二维空间上的物体位置。其中一维空间是接近 LED1(左)或接近LED2(右),而另一维空间是接近或远离光电二极管。图3 是与图2 相同的三个手势,其中白线代表从LED1 中读出的数据,红线代表从LED2 读出的数据。从左到右滑动过程中,白线上升,然后是红线。当手从左到右滑动时,LED1 反射IR 光到传感器,然后是LED2。 图 3:二维空间中手势性能分析三维空间动作检测由三个LED 和单个光电二极管组成。LED3 与LED1、LED2 不在同一直线上,,可以把LED1 和LED2 之间的连线看作X 轴,LED1 和LED3 之间的连线看作Y 轴,从光电二极管和LED 到被测物体之间的连线看作Z 轴。图4 显示了与图2 和图3 相同的测量过程,其中蓝线代表LED3 的测量数据。当手从左向右滑动

反射式红外传感器电路的工作原理及应用

反射式红外传感器电路的工作原理及应用 反射式红外线传感器电路的核心器件是两个中规模集成电路.分别是锁相环音频译码集成电路LM567和双定时器NE556(或定时器NE555).它能够有效地检测到进入其设定的感应区域的人体(或物体)并控制电磁阀等设备产生相应动作。经适当改装,可作为厕所大小便节水器、自动洗手器、自动干手器、红外线报警器、节水型沐浴器、自动玻璃门等的控制电路。其突出优点是无须进行频率调整、使用方便、电路集成化程度较高,体积小,工作稳定可靠.能耗小。本文以反射式红外线传感器用于厕所大小便节水器控制电路为例介绍其工作原理.并适当介绍在其他电器上的应用。 1、LM567振荡信号的产生 反射式红外线节水器由LM567及其外围电路产生方波振荡信号.并将接收 的信号同其产生的方波信号的频率与相位进行比较,当某一连续输入的信号落在给定的通频带内时.锁相环电路将此信号锁定,即所谓的锁相[1]。定时器NE55 6的一部分用于产生约40M的振荡信号.作为LM567产生的方波振荡信号的载波:另一部分构成单稳态触发器,只有当人刚走时,它才会接收到负脉冲,并开始计时放水,定时结束,关闭水阀。反射式节水器电路原理如图1所示。 锁相环音频译码器LM567为8脚双直列塑料封装.其主要参数为:电源电压4.7 5~9V;静态工作电流8mA:最高工作频率500kHz;8脚最大吸收电流100m A:静态功耗30mW[2]。其5、6脚外接的电阻R5和电容C7组成低频振荡电路,产生方波振荡信号,由R5、C7决定内部振荡器的中心振荡频率.改变电阻R5的值可以非常方便地改变振荡频率[3],其公式为: 8kHz的方波振荡信号由LM567的5脚输出.经三极管Q1放大整形后送至N E556的4脚。 2、NE556载波信号的产生与调制过程 2.1载波信号的产生 NE556的1、2、6三个引脚及外接的R10、R11和C9组成振荡器.产生方波振荡信号作为载波信号。其振荡过程是:首先Vcc通过电阻R10和R11向C 9充电,当充电2、6脚电压大于2/3Vcc(充电时间tPH≈0.7(R10+R11)C9)[4]时,5脚输出低电平;定时电容C9通过R11和NE556内部的放电管放电,当放电至5、6脚电压小于1/3Vcc(放电时间tPL≈0.7 R11C9)[4]时,5脚输出低电平,NE556内部的放电管截止,Vcc再对C9充电。5脚输出的方波振荡信号的振荡频率为: 2.2调制与红外线发射过程 由LM567的5脚输出,经三极管Q1送至NE556的复位端4脚的8kHz的方波控制上述振荡过程。当NE556的4脚电压为低电平时,NE556的输出端5脚恒为低电平;4脚电压为高电平时.NE556和R10、R11、C9振荡产生41MHz的载波信号[5];8kHz的方波通过这种方式调制41MHz的载波信号。NE556经5脚输出的已调信号经三极管Q5由红外线发射管DS1发射红外线脉冲信号,调节电位器W。可调节发射信号的强弱。

先进传感器的应用与发展

先进传感器的应用与发展传感器(transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。我国的国家标准对传感器的定义是“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”,而在新韦伯斯特大辞典上的定义是“从一个系统接受功率,通常另一种形式将功率送到第二个系统中的器件”。 从这些定义上看,我们身边处处都有传感器的身影:楼道的声控灯,办公楼的自动门,手里用的触屏手机、相机,电子眼,红外线报警器,流量计,测速计,电子称,乃至一个小小的温度计,在某种意义上讲,也是一个简易的传感器。科技的发展,让传感器也有一个用简易到复杂的发展过程,到了现在,传感器在控制过程中的应用已经是相当的广泛,并且依旧有广阔的发展空间。 人们常将传感器称为人类五官的延长,因此传感器可以粗略的依靠视觉、听觉、嗅觉、味觉、触觉而分为五大类,下面就以这五大类传感器来谈谈现在的先进的传感器在过程控制工业与生活中的应用,以及这些传感器未来的发展趋势。 一、光敏传感器 光敏传感器类似于人类的视觉,可以依靠光线的颜色与亮度来进行系统的调节。其分类并不仅仅限于最简单的那些阻值随光线强弱变化的光敏电阻,光电管、光电倍增管、太阳能电池、红外线传感器、紫外线传感器、色彩传感器、图像传感器等等都属于光敏传感器的范畴。下面简单介绍几类与控制领域相关的传感器的应用。 红外线传感器:如上文所说的自动门,当传感器检测到高温(生命体)信号时,可以控制门的自动打开,等高温信号在一定距离外消失后,又可以把门关上,这类应用,属于在未来很有研究潜力的领域——智能家居的范围。而一些重要的场合应用的红外线报警器,可以有效的进行防盗。红外线成像仪的作用类似于图像传感器,但是主要检测的高温物体,并且可以利用红外线的穿透性来检测一些在障碍物外的高温物体,这是图像传感器所不能达到的。 光敏电阻:生活中比较常见的楼道电灯的声光控开关,这类开关可以保证在白天光线较强的情况下,电灯是不能被打开的。而到了夜晚或者光线不足的情况时。可以通过声音来打开电灯。这样可以有效的节省能源。现在的触屏手机中的某些产品也有一些光敏电阻,可以根据所处环境的光线强弱来自动调节手机屏幕的亮度,这种人性化的设计也得益于光敏电阻的应用。 图像传感器:这类传感器的应用更为广泛,照相机、摄像头,尤其是现在的

光电传感器在汽车上的应用及发展

传感器与检测技术论文 题目:光电传感器在汽车上的应用班级:2013级电子信息工程1班学号: :俊旭 指导老师:江华 2016.5.2

摘要 光电传感器是把被测量的变化转换成光信号的变化,然后,借助光电元件把光信号转换成电信号来实现控制。如光电开关、光感电阻、光感二极管、光电池、光纤等。光电式传感器在检测和控制领域中应用非常广泛,它是采用光电元件作为检测元件的传感器,具有反应快、精度高、非接触等优点,而且可测参数多,结构简单,形式灵活多样。本文列举了光电传感器技术在一些领域里的应用。并阐述了当前传感器技术的发展现状以及发展趋势。 关键词:光电传感器;汽车;应用;

目录 一、引言 二、光电传感器 2.1 光电传感器的概念 2.2 光电传感器的工作原理 2.3 光电传感器的分类 三、光电式传感器在汽车上的应用 3.1 光电式车高传感器 3.2 光电式转向传感器 3.3光电式光量传感器 3.4 光电式车速传感器 四、参考文献

一、引言 随着汽车电子技术的迅速发展及电控单元运用的普及,新型汽车为了提高动力性、经济性、安全性、舒适性以及减少排气污染,已广泛应用电子控制技术。从发动机的燃油喷射系统、点火装置、进气装置、废气排放、故障自诊断到底盘的传动系统、行驶系统、转向制动系统以及车身和辅助设备等普遍采用了电子控制技术。在汽车电子控制系统中,传感器担负着采集和传输功能,它是电子控制中非常重要的部件,其技术性能的好坏,直接影响汽车电子控制系统的工作情况。汽车传感器主要有温度传感器、压力传感器、空气流量传感器、位置与角度传感器、气体浓度传感器、速度与加速度传感器、爆燃与碰撞传感器等几十种。 本文主要讲述了传感器在汽车技术中的应用以及各种汽车传感器的工作原理和在汽车技术中的作用。其中转速传感器是检测发动机的转速、空气流量传感器检测发动机的进气量以更好的控制空燃比、节气门位置传感器是将节气门开度转换为电信号,通过ECU控制喷油量、进气温度传感器是检测发动机的进气温度,将进气温度转变为电压信号输入ECU作为喷油修正信号、氧传感器是根据化学平衡原理计算出对应的氧浓度,达到监测和控制炉燃烧空然比,保证产品质量及尾气排放达标的测量元件。

当前传感器技术的应用与发展

当前传感器技术的应用与发展 【摘要】传感器技术是当前科技的现代信息技术前沿技术之一,传感器技术水平高低作为一个国家科技发展水平高低的重要标志。传感器产业技术含量高、经济效益好、渗透能力强、市场前景广等特点,本文对常见传感器技术进行了说明,展望了传感器技术未来发展趋势。 【关键词】传感器技术光纤红外 一、引言 传感器是对被测对象的某一信息具有响应与检出功能,按照一定规律转换成输出信号的装置。传感器是研究对象与测控系统的接口位置,一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。传感器技术是当前前沿技术,同计算机技术和通信技术共同被称为信息技术的三大支柱,现代传感器技术具有巨大的应用空间,其具有巨大发展前景。 二、传感器概述 传感器是指将被测量转化为定量认识的信号的传感器,其感受被测量,并按规律转化为输出信号的装置。传感器由敏感元件、转换元件、测量电路和辅助电源四部分组成。传感器能感受到被测量的变化并将其不失真地转换成容易测量的量。被测量有一般有两种形式,一种是稳定的,称为静态信号。另一种是随着时间变化的,称为动态信号。传感器的基本特性用静态特性和动态特性来描述,衡量传感器的静态特性指标有线性度、灵敏度、迟滞、重复性、分辨率和漂移等。影响传感器的动态特性主要是传感器的固有因素,如温度传感器的热惯性等,动态特性还与传感器输入量的变化形式有关[1]。

三、传感器技术历史 传感器技术是二十世纪中期出现的,随着各国机械工业、电子、计算机、自动化等相关信息化产业的迅猛发展,欧美西方国家传感器研发及其相关技术产业的发展处于领先地位。我国从二十世纪六十年代开始传感技术的研究与开发,当前在传感器研究开发、设计、制造、可靠性改进等方面具备了一定能力,现初步形成了传感器研究、开发、生产和应用的体系,并在数控机床攻关中取得了具有世界领先的成果。但国产传感器还不能完全适应我国经济与科技的迅速发展要求。 四、传感器技术的应用 (一)光纤测量技术。光纤测量技术的特点是分散测量的能力强。对测量值进行处理输出后,一根光纤整个长度可作为单独传感器,可提供优于点测量的断面测量。其灵敏度高、响应速度快、动态范围大、防电磁场干扰、超高压绝缘、无源性、防燃防爆、适于远距离遥测、多路系统无地回路串音干扰、体积小、机械强度大、可灵活柔性挠曲、材料资源丰富、成本低等优点。光纤可实现的传感信息量很广。例如光导纤维本身就对压力和应变力极为敏感,光纤可同时作为压力、温度和应力传感器而使用。发达国家已将光纤用于测量磁、声、力、温度、位移、旋转、加速度、液位、扭矩、应变、电流、电压、传象和某些化学量等。光纤分布式温度传感器最大优点之一,是能经济地实现对大量地点的温度监视。国外正逐渐将它用于对电站关键部件的温度监视。例如DTS用光电元件测量出沿光纤整段长度的温度信号值,并实现连续刷新。人员可在控制室内通过屏幕观察温度变化情况,并可在设备温度恶化时作出相应操作。DTS有抗电磁干扰的能力,特别适合于在电磁或射频干扰的恶劣环境中使用。(二)红外测量技术。利用红外热效应及穿透力而开发的热图像红外传感器,用于检查金属、非金属等热处理和加工工序,监视轴承发热情况并对其进行热分析,对重要设备如发电机、汽轮机等进行非破坏性检查等。例如红外摄像机、红外辐射测温计、红外辐射热成像仪及其

新型传感器的应用及发展方向

新型传感器的应用及发展方向 传感器技术是实现测试和自动控制的重要环节。它的主要特征是能准确地传递和检测出某一形态的信息,并将它转换成另一形态的信息。随着科学技术的迅猛发展,其越来越广泛的应用于科学技术的各个领域。传感器是一种检测装置,是实现自动检测和自动控制的首要环节。它能感受到被测量的信息,将检测感受到的信息,并按照一定的规律转换成可用输出信号,来满足信息的传输、处理、存储、显示、记录以及控制等的要求。在机电一体化的系统中,传感器处系统之首,是机电一体化系统达到高水平的有效保证。随着人类探知领域的不断深入,各种信息的传递速度将越来越快, 处理信息的能力也将越来越强,因此,就要求相对应的信息采集传感技术也要跟上发展的步伐,这也就决定了传感器将越来越被广泛运用、无处不在。 一、差压式流量传感器 1、介绍 差压式流量传感器又称节流式流量传感器,它是利用管路内的节流装置,将管道中流体的瞬时流量转换成节流装置前后的压力差的原理来实现的。压式流量传感器发展较早,技术成熟而较完善,而且结构简单,对流体的种类、温度、压力限制较少, 因而应用广泛。 差压式流量传感器流量测量系统主要由节流装置和差压计(或差压变送器)组成。节流装置的作用是把被测流体的流量转换成压差信号,差压计则对压差信号进行测量并显示测量值,差压变送器能把差压信号转换为与流量对应的标准电信号或气信号,以供显示、记录或控制。 1.1、工作原理 356 42 1q p 2p 3 p 1—节流装置;2—压力信号管路;3—差压变送器;4—电流信号传输线;5— 开方器;6—显示仪表节流装置 差压流量变送器

充满管道的流体,当它流经管道内的节流件时,如上图所示,流速将在节流件处形成局部收缩,因而流速增加,静压力降低,于是在节流件前后便产生了压差。流体流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。这种测量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当节流装置形式或管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的。 二、电磁流量传感器 1、介绍 电磁流量传感器是由电磁流量计和电磁流量转换器组成,用于测量导电液体与浆液的瞬时流量与体积流量。电磁流量传感器在结构上可分为分体式和一体式两种,分体式电磁流量传感器的传感器与转换器为各自独立结构,传感器装在管道上,转换器可安装在离传感器200m 以内的场所。那么它的工作原理是基于法拉第电磁感应定律,即导电液体在磁场中作切割磁力线运动时,导体中产生感应电压,其感应电压为:U=DBvK 式中:K=仪表常数B=磁感应强度D=测量管的内直径v=测量管截面内的平均流速测量流量时,流体流过垂直于流动方向的磁场,导电性液体的流动感应出一个与平均流速成正比的电压,因此要求被测的流动液体具有最低限度的电导率。电磁流量传感器是根据法拉弟电磁感应定律来测量导电性液体的流量的。是基于垂直于磁场运动的导体会在导体上感应出与导体垂直、并与流体速度成线性比例关系电压的原理构成的。电磁流量传感器适用于对导电液体的平均流速(m/s )进行测量。如测量血液的平均流速。 1.1、工作原理 S N E x B 电磁流量传感器原理

相关文档
相关文档 最新文档