文档库 最新最全的文档下载
当前位置:文档库 › 变压器保护整定计算培训..

变压器保护整定计算培训..

变压器保护整定计算培训..
变压器保护整定计算培训..

变压器保护

一、变压器可能发生的故障和异常情况

(一)变压器的内部故障:指变压器油箱里面发生的各种故障。

(1)主要故障类型:

各相绕组之间的相间短路

油箱内部故障单相绕组部分线匝之间的匝间短路

单相绕组或引出线通过外壳发生的单相接地故障

(2)内部故障的危害:因为短路电流产生的高温电弧不仅会烧毁绕

组绝缘和铁芯,而且会使绝缘材料和变压器油受热分解而产生大量气体,有可能使变压器外壳局部变形破裂,甚至发生油箱爆炸事故。因此,当变压器内部发生严重故障时,必须迅速将变压器切除。

(二)变压器的外部故障:系指油箱外部绝缘套管及其引出线上发生的各种故障。

(1)主要故障类型:

引出线之间发生的相间短路

油箱外部故障

绝缘套管闪络或破碎而发生的单相接地(通过外壳)短路

(三)变压器的异常情况:由于外部短路或过负荷而引起的过电流、油箱漏油而造成的油面降低、变压器中性点电压升高、由于外加电压过高或频率降低引起的过励磁等。

二、变压器保护的配置

(一)瓦斯保护:防御变压器油箱内各种短路故障和油面降低

重瓦斯跳闸

轻瓦斯信号

(二)差动保护或电流速断保护:防御变压器绕组和引出线的多相短路、大接地电流系统侧绕组和引出线的单相接地短路及绕组匝间短路

(三)相间短路的后备保护:防御变压器外部相间短路并作为瓦斯保护和差动保护(或电流速断保护)的后备。

(四)零序电流保护:防御大接地电流系统中变压器外部接地短路。

(五)过负荷保护:防御变压器对称过负荷

(六)过励磁保护:防御变压器过励磁

三、变压器纵差动保护

(一)变压器纵差动保护的作用及保护范围

变压器纵差动保护作为变压器的主保护,其保护区是构成差动保护的各侧电流互感器之间所包围的部分。包括变压器本身、电流互感器与变压器之间的引出线。

(二)变压器纵联差动保护的原理

内部故障时,差动继电器中的电流等于各侧电流互感器的二次电流之和,足以使继电器动作。

正常运行和外部故障时,差动继电器中的电流等于各侧电流互感器的二次电流之差。理论上,当各侧电流互感器的变比等于变压器的变比时,流入差动继电器中的电流为零。实际上,由于变压器的励磁涌流、接线方式和电流互感器误差等因素,差动继电器中会流过不平衡电流。

(三)不平衡电流产生的原因和消除方法:

(1)由变压器各侧绕组接线方式不同而产生的不平衡电流:

如经常采用的Υ/Δ-11型接线方式,两侧电流的相位差30°,幅值相差3倍。

消除方法:相位校正。

a.通过电流互感器的接线校正:变压器Y侧CT采用Y/Δ-11接线,变压器Δ侧CT采用Y/Y-12接线。

b.通过软件的算法进行校正。

(2)由计算变比与实际变比不同而产生的不平衡电流:

消除方法:

a.利用差动继电器的平衡线圈进行磁补偿。

Ibp=Δfzd·Id.max/ nl1

其中: Δfzd=(Wph.js-Wph.zd)/ (Wph.js+Wph.zd)

Id.max ―外部故障时,流过变压器高压侧的最大短路电流。

b.采用自耦变流器。在变压器一侧的电流互感器(三绕组变压器需在两侧)的二次侧,装设自耦变流器,改变其变比,使各侧二次电流相等。

c.通过软件中的不平衡系数进行校正。

(3)由电流互感器误差不同而产生的不平衡电流:

此不平衡电流在整定计算中予以考虑。

(4)由变压器带负荷调整分接头而产生的不平衡电流:

此不平衡电流在整定计算中应予以考虑。

(5)暂态情况下的不平衡电流:

a.非周期分量的影响:

此不平衡电流在整定计算中应予以考虑。

b.励磁涌流的影响:

当空载变压器投入电网或变压器外部故障切除后电压恢复时,励磁电流大大增加,其值有可能达到变压器额定电流的6~8倍,该电流称为励磁涌流。

特点:

①有很大的直流分量。(80%基波)

②有很大的谐波分量,尤以二次谐波为主。(20%基波)

③波形间出现间断。

措施:

①采用具有速饱和铁芯的差动继电器;

②间断角原理的差动保护;

③利用二次谐波制动;

④利用波形对称原理的差动保护。

四、微机变压器纵差动保护的整定计算方法:

(一)变压器参数计算

以一台具体的变压器为例进行计算:

型号:SFSZ10-50000/110 三相

容量比:100/100/50

额定电压:110±8×1.25%/38.5±2×2.5%/10.5kV

短路阻抗:

X110*=2.1196

X35*=0

X10*=1.3646

(1)由于各装置厂家采用的算法不同,基本侧的选取、平衡系数的

计算应按照具体装置的说明书进行计算。

(2)对低压侧容量为50%的变压器,计算低压侧额定电流时必须取额

定容量;

(3)各侧的Un必须取变压器铭牌上的额定电压。

(二)比率制动差动元件整定

图纵差保护动作特性图

(1)启动电流Iop.min:

a.整定原则:应能可靠躲过变压器额定负载时的最大不平衡电流。最大不平衡电流主要考虑正常运行时电流互感器比误差、调压、各侧电流互感器型号不一致等产生的不平衡电流。

Iop.min=Krel(Ker+△U+△m)Ie

式中: Ie—变压器的额定电流二次值;

Krel—可靠系数,取1.3~1.5;

Ker—电流互感器的比误差,10P型取0.03×2,5P型和TP型取0.01×2

△U—变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值)

△m—由于电流互感器变比未完全匹配产生的误差,初设时取0.05。

在工程实用整定计算中可选取Iop.min=(0.2~0.5)Ie。一般工程宜采用不小于0.3 Ie的整定值。

b.具体计算:

Iop.min=Krel(Ker+△U+△m)Ie

=1.5×(0.03×2+0.1+0.05) Ie

=0.315 Ie

根据工程使用整定计算,取0.35 Ie。

(2)起始制动电流Ires.0:

对折线型的比率制动差动元件,拐点电流即开始起制动作用时的电流,一般按照高压侧额定电流的0.8~1倍考虑。另外,为躲过区外故障切除后的暂态过程对变压器差动保护的影响,可使保护的制动作用提早产生,也可取为0.6~0.8倍的额定电流。

(3)比率制动系数Kz:

a.整定原则:应当能可靠躲过外部短路引起的最大不平衡电流。

①计算最大不平衡电流:

双绕组变压器:

Iunb.max=(Kap·Kcc·Ker+△U+△m)Ik.max

式中: Ik.max—外部短路时,最大穿越短路电流周期分量;

Kap—非周期分量系数,两侧同为TP级电流互感器取1.0,两侧同为P级电流互感器取1.5~2;

Kcc—电流互感器的同型系数,取1.0;

Ker—电流互感器的比误差,取0.1

△U—变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值)

△m—由于电流互感器变比未完全匹配产生的误差,初设时取0.05。

三绕组变压器:

Iunb.max=Kap·Kcc·Ker·Ik.max+△Uh·Ik.h.max+△Um·Ik.m.max+△m I·Ik.I.max+△m II·Ik.II.max

式中: Kap、Kcc、Ker含意同上。

Ik.max—外部短路时,最大穿越短路电流周期分量;

△Uh、△Um—变压器高、中压侧调压引起的误差,取调压范围中偏离额定值的最大值(百分值)

Ik.h.max 、Ik.m.max—在所计算的外部短路时,流过高、中压侧电流互感器的周期分量;

Ik.I.max 、Ik.II.max—在所计算的外部短路时,相应的流过非靠近故障点两侧电流互感器的周期分量;

△m I、△m II—由于电流互感器变比未完全匹配产生的误差,初设

时取0.05。

② 计算差动保护的动作电流Iop.max :

Iop.max =Krel ·Iunb.max

式中: Krel —可靠系数,取1.3~1.5。

③ 确定最大制动电流Ires.max:

根据具体装置的制动电流的算法确定。

④ 计算比率制动系数Kz : Kz=o

Ires Ires Iop Iop .max .min .max .-- b. 具体计算:

① 10kV 母线故障时的最大短路电流:三相短路:0.2246*。

折合至变压器额定电流的倍数:

43

.26252492246.0?=4.49Ie ② 计算最大不平衡电流:

Iunb.max =Kap ·Kcc ·Ker ·Ik.max +△Uh ·Ik.h.max +△Um ·Ik.m.max

+△m I ·Ik.I .max +△m II ·Ik.II .max

=2.0×1.0×0.1×4.49Ie +0.1×4.49Ie +0+0.05×4.49Ie +

=1.57Ie

③ 计算差动保护的动作电流:

Iop.max =Krel ·Iunb.max

=1.5×1.57 Ie

=2.36 Ie

④ 确定最大制动电流:

根据说明书:

动作电流:Id=︱·1I +·2I +·

3I ︱

制动电流:Ir=0.5(︱·1I ︱+︱·2I ︱+︱·3I ︱)

10kV 没有电源,当35kV 母线短路时,高压侧电流等于中压侧电流,低压侧电流为零。因此制动电流Ires.max=6.83 Ie

(4) 计算最大制动电流时的比率制动系数Kz : Kz=o Ires Ires Iop Iop .max .min .max .--=Ie Ie Ie Ie 5.049.435.036.2--=0.50 (5) 灵敏系数的计算:

按最小方式下差动保护区内变压器引出线上两相金属性短路计算。根据最小短路电流对应的制动电流,在动作特性曲线上查的对应的Iop ,则灵敏系数为: Ksen=Iop

I m in .k 具体计算:

两相短路:0.1664*

折合至变压器额定电流的倍数:

43

.26252491664.0?=3.328Ie 此时的制动电流:Ir=0.5×3.328Ie=1.664 Ie

根据Kz=o Ires Ires Iop Iop .max .min .max .--=Ie

5.0Ie 664.1Ie 35.0max .Iop --=0.50 求得:Iop.max=0.932 Ie Ksen=Iop I m in .k =Ie

932.0Ie 328.3=3.57>2 灵敏度满足要求。

(三) 二次谐波制动比:指差动电流中的二次谐波制动分量与基波分量的比值,通常整定为15%~20%。注意,二次谐波制动比越大,则保护的

谐波制动作用越弱,反之亦反。

(四)差动速断元件整定:当区内故障电流很大时,电流互感器可能饱和,从而使差流中含有大量的谐波分量,并使差流波形发生畸变,可能导致差动保护拒动或延缓动作。差动速断元件只反应差流的有效值,不受差流中的谐波和波形畸变的影响。

差动速断元件的整定值应按躲过变压器励磁涌流来确定。

Iop=K·Ie

式中: Ie—变压器的额定电流

K—正值系数,K推荐值如下:

6300kVA及以下: 7~12

6300kVA~31500 kVA: 4.5~7

40000kVA~120000 kVA: 3~6

120000kVA及以上: 2~5

五、变压器后备保护

变压器的后备保护主要分为相间短路故障的后备保护和接地故障的后备保护。变压器后备保护的配置一般在各侧分别配置,构成所谓的高后备、中后备、低后备。各侧后备保护的作用有区别,对系统的降压变而言,主电源侧的高后备主要作为变压器内部故障的后备保护及其中、低压侧母线故障的后备保护。中、低压侧的后备保护则主要作为各侧引出线、各侧母线及相邻线路的后备保护。

具体算例:仍以上述变压器为例。

(一)高压侧后备保护:

(1)CT变比:相间保护:600/5 接地保护:300/5

(2)保护配置:RCS-9681

(3) 复合电压闭锁过流:本装置设三段复合电压闭锁过流保护,各段电流及时间可独立整定,分别设置整定控制字控制其投退。一、二段可选是否经方向闭锁,三段可选是否经复合电压闭锁。

分析:35kV 、10kV 侧没有电源,110kV 侧复合电压闭锁过流保护仅需要做变压器和中、低压侧母线的故障的后备保护,所以不必经方向闭锁。

a. 复合电压闭锁相间低电压定值:

① 按躲过运行中可能出现的最低电压

U 1.zd=Kr

Krel min U 式中:Umin —正常运行时可能出现的低电压,一般取(0.9~0.95)U N

Krel —可靠系数,取1.1~1.2

Kr —返回系数,电磁型取

1.15~1.2,微机型取1.05。 ② 按躲过电动机自起动时的电压:

电压取自变压器低压侧电压互感器时 U 1.zd 取(0.5~0.7)U N

电压取自变压器低压侧电压互感器时 U 1.zd 取(0.7~0.8)U N

本例取:70V

③ 灵敏度校验: Ksen=max

.r 1U zd .U 式中:Ur.max —计算方式下,灵敏系数校验点发生金属性相间短路时,保护安装处的最高残压。

35kV 母线三相短路:79.56V

10kV 母线三相短路:89.96V

通过计算结果可以看出,中、低压侧故障时高压侧残压均大于整定值,低电压元件不能动作,因此要求经中、低压侧低电压元件开放。

b. 复合电压闭锁负序相电压定值:按躲过正常运行时的不平衡电压整定,U 2.zd 取(0.04~0.08)U N

本例取:6V

灵敏度校验: Ksen=zd

.2U min https://www.wendangku.net/doc/cd2251247.html, 式中:Uk.2.min —后备保护区末端两相金属性短路时,保护安装处的最小负序电压值。

35kV 母线两相短路:7.99V

10kV 母线两相短路:5.26V

Ksen=zd

.2U min https://www.wendangku.net/doc/cd2251247.html, =699.7=1.33<1.5 灵敏度不满足规定,因此要求经中、低压侧低电压元件开放。

c. 过流元件定值:按躲变压器额定电流整定 Iop=In .Kr

Krel 式中:Krel —可靠系数,取1.2~1.3

Kr —返回系数,取0.85~0.95

实际计算中,通常取1.5倍变压器额定电流。

说明:复合电压闭锁的过流保护,只考虑本变压器的额定电流,无复合电压闭锁的过电流保护,应考虑电动机的自启动系数。规程规定可以不作为一级保护参与选择配合。

本例计算:Iop=1.5×262.43/120=3.28A

取:3.3A (396A )

灵敏度校验:

Ksen=Iop

min .2.Ik 式中:I k.2.min —后备保护区末端金属性短路时流过保护的最小短路电流。

35kV 母线两相短路:1551A

10kV 母线两相短路:1021A Ksen=Iop min .2.Ik =396

1021=2.58>1.3 d. 动作时间:与中、低压侧过流保护时间配合。

本例取:2.3S 跳三侧

(4) 过负荷信号:按躲过变压器的额定电流 Iop=In .Kr

Krel 式中:Krel —可靠系数,取1.05

Kr —返回系数,取0.85~0.95

本例计算:Iop=(1.05/0.95)×262.43/120=2.4A

取:2.4A (288A )

动作时间:4S 发信号

(5) 零序电流:在中性点直接接地电网中,如变压器中性点直接接地运行,对单相接地引起的变压器过电流,应装设零序过电流保护,保护可由两段组成,其动作电流与相关线路零序过电流保护配合。

分析:本例所计算的变压器是终端变压器,线路L1的开关2没有配置保护,因此本保护的计算按110kV 母线接地故障有不小于1.5的灵敏系数整定;为确保系统中其它位置发生接地故障本保护不误动,动作时间通常与电源侧的其他出线的接地保护三段或末段时间配合。

本例计算:110kV 母线接地故障时的零序电流:0.0655*

Iop=3×5249×0.0655/(1.5×60)=11.5A

取:8A(480A)

电源侧其他出线接地保护最长时间:1.6S

取:2S跳三侧

(6)中性点间隙保护:为限制变压器中性点不接地运行时可能出现的中性点过电压,在变压器中性点应装设放电间隙,经间隙接地时,投入反应间隙放电的零序电流保护和零序电压保护;变压器未装设放电间隙,不接地运行时,应投入零序电压保护。

放电间隙零序电流保护:当流过击穿间隙的电流大于或等于100A时保护动作。

零序过电压:取150~180V,110kV变压器通常取150V。

(二)变压器中压侧后备保护:

(1)CT变比:相间保护:1500/5

(2)保护配置:RCS-9682

(3)本装置设四段复合电压闭锁过流保护,各段电流及时间可独立整定,分别设置整定控制字控制其投退。一、二、三段可选是否经方向闭锁,四段可选是否经复合电压闭锁。

分析:中压侧后备保护是没有配置母线保护的中压侧母线的主保护,同时做35kV出线的远后备。根据起作用,四段保护的具体整定如下:

a.复合电压闭锁过流一、二段:做中压侧母线的主保护,按与35kV 出线的速断保护或限时速断保护配合。

IIop=Krel·Kbr·Iop.0

式中:Krel—可靠系数,又称配合系数,取1.05~1.15

Kbr—分支系数

Iop.0—与之配合的线路保护相关段动作电流

本例计算:35kV 出线速断最大定值:600/5 22A 0S

IIop=Krel ·Kbr ·Iop.0=1.05×1×22×120/300=9.24A

取9.5A(2850A)

灵敏度校验: Ksen=Iop

min .2.Ik 式中:I k.2.min —本侧母线金属性短路时流过保护的最小短路电流。 两相短路:0.2796*

Ksen=0.866×0.2796×16496/2850=1.4<1.5

灵敏度偏低,应考虑与35kV 出线的限时速断保护配合。

35kV 出线限时速断最大定值:600/5 19A 0.3S

IIop=Krel ·Kbr ·Iop.0=1.1×1×19×120/300=8.36A

取8.5A(2550A)

Ksen=0.866×0.2796×16496/2550=1.57>1.5

灵敏度满足要求。

动作时间:与35kV 出线的速断或限时速断保护动作时间配合。

本例取:0.6S 跳35kV 分段,0.9S 跳本侧。

由于定值远大于变压器额定电流,因此不必经复合电压闭锁。

b. .复合电压闭锁过流三、四段:

① 按躲变压器额定电流整定 Iop=In .Kr

Krel 式中:Krel —可靠系数,取1.2~1.3

Kr —返回系数,取0.85~0.95

实际计算中,通常取1.5倍变压器额定电流。

说明:复合电压闭锁的过流保护,只考虑本变压器的额定电流,无

复合电压闭锁的过电流保护,应考虑电动机的自启动系数。

本例计算:Iop=1.5×749.81/300=3.75A

② 与35kV 出线过流保护配合:

IIop=Krel ·Kbr ·Iop.0

式中:Krel —可靠系数,又称配合系数,取1.05~1.15

Kbr —分支系数

Iop.0—与之配合的线路保护相关段动作电流

本例计算:35kV 出线过流最大定值:600/5 6A 1.4S

IIop=Krel ·Kbr ·Iop.0=1.1×1×6×120/300=2.64A

取:3.8A (1140A )

灵敏度校验: Ksen=Iop

min .2.Ik 式中:I k.2.min —本站35kV 出线末端金属性短路时流过保护的最小短路电流。

两相短路:0.12*

Ksen=0.866×0.12×16496/1140=1.5>1.3

灵敏度满足要求。

复合电压计算同高压侧。

低压侧后备保护同中压侧。

1)中性点直接接地;

2)中性点不接地;

3)中性点经放电间隙接地。

(1)中性点直接接地运行

对中性点直接接地系统,配置三段式零压闭锁零序(方向)过电流保护。I段和II段均有两个时限并可独立通过控制字选择经方向元件闭锁,III段一时限,不经方向。

用于电压闭锁和零序方向的零序电压是采用自产零序电压(由UA,UB,UC软件生成)还是采用PT开口三角电压可通过选择。

当零序电压采用自产零序电压,PT断线后可选择退出零流方向和零压闭锁或不退出。

当零序电压采用PT开口三角电压,在有零序方向元件投入的情况下,故障处理程序中设有PT开口三角电压的极性检查。

对带方向的零序电流保护,方向元件由零序电压(自产零序电压UZC或开口三角电压3U0)和自产零序电流(由IA,IB,IC并联后生成的零序电流,接入IZC*,IZC)构成;方向元件灵敏角为-99°,方向元件可通过控制字选择为指向变压器或母线。

对零序方向元件,当变压器内部故障,选择方向指向变压器。

零序过流保护推荐跳闸方式如下:

I段一时限跳本侧联络开关,二时限跳本侧出口开关;

II段一时限跳本侧出口开关,二时限跳变压器各侧开关;

III段跳变压器各侧开关。

(2)中性点不接地或经放电间隙接地运行

对中性点不接地或经放电间隙接地系统,配置一段零序过电压保护和一段间隙过流保护,各有一时限。

零序过电压用PT开口三角电压。

零序过电压保护和间隙过流保护动作后跳变压器各侧开关。

4)相间故障后备保护方向元件的整定

(a)三侧有电源的三绕组升压变压器,相间故障后备保护为了满足选择性要求,在高压侧或中压侧要加功率方向元件,其方向一般指向该侧母线。

(b)高压及中压侧有电源或三侧均有电源的三绕组降压变压器和联络变压器,相间故障后备保护为了满足选择性要求,在高压侧或中压侧要加功率方向元件,其方向一般指向变压器,也可指向本侧母线。

主变保护定值计算稿

一. 主变压器系统参数 (一) 主变压器系统参数 (二)主变压 器比率制动差动保护 1、主变压 器差动: 主变压器高压侧TA 变比600/1; 主变压器低压侧TA 变比6000/1。 (1) 主变压器各侧一次额定电流: 高压侧: A U S I n b n n b 3.286242 3120000 311=?== 式中: U b1n 为主变压器高压侧额定电压;S n 为主变压器额定容量。

低压侧: A U S I n b n n b 65985 .103120000 311=?== 式中: U b1n 为主变压器低压侧额定电压;S n 为主变压器额定容量。 (2) 主变压器各侧二次额定电流: 高压侧: A n I I blh n b n b 477.01600286.3 12=== (n blh 为主变压器高压侧TA 变比600/1)。 低压侧: A n I I b l h n b n b 1.11 00 606598 12=== (n blh 为发电机机端TA 变比6000/1) 。 (3)高压侧平衡系数计算 3307.11 /60001 /060.10.5324231H 1=?=?= TAL TAH nL n phL n n U U K 其中,nH U 1为主变压器高压侧额定电压,nL U 1为主变压器低压侧额定电压,TAL n 为低压侧CT 变比, TAH n 为高压侧CT 变比。 (4) 差动各侧电流相位差与平衡补偿 主变压器各侧电流互感器二次均采用星形接线。 (5) 纵差保护最小动作电流的整定。最小动作电流应大于主变压器额定负载时的不平衡电流,即 Iop. min=Krel(Ker+ △m)I N /na= 2(0.1+0.02)X1.1=0.264 Iop.min 一般取0.2~0.3I N 式中:I N —主变压器额定电流; na —电流互感器的变比; Krel —可靠系数,取1. 5~2,取2; Ker —TA 综合误差取0.02 (6)起始制动电流Ires.o 的整定。起始制动电流宜取 Ires.o =(0.7~1.0)I N /na=0.8X1.1=0.88(A ) (7)动作特性折线斜率S 的整定。纵差保护的动作电流应大于外部短路时流过差动回路的不平衡电流。主变压器种类不同,不平衡电流计算也有较大差别, 双绕组主变压器 Iunb.max=(KapKccKer+△U+△m)Ik. max /na=(1X1X0.1+0.05+0.05)X 43936/6000 =1.464A 式中:Ker , △U , △m , na 的含意同式(5),但Ker=0.1; Kcc —电流互感器的同型系数,Kcc=1. 0;

[全]变压器主保护定值整定计算

变压器主保护定值整定计算 以下差动保护采用二次谐波制动,以二圈变压器为例,所有计算均为向量和。 ①不平衡电流产生的原因和消除方法: a.由变压器两侧电流相位不同而产生的不平衡电流; (Y/Δ-11)Y.d11 接线方式——两侧电流的相位差30°。 消除方法:相位校正。 * 二次接线调整 变压器Y侧CT(二次侧):Δ形。Y.d11 变压器Δ侧CT(二次侧):Y形。Y.Y12 * 微机保护软件调整 b.由计算变比与实际变比不同而产生的不平衡电流; c.由两侧电流互感器型号不同而产生的不平衡电流;(CT变换误差) d.由变压器带负荷调整分接头而产生的不平衡电流;(一般取额定电压) e.暂态情况下的不平衡电流; 当变压器电压突然增加的情况下(如:空载投入,区外短路切除后).

会产生很大的励磁涌流.电流可达2-3 In,其波形具有以下特点 * 有很大的直流分量.(80%基波) * 有很大的谐波分量,尤以二次谐波为主.(20%基波) * 波形间出现间断.(削去负波后) 可采用二次谐波制动,间断角闭锁,波形对称原理 f.并列运行的变压器,一台运行,当令一台变压器空投时会产生和应涌流 所谓“和应涌流”就是在一台变压器空载合闸时,不仅合闸变压器有励磁涌流产生,而且在与之并联运行的变压器中也出现涌流现象,后者就称为“和应涌流”。其波形特点与励磁涌流差不多。 4、主变保护整定计算 (1)计算变压器两侧额定一次电流

—该侧CT变比。 注意:Kjx只与变压器本身有关,而与保护装置的CT接线形式无关。传统的差动保护装置中,变压器Y形绕组侧的CT多采用△接线,新的微机型差动保护装置中,变压器Y绕组侧的CT可以采用Y接线,微机型差动保护在装置内部实现了CT的△接线,因此在保护定值计算时可完全等同于外部△接线。 对于Y/△-11接线方式:Ia`=Ia - Ib,Ib`= Ib - Ic, Ic `= Ic –Ia 对于Y/△-1接线方式:Ia`=Ia - Ic,Ib`= Ib - Ia, Ic `= Ic - Ib (3)计算平衡系数 设变压器两侧的平衡系数分别为和,则: ①降压变压器:选取高压侧(主电源侧)为基本侧,平衡系数为 Kh=1 Kl=Inh`/Inl` ②升压变压器:选取低压侧(主电源侧)为基本侧,平衡系数为

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数的计算 1 2 3 4 5 侧的二次电流。如果按上述的基准电流计算的平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足 0.1

I n 为变压器的二次额定电流, K rel 为可靠系数,K rel =1.3—1.5; f i(n)为电流互感器在额定电流下的比值误差。f i(n)=±0.03(10P ),f i(n)=±0.01(5P ) ΔU 为变压器分接头调节引起的误差(相对额定电压); Δm 为TA 和TAA 变比未完全匹配产生的误差,Δm 一般取0.05。 一般情况下可取: I op.0=(0.2—0.5)I n 。 (3) I res.0(4) a I Δm 2=0.05; b 、 式中的符号与三圈变压器一样。 最大制动系数为: K res.max =res unb.max rel I I K Ires 为差动的制动电流,它与差动保护原理、制动回路的接线方式有关,对对于两圈变压器I res = I s.max 。 比率制动系数:

K= res.max res.0res.max op.0res.max /I I -1/I I -K 一般取K=0.5。 (5)、灵敏度的计算 在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流I s.min ,同时计算相应的制动电流I res ;在动作特性曲线上查出相应的动作电流I op ;则灵敏系数K sen 为: K sen = op I I 要求K sen ≥(6)(7 式中:I K I e (81、低电压的整定和灵敏度系数校验 躲过电动机自起动时的电压整定: 当低电压继电器由变压器低压侧电压互感器供电时, U op=(0.5~0.6)U n 当低电压继电器由变压器高压侧电压互感器供电时, U op=0.7U n 灵敏系数校验

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

变压器保护的整定计算讲课稿

变压器保护的整定计 算

电力变压器的保护配置与整定计算 重点:掌握变压器保护的配置原则和差动保护的整定计算,理解三绕组变压器后备保护及过负荷保护配置 难点:变压器差动保护的整定计算 能力培养要求:基本能对变压器的保护进行整定计算方法。 学时:6学时 2.1 电力变压器保护配置的原则 一、变压器的故障类型与特征 变压器的故障可分为油箱内故障和油箱外故障两类,油箱内故障主要包括绕组的相间短路、匝间短路、接地短路,以及铁芯烧毁等。变压器油箱内的故障十分危险,由于油箱内充满了变压器油,故障后强大的短路电流使变压器油急剧的分解气化,可能产生大量的可燃性瓦斯气体,很容易引起油箱爆炸。油箱外故障主要是套管和引出线上发生的相间短路和接地短路。 电力变压器不正常的运行状态主要有外部相间短路、接地短路引起的相间过电流和零序过电流,负荷超过其额定容量引起的过负荷、油箱漏油引起的油面降低,以及过电压、过励磁等。 二、变压器保护配置的基本原则 1、瓦斯保护:

800KVA及以上的油浸式变压器和400KVA以上的车间内油浸式变压器,均应装设瓦斯保护。瓦斯保护用来反应变压器油箱内部的短路故障以及油面降低,其中重瓦斯保护动作于跳开变压器各电源侧断路器,轻瓦斯保护动作于发出信号。 2、纵差保护或电流速断保护: 6300KVA及以上并列运行的变压器,10000KVA及以上单独运行的变压器,发电厂厂用或工业企业中自用6300KVA及以上重要的变压器,应装设纵差保护。其他电力变压器,应装设电流速断保护,其过电流保护的动作时限应大于0.5S。对于2000KVA以上的变压器,当电流速断保护灵敏度不能满足要求时,也应装设纵差保护。纵差保护用于反应电力变压器绕组、套管及引出线发生的短路故障,其保护动作于跳开变压器各电源侧断路器并发相应信号。 3、相间短路的后备保护: 相间短路的后备保护用于反应外部相间短路引起的变压器过电流,同时作为瓦斯保护和纵差保护(或电流速断保护)的后备保护,其动作时限按电流保护的阶梯形原则来整定,延时动作于跳开变压器各电源侧断路器,并发相应信号。一般采用过流保护、复合电压起动过电流保护或负序电流单相低电压保护等。 4、接地短路的零序保护: 对于中性点直接接地系统中的变压器,应装设零序保护,零序保护用于反应变压器高压侧(或中压侧),以及外部元件的接地短路。 5、过负荷保护:

变压器保护整定计算培训(DOC)

变压器保护 一、变压器可能发生的故障和异常情况 (一)变压器的内部故障:指变压器油箱里面发生的各种故障。 (1)主要故障类型: 各相绕组之间的相间短路 油箱内部故障单相绕组部分线匝之间的匝间短路 单相绕组或引出线通过外壳发生的单相接地故障 (2)内部故障的危害:因为短路电流产生的高温电弧不仅会烧毁绕 组绝缘和铁芯,而且会使绝缘材料和变压器油受热分解而产生大量气体,有可能使变压器外壳局部变形破裂,甚至发生油箱爆炸事故。因此,当变压器内部发生严重故障时,必须迅速将变压器切除。 (二)变压器的外部故障:系指油箱外部绝缘套管及其引出线上发生的各种故障。 (1)主要故障类型: 引出线之间发生的相间短路 油箱外部故障 绝缘套管闪络或破碎而发生的单相接地(通过外壳)短路 (三)变压器的异常情况:由于外部短路或过负荷而引起的过电流、油箱漏油而造成的油面降低、变压器中性点电压升高、由于外加电压过高或频率降低引起的过励磁等。 二、变压器保护的配置 (一)瓦斯保护:防御变压器油箱内各种短路故障和油面降低

重瓦斯跳闸 轻瓦斯信号 (二)差动保护或电流速断保护:防御变压器绕组和引出线的多相短路、大接地电流系统侧绕组和引出线的单相接地短路及绕组匝间短路 (三)相间短路的后备保护:防御变压器外部相间短路并作为瓦斯保护和差动保护(或电流速断保护)的后备。 (四)零序电流保护:防御大接地电流系统中变压器外部接地短路。 (五)过负荷保护:防御变压器对称过负荷 (六)过励磁保护:防御变压器过励磁 三、变压器纵差动保护 (一)变压器纵差动保护的作用及保护范围 变压器纵差动保护作为变压器的主保护,其保护区是构成差动保护的各侧电流互感器之间所包围的部分。包括变压器本身、电流互感器与变压器之间的引出线。 (二)变压器纵联差动保护的原理

变压器保护 定值计算 算法

电力变压器保护--低电压起动的带时限过电流保护整定计算(1) 保护装置的动作电流(应躲过变压器额定电流) 输入参数: 参数名I1rT 参数值36.4 单位 A 描述变压器高压侧额定电流 参数名Kh 参数值 1.15 单位 描述继电器返回系数 参数名Kjx 参数值 1 单位 描述接线系数 参数名Kk 参数值 1.3 单位 描述可靠系数 参数名nl 参数值20 单位 描述电流互感器变比 计算公式及结果: Idz.j=Kk*Kjx*(I1rT/(Kh*nl)) =1.3*1*(36.4/(1.15*20)) =2.057391 (2) 保护装置动作电压 输入参数: 参数名Kh 参数值 1.15 单位

描述继电器返回系数 参数名Kk 参数值 1.3 单位 描述可靠系数 参数名Umin 参数值18.2 单位V 描述运行中可能出现的最低工作电压 参数名ny 参数值20 单位 描述电压互感器变比 计算公式及结果: Udz.j=Umin/(Kk*Kh*ny) =18.2/(1.3*1.15*20) =0.608696 (3) 保护装置一次动作电流 输入参数: 参数名Kjx 参数值 1 单位 描述接线系数 参数名nl 参数值20 单位 描述电流互感器变比 计算公式及结果: Idz=Idz.j*nl/Kjx =2.057391*20/1 =41.147826 (4)保护装置的灵敏系数(电流部分)与过电流保护相同

输入参数: 参数名I2k2.min 参数值659 单位 A 描述最小运行方式变压器低压侧两相短路,流过高压侧稳态电流 计算公式及结果: Klm=I2k2.min/Idz =659/41.147826 =16.015427 (5) 保护装置的灵敏系数(电压部分) 输入参数: 参数名Ush.max 参数值20 单位V 描述保护安装处的最大剩余电压 参数名ny 参数值20 单位 描述电压互感器变比 计算公式及结果: Klm=Udz.j*ny/Ush.max =0.608696*20/20 =0.608696 保护装置动作时限与过电流保护相同 电力变压器保护--低压侧单相接地保护(用高压侧三相式过电流保护)整定计算(1) 保护装置的动作电流和动作时限与过电流保护相同 输入参数: 参数名I1rT

主变保护定值的计算

一、1#主保护电流速断电流定值 1、差动电流速断电流定值: I ins=K rel×I umax÷K i =1、2×6×92、5÷40 =16、5 实取16 其中:K rel——————可靠系数取1、2~1、3 实取1、2 I umax—————空载合闸最大励磁涌流取额定电流的6~8倍实取6 额定电流为92、5A K i———————电流互感器变比200/5 2、比率差动保护: ①差动电流起始电流定值 I cdo=K k×(F ctw+⊿U/2+F wc)×I e×√3÷K i =2×(0、1+0、05+0、05)×92、5×√3÷40=1、59 实取1、6 其中:K k—————可靠系数取1、5~2 实取2 F ctw————CT误差取0、1 ⊿U/2————变压器分解头最大调整范围实为±5% F wc—————为保护本身误差取0、05 I e——————高压侧额定电流实为92、5A K i——————电流互感器变比200/5 ②比率制动系数: K cof= K k×(F ctw+⊿U/2+F wc) =2×(0、1+0、05+0、05)=0、4 实取0、5 说明:若K cof小于0、5时则取0、5 ③谐波制动系数: K2———————一般取0、13~0、15 实取0、13 为避免励磁涌流引起保护误动,遵循按相闭锁原则采用二次谐波闭锁功能 ④幅值补偿系数: 高压侧额定电流为92、5A 高压侧互感器变比为200/5 低压侧额定电流为513A 低压侧互感器变比为600/5 I HE为高压侧一次电流I HE=92、5÷40×√3=4 (相位补偿后) I LE为低压侧一次电流I LE=513÷120×√3=7、404 (相位补偿后) C OFL低压侧补偿系数: C OFL= I HE÷I LE=4÷7、404=0、54 =4÷7、404=0、54 实取0、94 C OFH高压侧补偿系数C OFH实取1

变压器保护定值计算书

脱硫变保护定值计算书 批准: 审核: 初审: 计算:

脱硫73B 、74B 保护采用南京东大金智电气有限公司生产的WDZ-400系列综合保护。 一、脱硫变73B 保护定值计算书 1.脱硫变73B 基本参数 1.1额定容量:Se=2500KV A 1.2额定电压:Ue=6300/400V 1.3额定电流:Ie=229.1/3608.4A 1.4阻抗电压:Ud=6.17% 1.5连接组别:DYn11 1.6高压侧CT 变比:300/5 1.7低压侧CT 变比:5000/1 1.8低压侧零序CT 变比:5000/5 2、脱硫变73B 保护定值计算 2.1、WDZ -440EX 低压变压器综合保护测控装置定值计算 1)高压侧速断保护定值: 73B 折算至100MV A 的阻抗为:3X = 5 .2100 10017.6?=2.468 a :变压器低压母线三相短路电流max .)3(K I 计算: 由#2厂高变供电时短路电流最大,故: max .)3(K I = 03334.0468.272527.029410.09160+++=0.03334 2.774669160 +=3262A b :变压器高压侧出口三相短路电流计算: max .)3(K I = 0.0333472527.029410.09160++=34 .09160 =26941A c :变压器低压母线单相接地短路电流计算: K I )(1= ∑ ∑+?0123X X I bs =468.292.808291603???+=27.82827480 =987A 高压侧短路保护定值整定原则;

a :按躲过低压母线三相短路电流计算: op I =rel K max .)3(K I =1.3×3262=4240.6A b :按躲过励磁涌流计算: op I =K TN K =12×229.1=2749.2A c :高压侧短路保护二次动作电流计算。一次动作电流取4240.6A ,则二次动作电流为: op I =4240.6/60=70.67A ,取71A 。 灵敏度检验:变压器高压侧入口短路时灵敏度为: ) (2sen K =0.866× 60 7126941 ?=6.32>2,满足要求。: 高压侧短路保护时间op t ,取装置最低值0.04S 。 2)高压侧过流保护定值: 按躲过最大负荷电流整定,Idz = a f K n K Ifh K max . a :对并列运行变压器,应考虑切除一台时所出现的过负荷 max .Ifh =1*-n Ie n =1 21 .229*2-=458.2A Idz = a f K n K Ifh K max .=60*9.02 .458*2.1=10.2A 灵敏度检验:按低压母线上发生两相短路时产生的最小短路电流来校验 K lm =op I I ) 2(min = 5.173.460 2.10)468.227725.09160 866.0≥=??+?( 式中 )2(op I ------低压母线两相短路电流。 满足要求。 高压侧过流保护时间:1S 3)高压侧过负荷保护定值: 高压侧定时限过负荷保护定值: a :按躲过变压器额定电流整定:

电力变压器的继电保护整定值计算

电力变压器的继电保护整定值计算 一.电力变压器的继电保护配置 注1:①当带时限的过电流保护不能满足灵敏性要求时,应采用低电压闭锁的 带时限的过电流保护。 ②当利用高压侧过电流保护及低压侧出线断路器保护不能满足灵敏性要求时,应装 设变压器中性线上的零序过电流保护。

③低压电压为230/400V的变压器,当低压侧出线断路器带有过负荷保护时,可不装 设专用的过负荷保护。 ④密闭油浸变压器装设压力保护。 ⑤干式变压器均应装设温度保护。 注2:电力变压器配置保护的说明 (1)配置保护变压器内部各种故障的瓦斯保护,其中轻瓦斯保护瞬时动作发出信号,重瓦斯保护瞬时动作发出跳闸脉冲跳开所连断路器。 (2)配置保护变压器绕组和引线多相短路故障及绕组匝间短路故障的纵联差动保护或者电流速断保护,瞬时动作跳开所连断路器。 (3)配置保护变压器外部相间短路故障引起的过电流保护或复合电压启动过电流保护。 (4)配置防止变压器长时间的过负荷保护,一般带时限动作发出信号。 (5)配置防止变压器温度升高或冷却系统故障的保护,一般根据变压器标准规定,动作后发出信号或作用于跳闸。 (6)对于110kV级以上中性点直接接地的电网,要根据变压器中性点接地运行的具体情况和变压器的绝缘情况装设零序电流保护或零序电压保护,一般带时限动作 作用于跳闸。 注3:过流保护和速断保护的作用及范围 ①过流保护:可作为本线路的主保护或后备保护以及相邻线路的后备 保护。它是按照躲过最大负荷电流整定,动作时限按阶段原则选择。 ②速断保护:分为无时限和带时限两种。 a.无时限电流速断保护装置是按照故障电流整定的,线路有故障时,它能瞬时动作, 其保护范围不能超出本线路末端,因此只能保护线路的一部分。 b.带时限电流速断保护装置,当线路采用无时限保护没有保护范围时,为使线路全长 都能得到快速保护,常常采用略带时限的电流速断与下级无时限电流速断保护相配 合,其保护范围不仅包括整个线路,而且深入相邻线路的第一级保护区,但不保护 整个相邻线路,其动作时限比相邻线路的无时限速断保护大一个时间级。 二.电力变压器的继电保护整定值计算 ■计算公式中所涉及到的符号说明 在继电保护整定计算中,一般要考虑电力系统的最大与最小运行方式。 最大运行方式—是指在被保护对象末端短路时,系统等值阻抗最小,通过保护装置的 短路电流为最大的运行方式。 最小运行方式—是指在上述同样短路情况下,系统等值阻抗最大,通过保护装置的 短路电流为最小的运行方式。

电力变压器的继电保护整定值计算

电力变压器的继电保护整定值计算一.电力变压器的继电保护配置

注1:①当带时限的过电流保护不能满足灵敏性要求时,应采用低电压闭锁的带时限的过电流保护。 ②当利用高压侧过电流保护及低压侧出线断路器保护不能满足灵敏性要求时,应装 设变压器中性线上的零序过电流保护。 ③低压电压为230/400V的变压器,当低压侧出线断路器带有过负荷保护时,可不装 设专用的过负荷保护。 ④密闭油浸变压器装设压力保护。 ⑤干式变压器均应装设温度保护。 注2:电力变压器配置保护的说明 (1)配置保护变压器内部各种故障的瓦斯保护,其中轻瓦斯保护瞬时动作发出信号,重瓦斯保护瞬时动作发出跳闸脉冲跳开所连断路器。 (2)配置保护变压器绕组和引线多相短路故障及绕组匝间短路故障的纵联差动保护或者电流速断保护,瞬时动作跳开所连断路器。 (3)配置保护变压器外部相间短路故障引起的过电流保护或复合电压启动过电流保护。 (4)配置防止变压器长时间的过负荷保护,一般带时限动作发出信号。 (5)配置防止变压器温度升高或冷却系统故障的保护,一般根据变压器标准规定,动作后发出信号或作用于跳闸。 (6)对于110kV级以上中性点直接接地的电网,要根据变压器中性点接地运行的具体情况和变压器的绝缘情况装设零序电流保护或零序电压保护,一般带时限动作 作用于跳闸。 注3:过流保护和速断保护的作用及范围 ①过流保护:可作为本线路的主保护或后备保护以及相邻线路的后备

保护。它是按照躲过最大负荷电流整定,动作时限按阶段原则选择。 ② 速断保护:分为无时限和带时限两种。 a. 无时限电流速断保护装置是按照故障电流整定的,线路有故障时,它能瞬时动作,其保护范围不能超出本线路末端,因此只能保护线路的一部分。 b. 带时限电流速断保护装置,当线路采用无时限保护没有保护范围时,为使线路全长都能得到快速保护,常常采用略带时限的电流速断与下级无时限电流速断保护相配合,其保护范围不仅包括整个线路,而且深入相邻线路的第一级保护区,但不保护整个相邻线路,其动作时限比相邻线路的无时限速断保护大一个时间级。 二.电力变压器的继电保护整定值计算 ■ 计算公式中所涉及到的符号说明 在继电保护整定计算中,一般要考虑电力系统的最大与最小运行方式。 最大运行方式—是指在被保护对象末端短路时,系统等值阻抗最小,通过保护装置的 短路电流为最大的运行方式。 最小运行方式—是指在上述同样短路情况下, 系统等值阻抗最大,通过保护装置的 短路电流为最小的运行方式。 (1)T r S ?——变压器的额定容量,kVA (2)T r U ?1——变压器的高压侧额定电压,kV (3)T r U ?2——变压器的低压侧额定电压,kV (4)T r I ?1——变压器的高压侧额定电流,A (5)T r I ?2——变压器的低压侧额定电流,A (6)0 0k u —— 变压器的短路电压(即阻抗电压)百分值 (7)rel K ——可靠系数,用于过电流保护时,DL 型继电器取1.2和GL 型继电器取1.3 ; 用于电流速断保护时,DL 型继电器取1.3和GL 型继电器取1.5.用于低压侧单相接

变压器保护定值整定

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数的计算

对上述表格的说明: 1、Sn为计算平衡系数的基准容量。对于两圈变 压器Sn为变压器的容量;对于三圈变压器Sn 一般取变压器高压侧的容量。 2、U h、U m、Ul分别为变压器高压侧、中压侧、低 压侧的实际运行的电压。 3、n ha、n ma、n la分别为高压侧、中压侧、低压侧的

TA变比。 4、TA的二次侧均接成“Y”型 5、I b为计算平衡系数的基准电流,对于两圈变 压器,I b取高压侧的二次电流;对于三圈变压器I b一般取低压侧的二次电流。如果按上述的基准电流计算的平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足0.1

Δm为TA和TAA变比未完全匹配产生的误差,Δm一般取0.05。 一般情况下可取: I op.0=(0.2—0.5)I n 。 (3)最小制动电流的整定 I res.0 = Na 1.0)In - (0.8。 (4)、比率制动系数K的整定最大不平衡电流的计算 a、三圈变压器 I unb.max =K st K aper f i I s.max +ΔU H I s.H.max +ΔU M I s.M.max + Δm1I s.1.max+Δm2I s.2.max 式中: K st 为TA的同型系数,K st =1.0 K aper 为TA的非周期系数,Kaper=1.5—2.0(5P或10P型TA)或Kaper=1.0(TP型TA) f i 为TA的比值误差, f i =0.1; I s.max 为流过靠近故障侧的TA的最大外部短路周期分量电流; I s.H.max 、I s.M.max 分别为在所计算的外部短路 时,流过调压侧(H、M)TA的最大周期分量电流;

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数得计算 对上述表格得说明: 1、Sn为计算平衡系数得基准容量。对于两圈变压器Sn为变压器得容量;对于三圈变压器 Sn一般取变压器高压侧得容量。 2、Uh、U m、Ul分别为变压器高压侧、中压侧、低压侧得实际运行得电压、 3、n ha、n ma、n la分别为高压侧、中压侧、低压侧得TA变比。 4、TA得二次侧均接成“Y”型 5、I b为计算平衡系数得基准电流,对于两圈变压器,Ib取高压侧得二次电流;对于三圈变 压器Ib一般取低压侧得二次电流。如果按上述得基准电流计算得平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足0。1〈K<4;如果无论怎么选取基准电流都不能满足0。1〈K<4得要求,建议使用中间变流器 (2)、最小动作电流Iop。0 I op。0为差动保护得最小动作电流,应按躲过变压器额定负载运行时得最大不平衡电流整定,即: Iop。0=

式中: In为变压器得二次额定电流, K rel为可靠系数,Krel=1、3-1。5; f i(n)为电流互感器在额定电流下得比值误差、f i(n)=±0。03(10P),f i(n)=±0.01(5P) ΔU为变压器分接头调节引起得误差(相对额定电压); Δm为TA与TAA变比未完全匹配产生得误差,Δm一般取0.05。 一般情况下可取: I op.0=(0。2—0。5)I n。 (3) 最小制动电流得整定 I res、0 = 。 (4)、比率制动系数K得整定 最大不平衡电流得计算 ?a、三圈变压器 I unb.max=K st Kaperf i I s、max+ΔUHI s.H.max +ΔUMIs.M.max+Δm1Is.1。max+Δm2Is、2、max 式中: Kst为TA得同型系数,K st=1。0 K aper 为TA得非周期系数,Kaper=1、5—2。0(5P或10P型TA)或Kaper=1.0(TP 型TA) fi为TA得比值误差, fi=0。1; I s。max为流过靠近故障侧得TA得最大外部短路周期分量电流; I s、H。max、Is.M、max分别为在所计算得外部短路时,流过调压侧(H、M)TA得最大周 期分量电流; I s。1。max、Is、2、max分别为在所计算得外部短路时,流过非靠近故障点得另两侧得最 大周期分量电流; Δm1、Δm2为由于1侧与2侧得TA(包括TAA)变比不完全匹配而产生得误差,初选 可取Δm1=Δm2=0。05; b、两圈变压器 Iunb。max =(K st K aper fi +ΔU +Δm)I s.max 式中得符号与三圈变压器一样。 最大制动系数为:

零序保护整定的计算~

零序电流保护的整定计算 一、变压器的零序电抗 1、Y/△联接变压器 当变压器Y侧有零序电压时,由于三相端子是等电位,同时中性点又不接地,因此变压器绕组中没有零序电流,相当于零序网络在变压器Y侧断开(如图1所示)。 图1:Y/△联接变压器Y侧接地短路时的零序网络 2、Y0/△联接变压器 当Y0侧有零序电压时,虽然改侧三相端子是等电位,但中性点是接地的,因此零序电流可以经过中性点接地回路和变压器绕组。

每相零序电压包括两部分:一部分是变压器Y0侧绕组漏抗上的零序电压降I0XⅠ,另一部分是变压器Y0侧的零序感应电势I lc0X lc0(I lc0为零序励磁电流,X lc0为零序励磁电抗)。由于变压器铁芯中有零序磁通,因此△侧绕组产生零序感应电势,在△侧绕组内有零序电流。由于各相零序电流大小相等,相位相同,在△侧三相绕组内自成回路,因此△侧引出线上没有零序电流,相当于变压器的零序电路与△侧外电路之间是断开的。所以△侧零序感应电势等于△侧绕组漏抗上的零序电压降I0’XⅡ。 Y0/△联接变压器的零序等值电路如图2所示。由于零序励磁电抗较绕组漏抗大很多倍,因此零序等值电路又可简化,如图3所示。在没有实测变压器零序电抗的情况下,这时变压器的零序电抗等于0.8~1.0倍正序电抗。即:X0=(0.8~1.0)(XⅠ+XⅡ)= (0.8~1.0)X1。 本网主变零序电抗一般取0.8 X1。

图2:Y0/△联接变压器Y0侧接地短路时的零序网络 图3:Y0/△联接变压器Y0侧接地短路时的零序网络简化 二、零序电流保护中的不平衡电流 实际上电流互感器,由于有励磁电流,总是有误差的。当发生三相短路时,不平衡电流可按下式近似地计算: I bp.js=K fzq×f wc×ID(3)max 式中K fzq——考虑短路过程非周期分量影响的系数,当保护动作时间在0.1S以下时取为2;当保护动作时间在0.3S~0.1S时取为1.5;动作时间再长即大于0.3S时取为1; f wc——电流互感器的10%误差系数,取为0.1; I D(3)max——外部三相短路时的最大短路电流。

线路的过流速断保护定值计算方法

答读者问 【编者按】山西省临县电业局高宁奎给本刊作者苏玉林致信(见下文),询问有关继电保护的三个问题,很有代表性、自本期开始,我们以“答读者问”的形式请苏玉林高工逐一解答,以满足高宁奎同志的要求.希望广大读者也感兴趣。 尊敬的苏高工:您好。 提笔先问您身体健康,一切均好,万事如意。 我是您忠实的读者,您在《农村电气化》杂志1987年第一期至1988年第二期上所刊的“电力系统短路电流实用计算”,和1990年第一期到1991年第一期所刊的“二次回路阅读法”,我全部看完,并做了笔记,感到很好,很有实用性。 现去信,我有一事相求,敬请您在百忙中,抽时间给介绍一下; 一、线路(35kV级以下)的电流速断保护经计算灵敏度达不到要求时,应采取什么措施?如何计算? 二、变压器(35kV、5000kVA以下)电流速断保护经计算灵敏度达不到要求后,采用“差动保护”时,如何计算?电流互感器的变比如何选择? 三、电力电容器( 10kV以下)馈线保护的计算原则、方法和步骤是什么? 敬请在百忙中,抽时间回信为盼。谢谢您。 山西省临县电业局高宁奎 1991年5月26日 答问题1 线路的过流、速断保护定值计算方法 苏玉林北京供电局(100031) 在10~35kV的输电线路中,一般配置有过流、速断及三相一次重合闸。现就这类保护定值的简便、可行的计算方法举例说明,以便全国同行交流经验。一、一条线路带一台变压器,(如图1) (一)给定条件 1.系统的最大及最小运行方式下的标么电抗值(以1000MVA为基准容量)分别为:

X=3 X=5 小大. 2.线路X的线号为LGJ—150,长度为10km L 3.变压器B:S=3200kVA U%=7.5% I=53A eeD(二)线路及变压器阻抗参数标么值计算 l.线路。经查线路参数表,LGJ— 15 0型号每公里的阻抗为 (三)短路电流计算 1.变压器低压侧D点三相短路最大方式下:1 (四)变压器的过流及速断定值计算 在辐射型的电力系统中,继电保护定值计算过程应遵循“由下而上”的计算方法,即:首先计算电网末端设备的保护定值,然后再计算上一级保护定值。据以上原则,在图1的系统中,应首先计算变压器的定值。 1.变压的过流定值 考虑变压器的过负荷,按2I整定:e I=2 X 53=106A dz动作时间上,按与所带配电线路的过流时间配合整定。若配电路过流时间为0.5S 则: t=0.5十Δt=0.5+0.5=1s .变压器速断定值 2. 按在系统最大运行方式下,躲过变压器低压侧三相短路电流整定: I=KI大=1.3 X 561=729.3A D1dzK 3.检查变压器过流及速断的灵敏度 保护定值确定之前,必须检查拟取定值的灵敏度. (1)过流灵敏度。据经验,在系统最小运行方式下,变压器低压侧三相短路时,灵敏度KL大于或等于2即可。

变压器保护定值整定

变压器保护定值整定公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为 主。 差动保护 (1)、平衡系数的计算 对上述表格的说明: 1、Sn为计算平衡系数的基准容量。对于两圈变压器Sn为变压器的容量;对 于三圈变压器Sn一般取变压器高压侧的容量。 2、U h、U m、Ul分别为变压器高压侧、中压侧、低压侧的实际运行的电压。 3、n ha、n ma、n la分别为高压侧、中压侧、低压侧的TA变比。 4、TA的二次侧均接成“Y”型 5、I b为计算平衡系数的基准电流,对于两圈变压器,I b取高压侧的二次电流; 一般取低压侧的二次电流。如果按上述的基准电流计算对于三圈变压器I b ,直到平衡系数满足

I op 。0为差动保护的最小动作电流,应按躲过变压器额定负载运行时的最大不平衡电流整定,即: = Na m)In U fi(n)*Krel(2?+?+ 式中: I n 为变压器的二次额定电流, K rel 为可靠系数,K rel =—; f i(n)为电流互感器在额定电流下的比值误差。f i(n)=±(10P ),f i(n)=±(5P ) ΔU 为变压器分接头调节引起的误差(相对额定电压); Δm 为TA 和TAA 变比未完全匹配产生的误差,Δm 一般取。 一般情况下可取: =(—)I n 。 (3) 最小制动电流的整定 = Na 1.0)In -(0.8。 (4)、比率制动系数K 的整定 最大不平衡电流的计算 a 、三圈变压器 = +Δ +Δ式中: K st 为TA 的同型系数,K st = K aper 为TA 的非周期系数,Kaper=—(5P 或10P 型TA )或Kaper=(TP 型TA ) f i 为TA 的比值误差, f i =; 为流过靠近故障侧的TA 的最大外部短路周期分量电流; 、分别为在所计算的外部短路时,流过调压侧(H 、M )TA 的最大周期分量电流; 、分别为在所计算的外部短路时,流过非靠近故障点的另两侧的最大周期分量电流; Δm 1、Δm 2为由于1侧和2侧的TA (包括TAA )变比不完全匹配而产生的误差,初选可取Δm 1=Δm 2=;

110kV变压器整定计算原则

110kV 变压器整定计算方案 差动保护 整定原则: 1. 差动速断电流:应按躲过变压器初始励磁涌流整定,推荐值如下: 6300kVA 及以下变压器: 7-12 Ie 6300-31500kVA 变压器: Ie 40000-120000 kVA 变压器: 3-6 Ie 120000 kVA 及以上变压器: 2-5 Ie 2. 差动动作电流:~ 3. 比率制动系数: 适用于制动电流为∑== m i Ii Ir 121、{}l I h I Ir &&&,m I ,=和复式比例制动(ISA 系列)。 若制动电流{} l I h I Ir &&&,m I ,=可选择,制动电流不能只取负荷侧电流(区外短路故障时差动保护可靠性降低)。 若制动电流计算方法有别于常规,制动系数取值需结合实际,并参考厂家建议整定。 4. 二次谐波制动系数: 建议取 5. TA 断线闭锁差动保护:建议 TA 断线或短路且差流小于时闭锁差动保护,大于时不闭锁 差动保护。若无上述区域选择,CT 断线建议不闭锁差动保护。 6. 差流越限告警(TA 断线报警):取。 7. 差动保护TA 断线若采用负序电流判据,建议取。 8. 若110kV 站变压器为双变低,且其中一分支暂不接入时,该分支差动保护CT 变比调整 系数仍按实际整定,不取装置最小值。 整定方案: 1. 不带时限动作于跳主变各侧。 2. 保护动作不闭锁备自投。(不要) 后备保护 整定原则: 1. 110kV 过电流保护 可选择经复压闭锁或不经复压闭锁 a 经复压闭锁: 按躲负荷电流整定 IL=k K × IHe /f K ×Nct k K = zqd K = f K 电磁型取,微机型取 b 不经复压闭锁: 考虑躲备自投动作后变压器可能的最大负荷电流: IL=k K ×zqd K × IHe /f K ×Nct k K = f K 电磁型取,微机型取

变压器保护的整定计算

电力变压器的保护配置与整定计算 重点:掌握变压器保护的配置原则和差动保护的整定计算,理解三绕组变压器后备保护及过负荷保护配置 难点:变压器差动保护的整定计算 能力培养要求:基本能对变压器的保护进行整定计算方法。 学时:6学时 2.1 电力变压器保护配置的原则 一、变压器的故障类型与特征 变压器的故障可分为油箱内故障和油箱外故障两类,油箱内故障主要包括绕组的相间短路、匝间短路、接地短路,以及铁芯烧毁等。变压器油箱内的故障十分危险,由于油箱内充满了变压器油,故障后强大的短路电流使变压器油急剧的分解气化,可能产生大量的可燃性瓦斯气体,很容易引起油箱爆炸。油箱外故障主要是套管和引出线上发生的相间短路和接地短路。 电力变压器不正常的运行状态主要有外部相间短路、接地短路引起的相间过电流和零序过电流,负荷超过其额定容量引起的过负荷、油箱漏油引起的油面降低,以及过电压、过励磁等。 二、变压器保护配置的基本原则 1、瓦斯保护: 800KVA及以上的油浸式变压器和400KVA以上的车间内油浸式变压器,均应装设瓦斯保护。瓦斯保护用来反应变压器油箱内部的短路故障以及油面降低,其中重瓦斯保护动作于跳开变压器各电源侧断路器,轻瓦斯保护动作于发出信号。 2、纵差保护或电流速断保护: 6300KVA及以上并列运行的变压器,10000KVA及以上单独运行的变压器,发电厂厂用或工业企业中自用6300KVA及以上重要的变压器,应装设纵差保护。其他电力变压器,应装设电流速断保护,其过电流保护的动作时限应大于0.5S。对于2000KVA以上的变压器,当电流速断保护灵敏度不能满足要求时,也应装设纵差保护。纵差保护用于反应电力变压器绕组、套管及引出线发生的短路故障,其保护动作于跳开变压器各电源侧断路器并发相应信号。 3、相间短路的后备保护:

相关文档