文档库 最新最全的文档下载
当前位置:文档库 › 挑流消能的水力计算

挑流消能的水力计算

挑流消能的水力计算
挑流消能的水力计算

《水力学》教学大纲

《水力学》教学大纲 一、课程基本信息 课程名称(中、英文):水力学(Hydraulics) 课程号(代码):30619450 课程类别:(专业基础技术课) 授课学时:85 学分:5 二、教学目的及要求 三、教学内容 水力学是一门技术基础课,应当理论联系实际,以分析水流现象,揭示水流运动规律,加强水力学的基本概念和基本原理的讲解为主。 (一)基本内容 1.绪论 (1) 液体的物理力学性质 (2) 理想液体和连续介质的概念及其应用。 2.水静力学 (1) 静水压强的基本公式、等压面概念和作用在平面、曲面 上的静水总压力,压力体图的绘制。 (2) 压强的表示方法和压强单位较多,应讲解其关系,避免 引起混乱; (3) 几种质量力作用下的液体平衡,应结合例题讲解,以加

强压强微分方程式理解和运用。 3. 水动力学基础 (1) 连续性方程、能量方程、动量方程是重点,这部分应讲深讲透,结合实例分析三大基本方程的应用条件和注意的问题及解题步骤,使学生正确理解其意义,通过习题熟练地掌握这些方程; (2) 液体运动的两种方法,流线、迹线的概念及特点;流量、断面平均流速、渐变流和急变流动水压强分布的概念。 4.液流型态和水头损失 (1) 达西公式、层流紊流特征、雷诺数的物理意义和流态判别、沿程阻力和局部阻力是重点; (2 )造成水头损失的原因及影响因素; 5.有压管道恒定流 (1) 短管和长管水力计算和水头线绘制是重点。 (2) 复杂管道的特点和基本公式解题的方法。 6.明渠恒定均匀流 (1) 明渠均匀流的特性; (2) 明渠均匀流水力计算; 7.明渠恒定非均匀流 (1)缓流、急流、临界流的判别,佛汝德数物理概念,断面必能及必能曲线的概念; (2) 明渠非均匀流水力计算;临界水深的计算;

管道水力计算

管道水力计算 新大技术研究所:戴颂周 2012 年3 月2 日

目录 第一章单相液体管内流动和管道水力计算 (3) 第一节流体总流的伯努利方程 (3) 一、流体总流的伯努利方程 (3) 二、流体流动的水力损失 (3) 第二节流体运动的两种状态 (6) 一、雷诺实验 (6) 二、雷诺数 (7) 三、圆管中紊流的运动学特征—速度分布 (7) 四、雷诺数算图 (8) 第三节沿程水力损失 (9) 一、计算方法: (9) 第四节局部水力损失 (14) 第五节管道的水力计算 (17) 一、管道流体的允许流速(经济流速供参考) (17) 二、简单管道的水力计算 (19) 第二章玻璃钢管道水力计算 (20) 第一节玻璃钢管道水力计算公式 (20) 一、玻璃钢管道水力计算公式 (20) 二、管道水力压降曲线 (21) 三、常用液体压降的换算 (21) 四、常用管件压降 (23) 第二节油气集输管道压降计算 (24) 第三节玻璃钢输水管线的水力学特性 (25) 一、玻璃钢输水管水流量计算 (25) 二、玻璃钢输水管水击强度计算 (25) 第三章管道水力学计算中应注意的几个问题 (28) 一、热油管道的工艺计算 (28) 二、油水两相液体的工艺计算 (28) 三、地形变化时的水力坡降 (30)

第一章 单相液体管内流动和管道水力计算 第一节 流体总流的伯努利方程 一、流体总流的伯努利方程 1. 流体总流的伯努利方程式(能量方式) =++g c g P Z 22 1111αρw h g c g P Z +++22 2222αρ 2. 方程的分析 (1) 方程的意义 物理意义:不可压缩的实际流体在管道内流动时的能量守恒,或者说,上游机械能=下游机械能+能量的损失。 (2) 各项的意义 -21,z z 单位重量流体所具有的位能,或位置水头,m ,即起点、终点标高。-g p g p ρρ/,/21单位重量流体所具有的压能,或压强水头,m ;即P 1 P 2为起点、 终点液流压力,-g c g c 2/,2/2 22211αα单位重量流体所具有的动能,或速度水头, m ;即C 1 C 2为液流起、终点的流速。 -21,αα单位重量流体的动能修正系数;-w h 单位重量流体流动过程的水力损失,m 。 二、流体流动的水力损失 1. 水力损失的计算 液体所以能在管道中流动,是由于泵或自然位差提供的能量。液体流动过程中与各种管道、阀件、管件发生摩擦或撞击而产生阻力。同时液体质点间的互相摩擦和撞击也要产生阻力。为了使液体继续流动,就必须供给能量,以克服这些阻力。用于克服液流阻力的能量,就是管路摩阻损失。水力损失一般包括两项,即沿程损失 f h 与局部损失 m h 。因此,流体流动时上、下游截面间的总水力损失 w h 应等于两截面间的所有沿程损失与局部损失之和,即

浅谈长距离重力流输水管道中的压力特点

浅谈长距离重力流输水管道中的压力特点 一、重力流输水的分类 根据水力学的重力流输原理,我们将供水系统的重力流输水分成了以下两类。明渠或者暗涵均可以划分为第一类无压流输水,而另一类是承压流输水一般而言指的也是暗涵。所谓的无压流输水就是在输送途中不产生水压,类似与自然界的河水流态。无压流输水在输水过程中流速的缓急完全取决于地形的陡峭程度,渠道的坡度决定了水流的坡度。无压流输水的供给目的地一般都是开阔的蓄水池、水库等无压力且足够大的储水地。承压流输水在输水过程中则主要依赖于动水压力和静水压,它的输送原理和水泵加压输水也有差别。但用承压流输水方式 进行供水的时候,水需要流经暗管,进入管道后就形成了压力,压力的大小与输送管道的长短相关。因为承压流输水管的压力由静水压和动水压力组成,所以在水力坡度与地势一致时,动水压力就不存在,只剩下静水压;当停止输水并保持管道中的水充盈状态,此时管道末端的静水压力最大。由于承压流输水输送的水压力很大,所以这种形式的供水可以直接提供水到城市供水网或者高处建筑物。 二、重力流输水的特点 由于重力流输水有节约能源、操作便捷、成本低、投入少等好处,所以该供水方案成立当前最佳的供水选择。但是重力流输水也存在自身的局限性,在地势平坦的地区就不能实现重力输水,一定要在有一定地形高度差的地方才能实行。在重力流输水供水过程中,目标供水地的不同对地势的要求也不一样,例如城市供水管网的用户过多,需要的压力也随着增加,这就需要较为陡峭的地势才能产生足够大的压力,保证城市供水管网的水资源供应。 重力流输水系统要想顺利完成输水工作,必须依赖与地形地貌,只有足够的高度差才能保证水资源的正常输送。在这里我们将重力流输水和水泵加压输水进行比较,看出它存在一些局限问题: ①重力流

拦河溢流坝水力计算实例

拦河溢流坝水力计算实例 一、一、资料和任务 为了解决某区农田灌溉问题。于某河建造拦河溢流坝一座,用以抬高河中水位,引水灌溉。进行水力计算的有关资料有: 1.1.设计洪水流量为550米3/秒; 2.2.坝址处河底高程为43.50米; 3.3.由灌区高程及灌溉要求确定坝顶高程为48.00米; 4.4.为减小建坝后的壅水对上游的影响,根据坝址处河面宽度采用坝的溢流宽度B=60米; 5.5.溢流坝为无闸墩及闸门的单孔堰,采用上游面铅直的三圆弧段WES型实用堰剖面,并设有圆弧形 翼墙; 6.6.坝前水位与河道过水断面面积关系曲线,见图1; 7.7.坝下水位与河道流量关系曲线,见图2; 8.8.坝基土壤为中砾石; 9.9.河道平均底坡i=0.00127; 图1 图2 10.河道实测平均糙率n=0.04。 水力计算任务: 1.1.确定坝前设计洪水位; 2.2.确定坝身剖面尺寸; 3.3.绘制坝前水位与流量关系曲线; 4.4.坝下消能计算; 5.5.坝基渗流计算; 6.6.坝上游壅水曲线计算。

二、 二、 确定坝前设计洪水位 坝前设计洪水位决定于坝顶高程及设计水头d H ,已知坝顶高程为48.00米,求出d H 后,即可确定坝前设计洪水位。 溢洪坝设计水头d H 可用堰流基本方程2 /302H g mB Q σε=计算。因式中0H ,ε及σ 均与d H 有关,不能直接解出d H ,故用试算法求解。 设d H =2.53米,则坝前水位=48.00+2.53=50.53米,按坝前水位由图1查得河道过水断面面积A 0=525米2,又知设计洪水流量Q=550米3/秒,则 0v =0A Q =525550 = 1.03米/秒 g av 220=8.9203.10.12 ??=0.056米 0H =d H +g av 220 =2.53+0.056 = 2.586米 按设计洪水流量Q ,图2查得相应坝下水位为48.17米。下游水位超过坝顶的高度 s h =48.17-48.00=0.17米 o s H h =586.217 .0=0.066<0.15 下游坝高 1P =48.00—43.50=4.50米 o H P 1=586.250 .4=1.74<2.0 因不能完全满足实用堰自由出流条件: o s H h ≤0.15及o H P 1 ≥2.0,故为实用堰淹没出流。 根据o s H h 及o H P 1 值由《水力计算手册》曲线型实用堰的淹没系数图查得σ=0.999。因溢 流坝为单孔堰,溢流孔数n=1;溢流宽度B=b=60米。按圆弧形翼墙由边墩系数表查得边墩系数ζk =0.7,则侧收缩系数 nb H n k 00] )1[(2.01ζζε+--= =1-0.2×0.7×601586 .2?=0.994 对于WES 型实用堰,当水头为设计水头时,流量系数m =d m =0.502,于是可得溢流坝流量 2 /302H g mB Q σε= =0.999×0.994×0.502×602 /3586.28.92?? =550.6米3 /秒 计算结果与设计洪水流量基本相符,说明假设的d H 值是正确的,故取设计水头d H =2.53

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。 3、了解复杂管道的特点和计算方法。 【容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。 5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分

为串联管道、并联管道、分叉管道、沿程泄流管和管网。 (2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道的水头损失,可以用公式直接计算,但需要计算管流速,以判别管是否属于紊流阻力平方区,否则需要进行修正。 3)已知管线布置、输水流量Q 和作用水头H ,求输水管的直径 d 。 j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

有压引水系统水力计算

一、设计课题 水电站有压引水系统水力计算。 二、设计资料及要求 1、设计资料见《课程设计指导书、任务书》; 2、设计要求: (1)、对整个引水系统进行水头损失计算; (2)、进行调压井水力计算球稳定断面; (3)、确定调压井波动振幅,包括最高涌波水位和最低涌波水位; (4)、进行机组调节保证计算,检验正常工作状况下税基压力、转速相对值。 三、调压井水力计算求稳定断面 <一>引水道的等效断面积:∑= i i f L L f , 引水道有效断面积f 的求解表 栏号 引水道部位 过水断面f i (m 2 ) L i (m) L i/f i

所以引水道的等效断面积∑= i i f L L f =511.28/21.475=23.81 m 2 <二>引水道和压力管道的水头损失计算: 引水道的水头损失包括局部水头损失 h 局和沿程水头损失h 沿两部分 压力管道的水头损失包括局部水头损失h 局和沿程水头损失h 沿两部分 1, 2 2g 2h Q ?ξ局局= g :重力加速度9.81m/s 2 Q :通过水轮机的流量取102m 3/s ω :断面面积 m 2 ξ:局部水头损失系数 局部水头损失h 局计算表 栏号 引水建筑物部位及运行 工况 断面面积 ω(m 2 ) 局部水头损失系数 局部水头损失 10-6Q 2(m ) 合计(m) (1) 进 水 口 拦污栅 61.28 0.12 0.017 0.307 (2) 进口喇叭段 29.76 0.10 0.060 (3) 闸门井 24.00 0.20 0.184 (4) 渐变段 23.88 0.05 0.046 (5) 隧 洞 进口平面转弯 23.76 0.07 0.066 0.204 (6) 末端锥管段 19.63 0.10 0.138 (7) 调 压 正常运行 19.63 0.10 0.138 2.202 (1) 拦污栅 61.28 4.1 0.067 (2) 喇叭口进水段 29.76 6.0 0.202 (3) 闸门井段 24.00 5.6 0.233 (4) 渐变段 2 3.88 10.0 0.419 (5) D=5.5m 23.76 469.6 19.764 (6) 锥形洞段 21.65 5.0 0.231 (7) 调压井前管段 19.63 10.98 0.559

给水部分水力计算

2.2给水系统 2.2.1 给水用水定额及时变化系数 本设计建筑用水主要为住宅部分和商场卫生间。因为本商住楼一层商业区用 水量由市政供水管网直接供水,住宅区采用水泵并联分区供水的方式。参考《建 筑给水排水设计规范》 (GB50015-2003)的有关规定的用水量标准及时变化系数,本设计中采用的用 水量标 准见表2-1: 用水量表2-1 序号用水类别用水量标准使用单位数使用时间时变化系数 1 住宅200L/人.d 476人1 2 2.5 2 商场6L/m2.d 1210m224 1.5 注:在此住宅用水人数是按每套房 3.5 人计 2.2.2 最高日用水量 Q d=m·q d ? 式中:Q d——最高日用水量,L/d; m——用水单位数; q d——最高日生活用水定额,(L/人·d) 则: Q d1=m1·q d1=476×200=95200L/s=95.2m3/d Q d2=m2·q d2=1210×6=7260L/s=7.26m3/d 未预见用水量按总用水量的10%计算,即: Qd'=10%×(Q d1+Q d2)=(95.2+7.26)=10.25m3/d 2.2.3则本建筑的最高日用水量为: Q d=Q d1+Q d2+Q d'=95.2+7.26+10.25=112.71m3/d Q h=K h·Q p 式中: Q h——最大小时用水量,m3/h; K h ——小时变化系数; Q p ——平均小时用水量,m3/h 。 则: Q h1=K h1·Q p1=2.5×95.2÷24=9.58m3/h Q h2=K h2·Q p2=1.5×7.26÷24=0.45m3/h Q'=10%(Qh1+Q h2)=(Q h1+Q h2)=10%(9.58+0.45)=1.00m3/h Q h=Q h1+Q h2+Q'=9.58+0.45+1.00=11.00m3/h 2.2.4设计秒流量 进行给水管网最不利管段的水力计算,目的是算出各管段的设计秒流量,各

压力流和重力流的比较教学文案

按压力获取方式分类 按压力获取方式不同可分为机压输水系统和自压输水系统。 1.机压(水泵提水)输水系统 它又分为水泵直送式和蓄水池式。当水源水位不能满足自压输水要求时,要利用水泵加压将水输送到所需要的高度或蓄水池中,通过分水口或管道输水至田间。目前,井灌区大部分采用直送式。 2.自压输水系统 当水源较高时,可利用地形自然落差所提供的水头作为管道输水所需要的工作压力。在丘陵地区的自流灌区多采用这种形式。 浅谈长距离重力流输水管道中的压力特点 一、重力流输水的分类 根据水力学的重力流输原理,我们将供水系统的重力流输水分成了以下两类。明渠或者暗涵均可以划分为第一类无压流输水,而另一类是承压流输水一般而言指的也是暗涵。所谓的无压流输水就是在输送途中不产生水压,类似与自然界的河水流态。无压流输水在输水过程中流速的缓急完全取决于地形的陡峭程度,渠道的坡度决定了水流的坡度。无压流输水的供给目的地一般都是开阔的蓄水池、水库等无压力且足够大的储水地。承压流输水在输水过程中则主要依赖于动水压力和静水压,它的输送原理和水泵加压输水也有差别。但用承压流输水方式 进行供水的时候,水需要流经暗管,进入管道后就形成了压力,压力的大小与输送管道的长短相关。因为承压流输水管的压力由静水压和动水压力组成,所以在水力坡度与地势一致时,动水压力就不存在,只剩下静水压;当停止输水并保持管道中的水充盈状态,此时管道末端的静水压力最大。由于承压流输水输送的水压力很大,所以这种形式的供水可以直接提供水到城市供水网或者高处建筑物。 二、重力流输水的特点 由于重力流输水有节约能源、操作便捷、成本低、投入少等好处,所以该供水方案成立当前最佳的供水选择。但是重力流输水也存在自身的局限性,在地势平坦

水电站建筑物,有压引水水力计算说课讲解

水电站建筑物,有压引水水力计算

《水电站建筑物》课程设计有压引水系统水力计算 设 计 计 算 书 姓名 专业 学号 指导教师 时间

目录 第一部分设计课题 (3) 1.设计内容 (3) 2.设计目的 (3) 第二部分设计资料及要求 (4) 1.设计资料 (4) 2.设计要求 (5) 第三部分调压井稳定断面计算 (6) 1.引水系统水头损失 (6) 2.引水道有效断面 (8) 3.稳定断面计算 (8) 第四部分调压井水位波动计算 (10) 1.最高涌波水位 (10) 2.最低涌波水位 (13) 第五部分调节保证计算 (15) 1.水锤计算 (15) 2.转速相对升高值 (19) 第六部分附录 (21) 1.附图 (21) 2.参考文献 (21)

第一部分设计课题 1.1 课程设计内容 对某水电站有压引水系统水力计算 1.2 课程设计目的 通过课程设计进一步巩固所学的理论知识,使理论与工程实际紧密结合。提高学生分析问题和解决实际问题的能力,计算能力和绘图能力。

第二部分 设计资料及要求 2.1 设计资料 某电站是MT 河梯级电站的第四级。坝址以上控制流域面积23622Km ,多年平均流量44.9s m /3,由于河流坡降较大,电站采用跨河修建基础拱桥,在桥上再建双曲拱坝的形式,坝高(包括基础拱桥)54.8m 。水库为日调节,校核洪水位1097.35m ,相应尾水位1041.32m ;正常蓄水位1092.0m ,相应尾水位1028.5m ;死水位1082.0m ,最低尾水位1026.6m 。总库容m H m p 58,1070734=?,m H m H 4.53,4.65,min max ==。装机容量kw 4105.13??,保证出力kw 41007.1?,多年平均发电量h kw .1061.18?。 该电站引水系统由进水口、隧洞、调压井及压力管道四部分组成,电站平面布置及纵断面图如图所示(指导书图1,图2) 隧洞断面采用直径为5.5 m 的圆形,隧洞末端设一锥形管段,直径由5.5 m 渐变至5 .0m ,锥管段长5.0m ,下接压力钢管。隧洞底坡取0.005,全长500.3m ,其中进水口部分长25.7m,进口转弯段长25.595m, 锥管段长为5 m 。 水轮机型号为HL211—LJ —225,阀门从全开到全关的时间为7s ,其中有效关闭时间s T s 68.4=。机组额定转速m in /3.2140r n =,飞轮力矩22.10124m KN GD =。蜗壳长度s m L m L /66.165V .40.202==蜗蜗蜗,,尾水管长度s m L m L /697.3V .16.22 ==尾尾尾,。转轮出口直径 m m 94.1H 2.44D s 2-==,。经核算,当上游为正常蓄水位,下游为正常尾水位,三台机满发电,糙率n 取平均值,则通过水轮机的流量为96.9s m /3,当上游为死水位,下游为正常尾水位,三台机满发,饮水道糙率区最小值,压力管道糙率取最大值,则通过水轮机的流量为102s m /3。当上游为校核洪水位,下游为相应尾水位,电站丢弃两台机时,若丢荷幅度为30000—0KW,则流量为63.6—0s m /3;丢荷幅度为45000—15000KW,则流量变幅为96.5—31.0s m /3。当上游为死水位,下游为正常尾水位时,若增荷幅度为30000—45000KW,则 流量变化为68.5—102.5s m /3;若丢荷幅度为30000—0KW,则 流量变化为67.5—0s m /3。 采用联合供水方式,两个卜形分岔管布置,主管直径5m ,支管直径3.4m,分岔角、2729?。从调压井中心至蝴蝶阀中心,全长

空调水管水力计算

一、空调水系统的设计原则: 1、力求水力平衡; 2、防止大流量小温差; 3、水输送符合规范要求; 4、变流量系统宜采用变频调节; 5、要处理好水系统的膨胀与排气; 6、解决好水处理与水过滤; 7、切勿忽视管网的保冷与保温效果。 二、冷冻水、冷却水管的计算 1、压力式水管道管径计算 D=103πνL 4(mm ) 公式中 L------水流量(m 3/s ) v-------计算流速(m/s ) 一般水管系统的管内水流速可参考表13-12的推荐值取用 表13-13选择。 2、直线管段的阻力计算 Δh=d l λ×2 2v ρ=R ×l 式中Δh---长度为l (m )的直管段的摩擦阻力(Pa ) λ---水与管内壁间的摩擦阻力系数; l----直管段的长度(m ); d----管内径(m ); ρ----水的密度(kg/m 3),当4℃时为1000kg/m 3 R-----长度为1m 直管段的摩擦阻力(Pa/m ) 三、空调设备流量计算 由Q=CM ΔT 可得出:M=Q/C*ΔT (Kg/S ) Q-----空调制冷或制热量(Kw ) C-----水的比热容,4.2KJ/Kg*℃ ΔT---进出空调设备的供回水温差,ΔT =T G -T H 四、风机盘管选择 1、计算室内空调冷负荷Q (W ),简单依单位面积指标及经验估算。 2、考虑机组的盘管用后积垢积尘对传热的影响,对空调冷负荷要进行修正,冷负荷应乘以系数a 仅冷却使用 a=1.10 作为加热、冷却两用 a=1.20 仅作为加热用 a=1.15 3、依据空调冷负荷选择风机盘,一般按中档运行能力选择。 4、校核风量:L=) (3600s n h h Q -ρ L-----风机盘管名义风量(m 3/h )

长距离重力流输配管网水锤防护探讨

长距离重力流输配管网水锤防护探讨 发表时间:2016-05-28T12:28:47.903Z 来源:《基层建设》2016年2期作者:王秉钧1 杨廷浩2 [导读] 1、2.中国市政工程中南设计研究总院有限公司湖北武汉 430000 只有深入了解各种水锤防护装置的特性及其消锤原理,才能在对水锤进行详尽计算分析后根据水锤压力变化的特点及经济条件合理选用。王秉钧1 杨廷浩2 1、2.中国市政工程中南设计研究总院有限公司湖北武汉 430000 摘要:目前,我国长距离大型重力流输水工程越来越多,随之而来的工程爆管问题引起越来越多工程人员的注意。长距离有压重力流输水管道中易发生水柱分离与断流弥合水锤,并造成严重的水锤危害。管道系统水锤防护问题,作为输水管道安全运行的重要课题之一,是很有必要进行深入研究的。在长距离输水管线中,尤以多起伏管道水锤防护难度最大,发生水锤事故最多。实际工程更需要这方面的技术,根据输水系统的实际特点,设计合理、有效、经济的水锤防护措施。 关键词:市政输配水管网;重力流;水锤防护目前,我国许多大中城市尤其是北方城市由于当地水资源缺乏,不能满足国民经济迅速发展和人民生活水平不断提高对水的需求,必须兴建长距离调水工程,以缓解水的供需矛盾。重力流管道输水方式因其具有可随地形条件铺设,对地质条件要求不高,渗漏损失小,能保证输水水质,施工方便,造价较低,管理方便等优点,常作为设计者优先考虑的方案。因此长距离重力流输水管路的水锤防护技术分析,不仅对供水工程的设计提供科学依据,而且对指导供水工程的安全运行也具有十分重要的意义。 重力流输水管水锤防护分析输水管起末端的高度差越大时,有压重力输水的可利用水头就越大,当确定输水设计流量时,输水管管径越小,投资越少,输水管流速越大,运行时可能引起的水锤升压就越高。有压重力输水在以下三种情况需消减富余能量[4]:(1)当可利用水头过大,管中流速超过3m/s或超过水锤计算所确定的最大流速时; (2)起端(如水库等)水位变幅较大时; (3)低于设计流量运行,输水管下游管道因压力增加较多,不利于安全输水时。 第一,三种情况减压装置常设在输水管的中下游;第二种情况常设在输水管中上游;第一,三种情况设置的减压阀对输水管还具有较好的水锤防护和减少漏失水量的功能。多起伏以及落差较大的“U”字形重力流管路系统是否需要减压和分几级减压,主要取决于输水管总落差的大小和管道的承压能力。落差越大,管道允许承压能力越低,需要设置减压的级数就越多。针对重力流管路系统,降低管材承压等级、减少工程造价,并预防水锤的发生是重点;消减关阀水锤,将借助于缓闭蝶阀和减压措施,防护管道某些部位可能产生水柱中断,以及断流水锤升压,减少爆管事故;对于较平坦的管路系统,主要以减压恒压阀为降压措施,用恒速缓冲排气阀及时排出管道气体,预防断流弥合水锤,避免气水两项流的发生。 各类水锤防护方法的技术分析消能减压防护技术分析静水中是具有压力的,作用在单位面积上的静水压力为静水压强,它随水的深度增加而增加。静水压强的大小,是相对于大气压而言的。输水管道内作用在管道内壁的静水压力,在与大气相接触时,即在瞬间,静压能量以其他方式转化消耗,此时视管道内液体与大气接触面的相对压强为零,即消能构筑物必须有与大气相连接的装置,并且要达到简单和保证饮用水供水安全的目的。输水管道内除去只与水深有关的静水压强外,还存在动水压强,它不仅与该点的空间位置有关,还与水的流动有关。 重力输水管管径按充分利用作用水头选取,故在设计流量工况下运行时无剩余能量,在流量低于设计流量下运行时,水头损失减少,重力流输水管路就有了富余能量。在安装减压阀的系统中富余能量的大部分由减压阀自动消除,使管路末端压力减轻[7]。安装减压阀利于管道安全运行和降低维修成本。根据《城镇供水长距离输水管(渠)道工程技术规范》可知,减压阀出口恒压值根据最大设计水量水压线调整出口压力值,可实现在最大设计流量时不减压消能,而仅消减小流量运行产生的富余能量。 关阀水锤防护分析 减压恒压阀防护 重力流输水管道因阀件及管道接头等漏水、管道爆裂、下游系统正常保养等原因需停运时,绝大多数采用关下游出口阀门的方法[7]。由于阀门阻力系数在匀速关阀过程中不是均匀增加的(一般是在关阀前60°~70°增大不多,对流量减少也不大,但在以后的20°~30°则突然增加),故极易造成很大的关阀水锤。管道长度越大,阀门阻力系数值对流量的影响越小,越易造成最后突然关阀时流量最大。而重力流输水管安装减压阀后,受影响管道长度减小,水头变化减小,可见减压阀对水锤防护作用极大。 缓闭蝶阀防护 关阀水锤防护最简单有效的方法是延长阀门关闭的时间,选择可控制的两阶段关闭蝶阀。就某一种管道安装情况来说,应考虑几种可能的解决办法,这些方法包括:在阀门处布置旁通管;对阀门最后15%~20%开度提供缓冲保护;采用双速(两段式启闭)阀门。延长阀门关闭(或打开)时间,可以将水锤压力控制在一定范围内,这对大型阀门是简单易行的。对于长管线来说,按照控制水锤压力反算的阀门关闭(开启)时间往往较长,达到5min~10min甚至更多,同调度运用灵活性要求构成了矛盾。因此,对长管道的水锤危害问题应进行专家分析,采用组合方案。 缓冲排气技术分析 长距离输水管路的高点处或膝部,由于很多原因常常会聚集大量气体,引起管道气堵,甚至水流中断;或者发生水柱分离水锤,形成液体局部汽化空腔(蒸汽腔)。为了保护管路,沿管路必要处可设置进排气阀。根据气液两相流态分析,造成管道排气困难及爆管水阻增大等现象的主要是段塞流,故工程实践中均利用恒压缓冲排气阀能满足管道中水气相间条件下能连续大量排气的要求,从而安全、平稳的排出管道中气体,防止气阻增大带来危害。根据国外相关技术资料和国内近年来的工程实验,输水管道上排气阀的布置方式为管道坡度小于1时,每隔0.5km~1.0km设一个,每个排气阀都设在该管段的最高点,当多起伏管道时,可根据其起伏高度分析是否需要增加,必要时进行相应的水力计算。

理正岩土使用手册-水力学

第一章 功能概述 理正工程水力学计算软件包含有五个计算内容:倒虹吸水力学计算、渠道水力学计算、水闸水力学计算、隧洞水力学计算和消能工水力学计算。 倒虹吸水力学计算模块可计算倒虹吸的过水能力、设计倒虹吸管径; 渠道水力学计算模块含有清水渠道均匀流的水力计算、清水渠道非均匀流的水力计算和挟沙水流渠道的水力计算; 水闸水力学计算模块适用于无坎宽顶堰、有坎宽顶堰、WES实用堰上的平板和弧形闸门,可计算水闸的泄流能力、设计闸孔宽度和确定闸门的开启度; 水工隧洞水力学计算模块适用于矩形、圆形、拱形断面隧洞的水力设计,对无压隧洞可计算洞的过流能力和设计断面尺寸,半有压隧洞可校核隧洞的过流能力,对于有压隧洞可计算隧洞在不同水位、不同闸门开度下的泄流量,并可在已知过流量条件下校核上游水位,还可绘制出总水头线和压坡线,形象的显示洞身各点有无负压; 消能工水力学计算模块适用于底流式消能工和挑流式消能工的水力设计。底流式消能工中包括下挖式消力池、突槛式消力池(消力墙)和综合式消力池三种基本型式,可进行消力池尺寸设计计算和校核消能能力。挑流式消能工可进行连续式挑流鼻坎的水力计算。 五个计算模块最后都给出计算的图形结果、文字结果及图文并茂的计算书。 第二章 快速操作指南 2.1 操作流程 理正工程水力学计算软件的操作流程如图2.1-1,每一步骤都有相对应的菜单操作。 图2.1-1 操作流程 2.2 快速操作指南

2.2.1 选择工作路径 设置工作路径,既可以调入已有的工作目录,也可在输入框中键入新的工作目录,后面操作中生成的所有文件(包括工程数据及计算书等)均保存在设置的工作目录下。 图2.2-1 指定工作路径 注意:此处指定的工作路径是所有岩土模块的工作路径。进入某单个计算模块后,还可以通过按钮【选工程】重新指定此模块的工作路径。 2.2.2 增加计算项目 工程水力学计算软件包含有五个计算内容:倒虹吸水力学计算、渠道水力学计算、水闸水力学计算、隧洞水力学计算和消能工水力学计算。用户可根据需要选择。 图2.2-2 当选好一个计算项目后,点击【工程操作】菜单中的“增加项目”或“增”按钮来新增一个计算项目(以水闸水力学计算为例)。

管道摩擦阻力计算

长距离输水管道水力计算公式的选用 1. 常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s C n ----海澄――威廉系数 其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2. 规范中水力计算公式的规定 3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力 计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK)公式均是针对工业管道条件计算λ值的著名经验公式。舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广.

明渠水流水力计算(二)

第五章明渠水流水力计算(二) 一、是非题 1、陡坡上出现均匀流必为急流,缓坡上出现均匀流必为缓流。 2、陡坡上可以出现均匀的缓流。 3、当明渠均匀流水深大于临界水深,该水流一定是急流。 4、缓坡上只能出现非均匀流缓流。 5、平坡渠道中不可能发生均匀流。 6、当明渠均匀流水深大于临界水深,该水流一定是急流。 7、水跃只能发生于平底明渠中。 二、选择题 1、共轭水深是指 (1)水跃的跃前水深与跃后水深 (2)溢流坝下游水流收缩断面水深 (3)均匀流水深 (4)临界水深 2、平底棱柱形明渠发生水跃,其水跃函数J(1h)与J(2h)的关系是 (1)J(1h)= J(2h) (2)J(1h)>J(2h) (3)J(1h)

重力流长途输水

重力流长途输水“减压”及安全问题初探 黄晖 以高地水源供水的工程越来越多地出现在现实的项目当中。在摒弃了传统输水方式(如新疆的坎儿井等)之后,不断地工业化、大流量的长途输送是目前国内许多地方供水现状的真实写照。而其引发的安全性的考量与评估不免令各方面担忧。 尽管西北等地区(尤其如新疆)高山重力式供水方式比较普遍,并积累了一定的实际运行经验,但由于全国范围内类似工程项目的集中性、大规模的上马,项目具体工程特点又各有差异,相应的技术总结仍显苍白,远不具备指导性。因此有必要进行分步骤的总结与整理,在工程技术的高度上进行普适性归纳,并不断地进行完善,使得今后的输水工程项目的展开更加合理,运行更加有条理,直至对项目的整体理解作到心中有数、胸有成竹。 一. 现状与问题 主观轻视:相对于水泵长输供水,重力流供水相对传统,小规模工程较为普遍,主观上似有简易的错觉。因此在初期的工程当中,明显地感觉到“功课不足”。主要表现为:实际流速过快(2.5m/s~3m/s),平时流量波动较大。可能出现离奇突发的爆管事件。 经验不足:由于时间、投资与地形的限制,在设计当中,由于习惯了水泵输水计算(阻力为主导因素,决定扬程)的设计人员往往并不熟练掌握重力流水力计算(水头为主导因素,决定阻力与流量),在下坡段局部突起部分,可能会出现半管流、虹吸等不利工况,而在设计阶段并未被发现,使得实际运行过程当中出现流量变化的随机性。 控制不当:过分注重关阀水锤的水力计算,而疏于对水锤发生原理的本质理解,造成教条性的操作失误,引发水力激荡,甚至管线的破坏。 不加控制:对长距离输水管线无控制地变流量输水,使得管道长期处于压力陡变的随机变化, 二. 基本原理及理论思想 基于上述并不全面的现状与问题,这节里按步骤进行原理性的解释与分析,并引出一定的理论思想。 长距离输水无论是重力流供水还是水泵供水,单从安全的角度上讲,宜采用恒定流的供水方式,即从甲地到乙地供水周期稳定,流量尽可能保持不变。当然目前更着重于项目的“经济效率”,越来越多的系统末端直接对用户,流量多变化。客观上,由于国内管材、附件以及设备成熟的质量已经达到了变流量长输水的基本要求,完全可以实现系统的调节功能。或缺的其实只是主观上的认识深度与掌控思想。 对事故发生原因寻根究底的过程必须进行综合化的考量,绝不可以点代面;即必须从系统本身以及运行特征上着手,深入了解,详细计算,进行多层次的归纳总结,多管齐下,才是解决系统的真正法门。单一方向的考虑思想,比如:单纯的水锤研究、简单的阀门操作时间、苛刻的空气阀特性参数、随意的减压需求等等均可能会让我们陷入更加狭窄模糊的圈囿,与真相愈走愈远。 不如回归系统运行的本真,从根本上解决一些潜在的问题。 2.1 变流量重力长输水的运行特征 以下利用实际工程对变流量长输水进行举例说明。 如下图,其为西北地区一输水项目。该管线长约十多公里,中间有支线分出,但分出水量很少;除起端的1公里为DN800之外,其余管线管径均为DN600。 在设计流量下,我们得到相应的供水力线图:

第七节调压室水力计算条件的选择

第七节调压室水力计算条件的选择 调压室的基本尺寸是由水力计算来确定的,水力计算主要包括以下三方面的内容: (1)研究“引水道—调压室”系统波动的稳定性,确定所要求的调压室最小断面积。 (2)计算最高涌波水位,确定调压室顶部高程。 (3)计算最低涌波水位,确定调压室底部和压力水管进口的高程。 进行水力计算之前,需先确定水力计算的条件。调压室的水力计算条件,除去水力条件之外,还应考虑到配电及输电的条件。在各种情况中,应从安全出发,选择可能出现的最不利的情况作为计算的条件。现讨论如下。 1.波动的稳动性计算 调压室的临界断面,应按水电站在正常运行中可能出现的最小水头计算。上游的最低水位一般为死水位,但如电站有初期发电和战备发电的任务,这种特殊最低水位也应加以考虑。 引水系统的糙率是无法精确预侧的,只能根据一般的经验选择一个变化范围,根据不同的设计情况,选择偏于安全的数值。计算调压室的临界断面时,引水道应选用可能的最小糙率,压力管道应选用可能的最大糙率。 流速水头、水轮机的效率和电力系统等因素的影响,一般只有在充分论证的基础上才加以考虑。 2.最高涌波水位的计算 上游水库水位应取正常高水位,引水道的糙率应取可能的最小值,负荷的变化情况一般按丢弃全负荷设计。最高洪水位丢弃全负荷或部分负荷进行校核。如电站的机组和出线的回路数较多,而且母线分段,经过分析,电站没有丢弃全负荷的可能,也可不按丢弃全负荷计算。对于丢弃全负荷情况,可假定由最大流量减小至空转流量;为了安全,有人认为应按丢弃至零计算。 3.最低涌波水位的计算 上游水库水位应取可能的最低水位,引水道的糙率应取可能的最大糙率。 确定最不利的增荷情况比确定最不利的丢荷情况更加困难。增加负荷对调压室的工作比丢弃负荷更危险,如计算不正确,可能使引水道和压力管道进入空气,破坏建筑物和机组正常的运行。在技术设计阶段,增

引水式水电站水力学计算设计大纲范本概要

FJD34260 FJD 水利水电工程技术设计阶段 引水式水电站水道水利学 计算大纲范本 水利水电勘测设计标准化信息网 1998年1月 1

水电站技术设计阶段 引水式水电站水道水力学计算大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3.基本资料 (4) 4.计算原则与假定 (6) 5.计算内容与方法 (6) 6.观测设计 (15) 7.专题研究 (16) 8.应提供的设计成果 (16) 3

4 1 引言 工程位于 ,是以 为主, 等综合利用的水利水电枢纽工程。水库最高洪水位 m,正常蓄水位 m,死水位 m ,最大坝高 m 。电站总装机容量 MW,单机容量 MW,共 台,保证出力 MW 电站设计水头 m,最大水头 m,最小水头 m 。电站最大引用流量 m 3 /s 本工程初步设计于 年 月审查通过。 2 设计依据文件和规范 2.1 (1) 工程可行性研究报告 ; (2) 工程可行性研究报告审批文件 ; (3) 工程初步设计报告; (4) 工程初步设计报告审批文件; (5) 2.2 主要设计规范 (1)SDJ 12—78 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分) (试行)及补充规定; (2)SD 134—84 水工隧洞设计规范; (3)SD 303—88 水电站进水口设计规范(试行); (4)SD 144—85 水电站压力钢管设计规范(试行); (5)DL/T 5058-1996 水电站调压室设计规范; (6)DL/T 5079-1997 水电站引水渠道及前池设计规范 (7)SL 74—95 水利水电工程钢闸门设计规范; (8)SDL 173—85 水力发电厂机电设计技术规范。 3 基本资料 3.1 工程等级及建筑物级别 (1)根据SDJ 12—78规范表1确定本工程为 (2)根据引水系统工程在水电站枢纽中所处的位置及其重要性,按SDJ 12—78确定建筑物级别为 3.2 (1)各种频率下的洪水流量,和经水库调节后相应的下泄流量; (2)多年平均流量; (3) 3.4 设计计算中常用的各种水位流量资料如表1。

相关文档
相关文档 最新文档