文档库 最新最全的文档下载
当前位置:文档库 › 酶蛋白分子侧链的修饰

酶蛋白分子侧链的修饰

酶蛋白分子侧链的修饰
酶蛋白分子侧链的修饰

酶蛋白分子侧链的修饰

摘要:用化学修饰的方法研究酶分子结构与功能已经成为一种重要的基础手段,酶分子侧链基团的修饰是通过选择性的试剂或亲和标记试剂与酶分子侧链上特定的功能基团发生化学反应而实现的,这是酶分子化学基础研究的一个方向。蛋白质侧链上的功能基主要有:氨基、羧基、巯基、咪唑基、酚基、吲哚基、胍基、甲硫基等。根据化学修饰剂与酶分子之间反应的性质不同,修饰反应主要分为酰化反应、烷基化反应、氧化和还原反应、芳香环取代反应等类型。

1.几中重要的修饰反应

1.1酰化及其相关反应

这类化学修饰剂如乙酰咪唑、二异丙基磷酰氟、酸酐磺酰氯、硫代三氟乙酸乙酯和O-甲基异脲等,它们在室温(20~25℃)、PH值为4.5~9.0的条件下可与酶分子的某些侧链基团发生酰基化反应。被作用的酶分子侧链基团有氨基、羟基、巯基及酚基等。

1.2烷基化反应

这类试剂的特点常常是带有活泼的卤素原子,由于卤素原子的电负性,使烷基带有部分正电荷,很容易导致酶分子的亲核基团(例如—NH2,—SH等)发生烷基化。属于这类修饰试剂的有2,4-二硝基氟苯、碘代乙酸、碘代乙酰胺、苯甲酰卤代物和碘甲烷等。被作用的分子的侧链基团有氨基、巯基、羧基、硫醚基和咪唑基等。

1.3氧化和还原反应

这类试剂具有氧化性,能将侧链基团氧化,属于这类试剂的有H2O2,N-溴代琥珀酰亚胺等,有些试剂具有很强的氧化性,往往容易使肽链断裂,因此在修饰反应中要控制好氧化条件。光敏剂存在下的光氧化是一种比较温和的氧化作用。易受氧化作用的侧链基团有巯基、硫醚基、吲哚基、咪唑基以及酚基等。

另外还有一类主要作用于二硫键的还原剂。这类修饰剂有2-巯基乙醇、巯基乙酸和二硫苏糖醇(DTT)等。值得提出的是连四硫酸钠或连四硫酸钾是一种温和的氧化剂,因此在化学修饰反应中常用来作为—SH的可逆保护剂。

1.4芳香环取代反应

酶分子氨基酸残基的酚羟基在3和5位上很容易发生亲电取代的碘化和硝化反应。这类修饰反应的一个典型的例子是四硝基甲烷(TNM),它可以作用于酪氨酸的酚羟基,形成3-硝基酪氨酸的衍生物。这种产物有特殊的光谱,可用于直接的定量测定。

1.5其他重要的修饰反应

还有一些酶分子与化学试剂的重要反应,如溴化氰断裂,在自发和诱导重拍的条件下主要导致肽键的断裂。

2.特定氨基酸残基侧链基团的化学修饰

2.1巯基的化学修饰

由于巯基具有很强的亲核性,巯基基团一般是酶分子中最容易反应的侧链基团,因此人们最先研究它的特异性修饰试剂并研究了巯基在酶催化过程中的重要作用以及在一些酶分子中对维持亚基间相互作用所做的贡献。

烷基化试剂是一种重要的巯基修饰剂,特别是碘乙酸和碘乙酰胺。在蛋白质的氨基酸组成分析和测序前,通常要用碘乙酸来使巯基基团羧甲基化,并防止半胱氨酸的降解,而且羧甲基化的半胱氨酸很容易被氨基酸分析仪识别。

N-乙基马来酰亚胺是一种有效的巯基修饰试剂,该反应具有强烈的专一性并伴随光吸收的变化,可以很容易通过光吸收的变化确定反应的程度。

5,5’-二硫-2-硝基苯甲酸(DTNB)又称为Ellman试剂,目前已成为最常用的巯基修饰试剂,DTNB可以与巯基反应形成二硫键,使酶分子上标记1个2-硝基-5-硫苯甲酸(TNB),同时释放一个有很强颜色的TNB阴离子。该阴离子在412nm 具有很强的吸收,可以很容易通过光吸收的变化来监测反应的程度。

2.2氨基的化学修饰

非质子化得赖氨酸的ε-氨基是酶分子中亲核反应活性很高的基团,搞清楚它的亲核性对于研究赖氨酸的一系列修饰反应是很重要的。

有许多化合物都可用来修饰赖氨酸残基,三硝基苯磺酸(TNBS)就是其中非常有效的一种。TNBS与赖氨酸残基反应,在420nm和367nm能够产生特定的光吸收,Xia等人用TNBS标记了GSH转移酶的一个反应活性很高的赖氨酸残基,证实了在酶的活性部位GSH结合区域存在一个赖氨酸残基,即Lys44。

目前,氨基的烷基化已经成为一种重要的赖氨酸修饰方法,这些试剂包括有卤代乙酸、芳基卤和芳族磺酸,或者在氢的供体(如硼氢化钠、硼氢化氰或硼氨)存在的条件下使蛋白质分子与醛或酮反应,成为还原性烷基化。

赖氨酸残基的还原性烷基化所使用的羰基化合物取代基的大小对修饰的结果具有很大的影响。在硼氢化钠的存在下,用不同的羰基试剂使卵类黏蛋白、溶菌酶、卵转铁蛋白的赖氨酸残基烷基化,修饰程度为40%~100%。其中丙酮、环戊酮、环己酮和苯甲醛为单取代,而丁醛有20%~50%的双取代,甲醛则几乎为100%的双取代。这三种蛋白的甲基化和异丙基化的衍生物仍是可溶性的,并且仍然具有几乎全部的生物活性。

2.3羧基的化学修饰

由于羧基在水溶液中的化学性质使得酶分子中谷氨酸和天门冬氨酸的修饰方法有限,产物一般是酯类和酰胺类。

水溶性的碳化二甲胺类特定修饰酶分子的羧基基团,目前已成为应用最普遍的标准方法,它在比较温和的条件下就可以进行。

羧基也可以与硼氟化三甲锌盐反应生成甲酯。胃蛋白酶与C14硼氟化三甲锌盐在PH值为5.0的条件下反应,酶的活力完全丧失,结果表明该酶有两个羧基为其必需基团。

2.4咪唑基的化学修饰

组氨酸残基的咪唑基可以通过氮原子的烷基化或碳原子的亲核取代来进行修饰。组氨酸残基的咪唑基修饰主要有两种方法,第一种是光氧化。然而光氧化的特异性很低,不但与组氨酸残基反应,而且与甲硫氨酸、色氨酸以及少量的酪氨酸、丝氨酸和苏氨酸残基进行反应。碱性甲基蓝和玫瑰红是该方法常用的两种试剂。第二种是焦碳酸二乙酯(DPC),是最常用的修饰组氨酸残基的试剂。该试剂在接近中性的情况下表现出比较好的专一性,与组氨酸残基反应使咪唑基上的一个氮羧乙基化,并且使得在240nm处得光吸收增加。该取代反应在碱性条件下是可逆的,可以重新生成组氨酸残基。

2.5胍基的化学修饰

精氨酸残基含有一个强碱性胍基,在结合带有阴离子底物的酶的活性部位中起着重要作用,因此对精氨酸残基的修饰研究是十分重要的。但是,由于精氨酸残基的强碱性,因而与大多数试剂很难发生修饰反应,反应所需的高PH值也会导致酶结构的破坏,而一些二羰基化合物则能够在中性或弱碱性条件下与精氨酸反

应,所以关于精氨酸残基的化学修饰试剂的研究大多集中在二羰基化合物上。丁二酮和1,2-环己二酮与胍基反应可逆地生成精氨酸-丁二酮复合物,该产物可以与硼酸结合而稳定下来。上述反应要在黑暗中进行,因为丁二酮可以作为光敏性反应试剂破坏其他残基,特别是色氨酸、组氨酸和酪氨酸残基。

参考文献:

[1]袁勤生,赵健.酶与酶工程[M].上海:华东理工大学出版社.2005.

[2]罗贵民.酶工程[M].北京,化学工业出版社.2003.

酶的化学修饰基本原理及修饰酶的基本性质

酶的化学修饰基本原理及修饰酶的性质特点 【摘要】酶是高效生物催化剂,在工业、医学、科研等领域有着非常广泛的应用,尤其在工业生产中创造出巨大的经济效益。但由于酶是蛋白质,稳定性差且在生物体内具有较大的免疫原性,因而严重制约了其应用。对酶分子进行化学修饰是提高其稳定性的方法并且能够降低在生物体内的免疫原性,能够扩大其应用范围,极大地改善酶本质的不足。简要介绍酶的化学修饰基本原理及修饰酶的性质特点。 1 酶的化学修饰的基本原理 酶分子的化学修饰就是在分子水平上对酶进行改造,包括对酶分子主链结构的改变和对其侧链基团的改变。前者是分子生物学层次上的修饰,即在己知酶的结构与功能盖系的基础上,有目的地改变酶的某个活性基团或氨基酸残基,从而使酶产生新的性状,又称理性分子设计,理性分子设计主要应用于改造酶的底物特异性.催化特性以及热稳定性,Shaffer等通过将天冬氨酸转氨酶的Val39、 Lys41、Thr47、Ash69、Thrl09和Ash297突变为酪氨酸转氨酶所对应的Lcu、Tyr、Ile、Leu、Set和Ser,修饰酶对Phe的活性增加3个数量级,而对Asp的活件没有影响,然而,由于酶的结构、功能和作用机制没自完全了解,而且仅仅把氨基酸序列的同源性作为氨基酸取代的标准,加上氨基酸取代后有可能导致没构想的改变,所以,并非所有理性分子设计都能取得预期效果,这就严重制约了理性分子设计的应用。 1. 1功能基团的修饰 酶分子可离解的基团如氨基(NH2)、羧基(~COOH)、羟基(OH)、巯基(sH)、咪锉基等都可用来修饰。脱氨基作用可改善酶的稳定性,消除酶分子表面的氨基酸的电荷,酰化反应,可改变侧链羟基性质。这些修饰反应,可稳定酶分子有利的催化活性现象,提高抗变性的能力。 1.2用表面活性剂对酶进行化学修饰 除糖基修饰外,也有人用表面活性剂对酶进行化学修饰。表面活性剂的亲水部分与酶连在一起,而亲油部分伸向有机溶剂,从而提高了酶在有机溶剂中的溶

酸性蛋白酶的作用机理

酸性蛋白酶与碱性蛋白酶生产工艺的不同之处? 酸性蛋白酶是一种在酸性环境下(pH 2.5-4.0)催化蛋白酶水解的酶制剂,适用于酸性介质中水解动植物蛋白质。可用于毛皮软化,酒精发酵,啤酒、果酒澄清,动植物蛋白质水解营养液,羊毛染色,废胶片回收,饲料添加剂等等。本品在酸性条件下有利于皮纤维松散,且软化液可连续使用,是当前理想的毛皮软化酶制剂;在酒精发酵中,添加酸性蛋白酶,能有效水解原料中的蛋白质,破坏原料颗粒粒间细胞壁的结构,有利于糖化酶的作用,使原料中可利用碳源增加,从而可提高原料出酒率;另一方面,蛋白质的水解提高了醪液中α-氨基态氮的含量,促进酵母菌的生长与繁殖,提高发酵速度,从而缩短发酵周期和提高发酵设备的生产能力。 碱性蛋白酶碱性蛋白酶是在碱性条件下水解蛋白质肽键的酶类,是一类非常重要的工业用酶,最早发现于猪胰脏。碱性蛋白酶广泛存在于动、植物及微生物中。微生物蛋白酶均为胞外酶,不仅具有动植物蛋白酶所具有的全部特性,还有下游技术处理相对简单、价格低廉、来源广、菌体易于培养、产量高、高产菌株选育简单、快速、易于实现工业化生产等诸多优点。1945年瑞士M等在地衣芽孢杆菌中发现了微生物碱性蛋白酶。 碱性蛋白酶是由细菌原生质体诱变选育出的地衣芽孢杆菌2709,经深层发酵、提取及精制而成的一种蛋白水解酶,其主要酶成分为地衣芽孢杆菌蛋白酶,是一种丝氨酸型的内切蛋白酶,它能水解蛋白质分子肽链生成多肽或氨基酸,具有较强的分解蛋白质的能力,广泛应用

于食品、医疗、酿造、洗涤、丝绸、制革等行业。 1、碱性蛋白酶是一种无毒、无副作用的蛋白质,属于丝氨酸型内切蛋白酶,应用在食品行业可水解蛋白质分子肽链生成多肽或氨基酸,形成具有独特风味的蛋白质水解液。 2、碱性蛋白酶成功应用于洗涤剂用酶工业,可添加在普通洗衣粉、浓缩洗衣粉和液体洗涤剂当中,既可用于家庭洗衣,也可用于工业洗衣,可以有效的去除血渍、蛋类、乳制品、或肉汁、菜汁等蛋白类的污渍,另外也可作为医用试剂酶清洗生化仪器等。 3、在生物技术领域,碱性蛋白酶可作为工具酶用于核酸纯化过程中的蛋白质(包括核酸酶类)去除,而对DNA无降解作用,避免对DNA 完整性的破坏。 酸性蛋白酶如何灭活第一种方法几乎所有酶都适用,就是加热。第二种,既然是酸性酶,加入强碱应该也是可以的。 酸性蛋白酶产生菌的筛选方法?酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类,其最适作用pH值为2.5-5.0。由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。目前用于工业化生产的酸性蛋白酶大多为霉菌酸性蛋白酶,此类酶的最适作用pH值为3.0左右,当pH值升高时,酸性蛋白酶的酶活会明显降低,且此类酶不耐热,当温度达到50℃以上时很不稳定,从而限制了酸性蛋白酶的应用范围。因此,本研究以开发耐温偏酸性蛋白酶为目标,进行了以下几方面的研究:(1)偏酸性蛋白酶产生菌的分离筛选。(2)偏酸性蛋白酶粗酶酶学性质的

蛋白酶的工厂设计

年产1500m3蛋白酶的工厂设计 摘要 蛋白酶是催化肽键水解的一类酶,它可迅速水解蛋白质为胨、肽类,广泛存在于动物内脏、植物茎叶、果实和微生物中。同时大多数微生物蛋白酶都是胞外酶。微生物蛋白酶按其作用的最适pH可分为酸性蛋白酶、中性蛋白酶、碱性蛋白酶三类。酸性蛋白酶是一种羧基蛋白酶,它的分子质量为30-40kD,等电点(pH3.0-5.0) 酸性蛋白酶现已广泛应用于食品、饲料、酿造、毛皮与皮革、医药、胶原纤维等各个行业之中。本设计采用豆饼粉、玉米粉、淀粉为主要的培养基原料,并选用黑曲霉(Aspergillus niger )3.350菌种发酵。其中豆饼粉3.75%,玉米粉0.625%,鱼粉0.625%,氯化铵1%,氯化钙0.5%,磷酸氢二钠0.2%。 本设计利用通风搅拌式发酵罐进行发酵,同时利用离子交换树脂对母液进行提取,提高了酸性蛋白酶的生产效率,减少了生产成本。设计还包括发酵罐,全厂平面图,车间平面布置图,工艺流程图。 关键词:酸性蛋白酶发酵工厂设计

The Process Design of the Protease used for Section with the Capacity of 1500m3 Annually Abstract protease is a kind of Peptone and peptide. It has been discover across in animal giblets ,the stem of plant,fruit , microbial and so on.Most of the Microbial protease are ectoenzyme .According to its best Optimum pH function ,Microbial protease Can be divided into Acid protease ,Neutral protease and alkaline protease .Acid protease is a kind of Carboxyl protease , Its molecular weight is 30-40 kd, lower isoelectric point (pH3.0-5.0) Acid protease in food, medicine, textile, leather, feed, cosmetics, washing industries have applications, natural health, avirulent and harmless, quite safe. So in this paper the basic content of more acid protease, production process and application development were introduced. This design USES the bean cake powder, corn flour, starch as the main medium of raw materials, and selects the Aspergillus Niger, Aspergillus Niger) 3.350 bacterial fermentation. With bean cake powder 3.75%, corn flour 3.75%, 0.625% fish meal, 1% ammonium chloride, calcium chloride 0.5%, disodium hydrogen phosphate 0.2%. This design using the ventilation agitator in fermentor, using ion exchange resin in mother liquid was extracted at the same time, improve the efficiency of the acid protease production, reduce the production cost. The design also includes Fermentor, The factory plan, Shop floor plan, Flow Chart. Key Words: Acid protease ; fermentation; plant-design;

蛋白酶

8.蛋白酶(酸性、中性、碱性)的特征与相应的发酵微生物菌。 答:中性蛋白酶生产菌枯草杆菌1.398,S114,172,放线菌166,栖土曲霉3.942; 碱性蛋白酶生产菌地衣芽孢杆菌2709,短小芽孢杆菌289,209; 酸性蛋白酶生产菌黑曲霉3.350,宇佐美曲霉537,肉桂色曲霉No.81,浆油工业用的米曲霉3042。 按酶的最适pH分类: ①酸性蛋白酶,最适pH2.0-5.0。 ②中性蛋白酶,pH7-8。 ③碱性蛋白酶,pH9.5-10.5。 为方便起见,微生物蛋白酶常用此分类法。 酸性蛋白酶主要来源于哺乳动物的消化道, 如胃蛋白酶; 部分微生物是酸性蛋白酶的主要来源, 如:目前的商品酸性蛋白酶制剂主要是由黑曲霉发酵生产 分子特性: 酸性蛋白酶的最适pH在2-5范围, 酶蛋白的等电点在pI3-5, 分子量MW30,000-35,000。 ②催化特性: 酸性蛋白酶的最适温度因来源不同而有差异, 一般霉菌的蛋白酶的最适温度较高, 大部分在50-60℃范围, 而来源于动物胃粘膜的蛋白酶的最适温度较低, 一般在40℃左右, 但酸性蛋白酶的热稳定性都较差, 一般在50℃都很快失活, 此外, 酶的热稳定性还受到基质的pH的影响; 有些酸性蛋白酶不耐低温, 在低温条件下,很快失活。许多酸性蛋白酶分子中含5-10%多糖,对酶的稳定有益。 中性蛋白酶是最早用于酶制剂工业化生产的蛋白酶, 目前的微生物生产的商品酶制剂的菌种主要有: 枯草杆菌、耐热解蛋白芽孢杆菌、灰色链霉菌、寄生曲霉、米曲霉、栖土曲霉。 除上述微生物生产中性蛋白酶外, 来源于植物的木瓜蛋白酶、无花果蛋白酶、菠萝蛋白酶等都属于中性蛋白酶。 ①分子特性: 大部分微生物产生的中性蛋白酶属于金属蛋白酶, 一分子酶蛋白含有一个锌原子, 酶蛋白的分子量在35,000-40,000范围, 等电点pI 8-9, 微生物蛋白酶中, 中性蛋白酶的稳定性最差, 分子之间最容易发生自溶, 即使在低温条件下, 也会发生明显的自溶, 造成分子量明显降低。 ②催化特性: 中性蛋白酶的热稳定性较差, 如枯草杆菌的中性蛋白酶在pH7, 60℃处理15min, 失活90%; 栖土曲霉的中性蛋白酶在pH7, 55℃处理10min, 失活80%以上; 以酪蛋白为底物时, 枯草杆菌蛋白酶的最适pH7-8、热解蛋白芽孢杆菌的中性蛋白酶的最适pH7-9、栖土曲霉的中性蛋白酶pH6.5-7.5; 最适温度受测定时的反应时间有直接关系, 因为酶蛋白的稳定性较差, 所以反应时间的长短影响着反应结果, 一般在10-30min 最适温度为45-50℃。钙离子可以增加酶蛋白的稳定性,并减少自溶。 碱性蛋白酶主要是由微生物产生, 微生物中主要是细菌的部分菌种产生碱性蛋白酶, 目前碱性蛋白酶主要是用于洗涤剂、皮革工业、丝绸脱胶。 几乎所有的细菌碱性蛋白酶都是胞外蛋白酶, 主要包括两类: 其一是在中性条件下生产的碱性蛋白酶, 如枯草杆菌、地衣芽孢杆菌、短小芽孢杆菌等; 其二是嗜碱微生物, 其必须在碱性条件下[pH8-10]才能生产的碱性蛋白酶。 ①酶蛋白特性: 碱性蛋白酶的分子量比中性蛋白酶的分子量小, 一般在20,000-34,000Da, 而且等电点较高, 一般在pH8-9。 ②催化特性: 大部分碱性蛋白酶的最适pH在7-11范围, 当以酪蛋白为底物时, 最适pH为9.5-10.5, 碱性蛋白酶除能够水解肽键外, 还具有水解酯键的能力和转肽能力, 最适温度因菌种不同而有差异, 一般在50 ℃左右, 酶蛋白的热稳定性不高, 50-60℃处理15分钟, 几乎有50%的酶活力丧失, 我国目前生产的几种碱性蛋白酶的热稳定性一般都在60℃以下。 中性蛋白酶——枯草芽胞杆菌、栖土曲霉、灰色链霉菌、放线菌等 碱性蛋白酶——地衣芽孢杆菌、短小芽孢杆菌等 酸性蛋白酶——大都采用曲霉 中性蛋白酶作为一种内切蛋白酶,具有纯天然、安全无毒、水解能力强、作用范围广等。2、中性蛋白酶应用于焙烤,可降低面团湿筋度、改良面团可塑性及理化性质,同时使蛋白质大分子水解成短肽和氨基酸,从而有利于糖类和氨基

蛋白酶的种类

蛋白酶的论述 摘要:蛋白酶(英语:Protease)是生物体内的一类酵素(酶),它们能够分解蛋白质。分解方法是打断那些将氨基酸连结成多肽链的肽键。抑制蛋白酶活性的小分子化合物被称蛋白酶抑制剂。许多病毒蛋白酶的抑制剂是很有效的抗病毒药。 1.木瓜蛋白酶 1.1木瓜蛋白酶简介 木瓜蛋白酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,应用于啤酒及食品工业。 1.2木瓜蛋白酶的特点 木瓜蛋白酶(Papain)简称木瓜酶,又称为木瓜酵素。是利用未成熟的番木瓜(Carica papaya)果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含巯基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值6~7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点(pI)为8.75;最适合温度55~65℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。木瓜蛋白酶由212个氨基酸残基组成,当用氨基肽酶从N末端水解掉分子中的2/3肽链后,剩下的1/3肽链仍保持99%的活性,说明木瓜蛋白酶的生物活性集中表现在C末端的少数氨基酸残基及其所构成的空间结构区域。 木瓜蛋白酶papain属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜氨酸残基羧基参与形成的肽键。此酶属内肽酶,能切开全蛋蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。存在于木瓜胚乳中的蛋白酶。EC3.4.22.2。作为植物来源的蛋白酶来说,此酶研究进展的最快。此酶主要是以内肽酶的形态起作用。活性的产生,而半胱氨酸残基是不可缺少的,所以是硫基蛋白酶的一种,底物的特异性不太严格,分子量为23400,氨基酸残基数212。 木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。 酪蛋白被木瓜蛋白酶降解生成的酪氨酸在紫外光区 275nm 处有吸收峰。1.3木瓜蛋白酶物理化学性质 本品为乳白色至微黄色粉末,具有木瓜特有的气味,稍具有吸湿性。水解蛋白质能力强,但几乎不能分解蛋白胨,易溶于水,甘油,不溶于一般的有机溶剂,耐热性强。由木瓜制得的商品酶制剂中,含有如下三种酶:(1)木瓜蛋白酶,分

高产蛋白酶菌株的选育.总结

课堂报告名称:高产蛋白酶菌株的选育方法 武汉轻工大学食品学院王宏勋 一、课堂报告依据的知识背景 1、遗传变异的物质基础 遗传变异有无物质基础以及何种物质可承担遗传变异功能的问题,是生物学中的一个重大理论问题。利用微生物这一实验对象进行了三个著名的实验,才以确凿的事实证实了核酸尤其是 DNA 才是遗传变异的真正物质基础。三个经典实验是: 一是1928年进行的转化实验。二是美国人1952年开展的噬菌体感染实验。三是1956年创立的植物病毒的重建实验。 朊病毒的发现和思考。无论是 DNA 还是 RNA 作为遗传物质的基础已是无可辨驳的事实。但朊病毒的发现对“蛋白质不是遗传物质的定论也带来一些疑云。 PrP 是具有传染性的蛋白质致病因子,迄今未发现蛋白内有核酸,但已知的传染性疾病的传播必须有核酸组成的遗传物质,才能感染宿主并在宿主体内自然繁殖。那么这是生命界的又一特例呢?还是因为目前人们的认识和技术所限而尚未揭示的生命之谜呢?还有待于生命科学家去认识和探索。 2、遗传物质在细胞内的存在形式 除部分病毒的遗传物质是 RNA 外,其余病毒及全部具有典型细胞结构的生物体的遗传物质都是 DNA 。按其在细胞中存在形式可分成染色体 DNA 和染色体外 DNA 。原核细胞和真核细胞中的 DNA 存在形式不完全相同。

1)DNA 在原核细胞中的存在方式 原核细胞最大的细胞学特点就是无核膜与核仁的分化,只有一个核区称拟核。其染色体 DNA 处于拟核区,无组蛋白,近年来发现与非组蛋白结合。结构上为双链环状 DNA 。几种微生物染色体的物理特性见表。原核细胞的染色体外DNA 主要指质粒(如 F 因子、 R 因子、 Col 因子)。 2)DNA 在真核细胞中的存在方式 真核细胞 DNA分为核 DNA和核外 DNA。核 DNA即染色体 DNA ,它与组蛋白结合构成具有复杂结构的染色体。核外DNA是指线粒体和叶绿体等DNA ,其结构与原核细胞的 DNA相似,亦能编码结构蛋白。 3、基因和性状 1)基因的概念 基因是由丹麦生物学家 W . Johansen 于 1909 年提出来的,他用“基因”这个述语来代替孟德尔的“遗传因子”。直到本纪世 50 年代以后,“基因”才有一个较明确的概念。概括地说:“基因”是一个具有遗传因子效应的 DNA 片段,它是遗传物质的最小功能单位。2)性状的决定——基因表达 性状是构成一个生物个体的有关结构、形态、物质和功能等各方面特征的总称。基因表达是遗传信息表现为生物性状的过程,这一过程是通过基因产物的生物学功能来完成的。基因决定性状,而性状则是基因表达的最终结果。基因依其功能的差别可分成调节基因、操纵基因和结构基因 3 大类。

第三章 酶 一、 名词解释 1 Km 2 限速酶 3 酶的化学修饰 4 结合酶 5

第三章酶 一、名词解释 1.Km 2.限速酶 3.酶的化学修饰 4.结合酶 5.Allosteric regulation 6.别构调节 7.Activators 8.辅基 9.反竞争性抑制作用 10.酶的特异性 二、填空 1.在酶浓度不变的情况下,底物浓度对酶促反应速度的作图呈____________双曲线,双倒数作图呈线。 2. Km值等于酶促反应速度为最大速度时的________________浓度。 3.关键酶所催化的反应具有下述特点:催化反应的速度,因此又称限速酶;催化反应,因此它的活性决定于整个代谢途径的方向;这类酶常受多种效应剂的调节。 4. 可逆性抑制作用中,抑制剂与酶的活性中心相结合,抑制剂与酶的活性中心外的必需基团相结合。 5. 酶的化学修饰主要有磷酸化与脱磷酸,,________________,腺苷化与脱腺苷及SH与-S-S-互变等,其中磷酸化与脱磷酸化在代谢调节中最为多见。 6. 同工酶指催化的化学反应,但酶蛋白的分子结构、理化性质乃至免疫学性质的一组酶。 7. 竞争性抑制剂使酶对底物的表观Km ,而Vmax 。 8. 酶的特异性包括特异性,特异性与特异性。 三、问答

1.简述酶的“诱导契合假说”。 2.酶与一般催化剂相比有何异同? 3.什么是同工酶?请举例说明。 4.金属离子作为酶的辅助因子有哪些作用? 5.说明温度对酶促反应速度的影响及其实用价值。 参考答案 一、名词解释 1. 即米氏常数。Km米氏常数是单底物反应中酶与底物可逆地生成中间产物和中间产物转化为产物这三个反应的速度常数的综合。Km=k2+k3/k1 米氏常数等于反应速度为最大速度一半时的底物浓度。 2.指整条代谢通路中,催化反应速度最慢的酶,它不但可以影响整条代谢途径的总速度,还可改变代谢方向,是代谢途径的关键酶,常受到变构调节和/或化学修饰调节。 3.某些酶分子上的一些基团,受其他酶的催化发生共价化学变化,从而导致酶活性的变化。 4.酶分子中除含有氨基酸残基组成的多肽链外,还含有非蛋白部分。这类结合蛋白质的酶称为结合酶。其蛋白部分称为酶蛋白,非蛋白部分称为辅助因子,有的辅助因子是小分子有机化合物,有的是金属离子。酶蛋白与辅助因子结合形成的复合物称为全酶,只有全酶才有催化活性。 5. 即变构调节,某些物质能以非共价键形式与酶活性中心以外特定部位结合,使酶蛋白分子构象发生改变,从而改变酶的活性。 6.体内有的代谢物可以与某些酶分子活性中心外的某一部位可逆地结合,使酶发生变构并改变其催化活性。此结合部位称为别构部位或调节部位。对酶催化活性的这种调节方式称为别构调节。受别构调节的酶称为别构酶。导致别构效应的代谢物称为别构效应剂。有时底物本身就是别构效应剂。在多数情况下,代谢途径中的第一个酶或处于几条代谢途径交汇点的酶多为别构酶。当后续代谢产物堆积时,它们作为效应剂抑制上游的别构酶;别构酶也可因产物的匮乏而激活。 7. 即激活剂。使酶由无活性变为有活性或使酶活性增加的物质称为酶的激活剂。激活剂大多为金属离子,少数为阴离子。也有许多有机化合物激活剂。大多数金

酶分子的化学修饰方法具体实例

酶分子的化学修饰方法 1.酶的表面修饰 2.酶分子的内部修饰 3.与辅因子相关的修饰 4.金属酶的金属取代 1.1酶的表面修饰 1.1.1化学固定化 例如:①固定在电荷载体上,由于介质中的质子靠近载体,并与载体上的电荷发生作用,使酶的最适pH向碱性(阴离子载体)或向酸性(阳离子载体)方向偏移。这样,在生产工艺中需几个酶协同作用时,由于固定化可使不同酶的最适pH彼此靠近。②将糖化酶固定在阴离子载体上,其最适pH由4.5升到6.5,与D-木糖异构酶的最适PH(7.5)靠近,这样,可简化高果糖浆生产工艺。如果载体与底物带相同电荷,固定化后反应系统Km值增加;带相反电荷,Km值降低。当酶与载体连接点达到一定数目时,可增加酶分子构象稳定性,防止其构象伸展而失活。 1.1.2 酶的小分子修饰作用 例如:③将α—胰凝乳蛋白酶表面的氨基修饰成亲水性更强的NH2COOH并达到一定程度时,酶的热稳定性在60℃时,提高了1000倍,温度更高时稳定化效应更强烈。这个稳定的酶能经受灭菌的极端条件而不失活. 1.1.3酶的大分子修饰 例如:④聚乙二醇连到脂肪酶、胰凝乳蛋白酶上所得产物溶于有机溶剂,在有机溶剂存在下能够有效地起作用。嗜热菌蛋白酶在水介质中通常催化肽链裂解,但用聚乙二醇共价修饰后,其催化活性显著改变,在有机溶剂中催化肽键合成,已用于制造合成甜味剂。 1.1.4 分子间交联

例如:⑤戊二醛将胰蛋白酶和胰凝乳蛋白酶交联在一起。这种杂化酶的优点是,胰凝乳蛋白酶的自溶作用降低,也使其反应器体积减少。将胰蛋白酶与碱性磷酸脂酶交联而形成的杂化酶,可作为部分代谢途径的模型,则有可能在体内将它们输送到同一部位而提高药效。 1.2酶分子的内部修饰 1.2.1非催化活性基团的修饰 例如: ①将胰凝乳蛋白酶的Met192氧化成亚砜,则使该酶对含芳香族或大体积脂肪族取代基的专一性底物的束缚口袋有关.也说明底物的非反应部分束缚在酶的催化作用中有重要作用。 1.2.2酶蛋白主链修饰 例如: ②用蛋白酶对ATP酶有限水解,切除其十几个残基后,酶活力提高了5.5倍。该活化酶仍为四聚体,亚单位分子量变化不大。这说明天然酶并非总是处于最佳的催化构象状态。 1.2.3催化活性基团的修饰 例如: ③枯草杆菌蛋白酶活性部位的Ser残基转化为Cys残基,新产生的巯基蛋白酶对肽或脂没有水解能力,但能水解高度活化的底物,如硝基苯脂。 1.2.4肽链伸展后的修饰 例如: ④为了有效地修饰酶分子内部的区域,Mozhea等提出先用脲、盐酸胍处理酶.使其肽链充分伸展。为修饰酶分于内部疏水基团提供可能性,然后,让修饰后伸展肽链在适当条件下.重新折叠成具有某种催化活性的构象。⑤Saraswothi等描述了一种新奇的原则上可能普遍适应改变底物专一性的方法。即先让酶变性,然后加入相应于所希望酶活力的竞争件抑制剂,待获得所希望酶

蛋白酶的种类

蛋白酶的种类 1.木瓜蛋白酶 木瓜蛋白酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,应用于啤酒及食品工业。 木瓜蛋白酶papain属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜氨酸残基羧基参与形成的肽键。此酶属内肽酶,能切开全蛋蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。 木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。 木瓜蛋白酶(Papain)简称木瓜酶,又称为木瓜酵素。是利用未成熟的番木瓜(Carica papaya)果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含疏基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值6~7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点(pI)为8.75;最适合温度55~65℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。

2.胃蛋白酶 胃蛋白酶(英文名称:Pepsin)是一种消化性蛋白酶,由胃部中的胃粘膜主细胞所分泌,功能是将食物中的蛋白质分解为小的肽片段。胃蛋白酶原由胃底主细胞分泌,在pH1.5~5.0条件下,被活化成胃蛋白酶,将蛋白质分解为胨,而且一部分被分解为酪氨酸、苯丙氨酸等氨基酸。可分解蛋白质中苯丙氨酸或酪氨酸与其他氨基酸形成的肽键,产物为蛋白胨及少量的多肽和氨基酸,该酶的最适pH为2左右。 3.中性蛋白酶 中性蛋白酶是由枯草芽孢杆菌经发酵提取而得的,属于一种内切酶,可用于各种蛋白质水解处理。在一定温度、PH值下,本品能将大分子蛋白质水解为氨基酸等产物。可广泛应用于动植物蛋白的水解,制取生产高级调味品和食品营养强化剂的HAP和HVP,此外还可用于皮革脱毛、软化、羊毛丝绸脱胶等加工。 利用中性蛋白酶的酶促反应,可把动植物的大分子蛋白质水解成小分子肽或氨基酸,以利于蛋白质的有效吸收和利用,其水解液AN%高,水解度高,风味佳,已广泛用于生产高级调味品和食品营养强化剂,各种动物来源性抽提物生产功能性骨、肉提取物(骨素)、水产提取物、蛋白胨、肽等及研究开发一些高附加值的功能食品。

高产胞外蛋白酶正文

高产胞外蛋白酶菌株的选育生命科学学院生物科学0901班王亚云 2009044020119 摘要:采用养牛场中的土壤,设置培养基来筛选出具有产胞外蛋白酶的菌株。以酪素培养基平板产生的透明圈的大小作为选择标记,经初筛选择出透明圈的直径/菌落直径大的菌株为出发菌株。经紫外线诱变处理,培养获得两种未知高产胞外蛋白酶菌株。通过形态观察、生理生化试验进行鉴定:突变菌株w1的形态、生理生化特性符合芽孢杆菌属的特征,而突变菌株w2为革兰氏阴性杆菌。 关键字:细菌;胞外蛋白酶;筛选;诱变;鉴定 蛋白酶是催化蛋白质水解的一类酶,是酶学研究中较早也是最深入的一种酶。作为一种生物催化剂,该酶催化反应速度较快,无工业污染,且反应条件适宜性宽,被广泛应用于食品、制药、化妆品、洗涤剂、丝纺、毛皮软化等行业。目前微生物菌种选育所采用的诱变手段主要有激光诱变、DES诱变结合热处理、空间诱变、紫外线照射和亚硝基胍复合诱变等。常见的能产生蛋白酶的蛋白微生物有细菌中的酸性蛋白酶生产菌如黑曲霉、根霉;碱性蛋白酶生产菌如地衣芽孢杆菌;中性蛋白酶生产菌如枯草芽孢杆菌。本实验是研究从养牛场土壤中筛选得到的蛋白酶产生菌株为出发菌株,采用紫外线照射育种,以得到高产胞外蛋白酶菌株。 1 材料与方法 1.1 材料 1.1.1 土样:河北农业大学西校区养牛场中的土壤 1.1.2 培养基: 1.1. 2.1 筛选培养基: 酪素培养基 1.1. 2.2营养培养基: 肉汤培养基 1.1. 2.3鉴别性培养基 (1)淀粉培养基 (2)明胶培养基

(3)葡萄糖发酵培养基 (4)葡萄糖蛋白胨培养基 乳糖发酵培养基、柠檬酸盐培养基、半固体培养基、三糖铁培养基均为商品试剂,直接按比例加蒸馏水即可。 1.2 方法 1.2.1 菌种的筛选 1.2.1.1 培养基的配置及灭菌 按上述配置方法分别配置肉汤培养基和酵素培养基,配置完成后放入高压灭菌锅于120℃下灭菌20min。取6只试管,分别加入9mL蒸馏水,向试管中加入10个玻璃珠,盖好胶塞,进行灭菌。 1.2.1.2 涂布分离 称取9g土样,放入盛有90mL无菌水的锥形瓶中,充分震荡5~8min,静置10min。 取1mL上清液进行逐步稀释,分别稀释到浓度为10-1,10-2,10-3,10-4,10-5,10-6,10-7。在酒精灯附近进行无菌操作,分别取10-5,10-6,10-7三个浓度梯度的稀释液各100μL于无菌的酪素培养基平板上,用涂布器进行涂布,每个浓度梯度下设置两个平板。待培养基凝固后贴好标签,在30℃的培养箱中倒置培养6d。 1.2.1.3 菌种的纯化 观察平板上菌落的形态特征,挑选出具有透明圈的菌落,用直尺测量其菌落直径C和透明圈直径H,从中选出两个H/C较大的菌落进行接种。采用分区划线法在酪素平板上进行分离纯化,每次都从上一次划线的末端开始划起,保证菌落被逐步稀释,最后得到单个菌株。 将纯化的菌株接种盛有肉汤培养基中的锥形瓶中,在37℃条件下振荡培养。 1.2.2 紫外线诱变育种 1.2.2.1 悬浮液的制备 在摇瓶培养营养肉汤中取出1mL放入离心管12000r离心2min,去上清,加入无菌水1mL,再离心,在重复3-4次至可得到以后步骤可用的足够的菌,在加入无菌水1mL,将12个Ep 管中的悬浮液加入平皿中混匀。 1.2.2.2 紫外诱变

糜蛋白酶

药品名称:糜蛋白酶Chymotrypsin 药品分类:呼吸系统类→祛痰药物→促进痰液溶解的药物 药品别名:胰凝乳蛋白酶、α-糜蛋白酶、Avazyme、Chymar 药品剂型:注射用糜蛋白酶:1mg(800U);5mg(4000U)。 药理作用:糜蛋白酶是由牛胰中分离制得的一种蛋白分解酶类药,作用与胰蛋白酶相似,能促进血凝块、脓性分泌物和坏死组织等的液化清除。本药具有肽链内切酶及脂酶的作用:可将蛋白质大分子的肽链切断,成为分子量较小的肽,或在蛋白分子肽链端上作用,使氨基酸分出;并可将某些脂类水解。通过此作用能使痰中纤维蛋白和粘蛋白等水解为多肽或氨基酸,使粘稠痰液液化,便于咳出,对脓性或非脓性痰都有效。此外,本药尚能松弛睫状韧带及溶解眼内某些组织的蛋白结构。糜蛋白酶还有促进抗生索、化疗药物向病灶渗透的作用。 药动学:本药和胰蛋白酶都是强力蛋白水解酶,仅水解部位有差异。蛇毒神经毒含碱性氨基酸,易被本药和胰蛋白酶分解为无毒蛋白质,从而阻断毒素进入血流产生中毒作用。本药对蝮亚科蛇伤疗效优于胰蛋白酶,两种酶制剂联合应用效果更佳。 适应症:1.用于眼科于术松弛睫状韧带、减轻创伤性虹膜睫状体炎;也可用于白内障摘除,使晶体易于移去。2.用于创伤或手术后伤口愈合、抗炎及防止局部水肿、积血、扭伤血肿、乳房手术后浮肿、中耳炎、鼻炎等。3.用于慢性支气管炎、支气管扩张或肺脓肿的治疗,可使脓性和非脓性痰液均可液化,易于咳出。4.毒蛇咬伤的处理。 禁忌症:1.20岁以下的患者,由于晶体囊膜玻璃体韧带相连牢固,眼球较小,巩膜弹性强可致玻璃体脱出,或玻璃体液不固定的创伤性白内障病人,因可导致玻璃体液丧失,故均禁用。 2.眼压高或伴有角膜变性的白内障患者,以及玻璃体有液化倾向者均禁用。 3.严重肝、肾疾病、凝血功能异常及正在应用抗凝药者禁用。 注意事项:1.本药肌内注射前需做过敏试验,并禁止静脉注射。2.如引起过敏反应,应立即停止使用,并用抗组胺类药物治疗。3.本药对视网膜有较强的毒性,由于可造成晶体损坏,应用时勿使药液透入玻璃体。4.本药遇血液迅速失活,因此在用药部位不得有末凝固血液。 5.本药在固体状态时比较稳定,但其溶液不稳定,室温放置9天可损失50%的活性,故应临用前配制。 6.对本药引起的青光眼症状,于术后滴用β-受体阻滞药(如噻吗洛尔)或口服碳酸酐酶抑制药(如乙酰唑胺),可能会缓解。 7.由于超声雾化后糜蛋白酶效价下降明显,因此,糜蛋白酶超声雾化吸入时间宜控制在5min内。 不良反应:1.眼:眼科局部用药一般不会引起全身不良反应,但可引起短期眼压增高,导致眼痛、眼色素膜炎和角膜水肿,这种青光眼症状可持续1周后消退,还可导致角膜线状混浊、玻璃体疝、虹膜色素脱落、葡萄膜炎及创口开裂或延迟愈合等。2.血液系统:糜蛋白酶可造成凝血功能障碍。3.其他:(1)肌内注射偶可致过敏性休克。(2)糜蛋白酶可引起组胺释放,导致局部注射部位疼痛、肿胀。 用法用量:[该用法是参考最新药典提供,临床中具体药物用法用量请参考药物说明书] 成人常用量1.肌内注射:通常一次4000U,用前将糜蛋白酶以氯化钠注射液5ml溶解。2.

高产蛋白酶的芽孢杆菌菌株选育

高产蛋白酶的芽孢杆菌菌株选育 学校河北农业大学 专业生命科学学院 姓名xxx 学号x 指导老师x 同组人员x 二〇一三年十二月二十五日 (河北农业大学生命科学学院,河北保定,071000) 摘要:目的:通过筛选诱变选育高产蛋白酶,为食品、制药、化妆品、洗涤剂、丝纺、毛皮软化等行业提供材料基础。方法: 通过在富含蛋白质的场所的针对性采集土样,菌落平板筛选结合紫外线诱变育种,选育高产蛋白酶的芽孢杆菌,通过一系列鉴别性培养基鉴

定其生理生化特性,查找其种属。结果:通过筛选得到一诱变菌种,通过伯杰氏手册鉴定其为枯草芽孢杆菌属。诱变90s后,其蛋白酶活性提高最大。 关键词:高产蛋白酶芽孢杆菌诱变鉴定 引言:蛋白酶(Protease)是催化蛋白质水解的一类酶,微生物蛋白酶主要由霉菌、细菌生产。蛋白酶对所作用的反应底物有严格的选择性,一种蛋白酶仅能作用于蛋白质分子中一定的肽键。该酶催化反应速度较快,无工业污染,且反应条件适应性宽,被广泛应用在皮革、毛皮、丝绸、医药、食品、酿造等方面。目前微生物菌种选育所采用的诱变手段主要有激光诱变、DES诱变结合热处理、空间诱变、紫外线照射和亚硝基胍复合诱变等。蛋白酶分布广,主要存在于人和动物消化道中,在植物和微生物中含量丰富。由于动植物资源有限,工业上生产蛋白酶制剂主要利用枯草杆菌、栖土曲霉等微生物发酵制备。常见的能产生蛋白酶的蛋白微生物有细菌中的酸性蛋白酶生产菌(如黑曲霉、根霉);碱性蛋白酶生产菌(如地衣芽孢杆菌);中性蛋白酶生产菌(如枯草芽孢杆菌)。本实验以树林土壤中筛选得到的蛋白酶生产菌株为出发菌株,采用紫外线照射诱变方法育种,筛选得到高产蛋白酶菌株。 High protease of Bacillus Strain Breeding Abstract:Objective: by screening the mutation breeding of high yield protease, food, pharmaceutical, cosmetics, detergent, spinning, fur softening provides basic material industry. Methods: the protein rich places for collecting soil samples, colony plate screening combined with ultraviolet mutagenesis breeding, breeding of high yield protease of Bacillus, cultivate their physiological and biochemical characteristics based identification through a series of differential, find the species. Results: by screening a mutagenic strain, through Berger's manual was identified as Bacillus subtilis. Mutation in 90s, the protease activity increased. Keywords: high yield protease from Bacillus mutagenesis and identification 目录

中性蛋白酶

1.1中性蛋白酶的来源 蛋白酶是一类催化蛋白质肽键,生成蛋白胨、蛋白肽及氨基酸等产物的水解酶,其广泛分布于自然界的植物、动物和微生物中。例如木瓜蛋白酶主要来自于植物木瓜,胰蛋白酶来自动物的胰腺,来自微生物的蛋白酶没有特定名称,例如有来自AS1.398枯草芽孢杆菌的蛋白酶,有来自宇佐美曲霉的蛋白酶等等,其中微生物来源的蛋白酶数量与种类最多,也最具研究、开发与生产价值。随着水解条件之一的pH值的升高,蛋白酶分为酸性蛋白酶、中性蛋白酶和碱性蛋白酶,这也同时划分了它们应用的领域有所不同。 1.2中性蛋白酶的研究现状 对于中性蛋白酶的研究主要集中于以下几个方面: 一是继续研究发现新的蛋白酶品种,为蛋白酶家族添加新成员,尽管此项工作的难度越来越大,但其意义不容否认。 二是对现有蛋白酶进行修饰、改性,延长和强化其功能,期望在降低应用成本的同时,减少酶本身的一些缺陷对其应用的限制。 三是通过生物技术手段提高酶产量,降低酶生产成本。现代生物技术不仅发达而且发展很快,技术应用的可选择范围也很广,例如物理或化学诱变技术、细胞质融合技术、转基因技术以及克隆技术等等。可以肯定和确认的是:上述技术的应用都取得了不同程度的效果;同时这些技术各有优势,所以并存至今。 四是提取和纯化技术方面,朱建星利用萃取技术使酶液浓度提高到发酵酶液的3.6倍多。刘东旺等应用盐析、层析和凝胶过滤等技术,纯化后的酶活力超过纯化前的19倍之多等等。此外,在纯化倍数提高的同时往往伴随着提取率的提高。 1.3中性蛋白酶的生产现状 中性蛋白酶的生产水平随着研究水平的提高而提高。总体上发达国家高于国内,而国内厂家之间也参差不齐,以微生物发酵来源的中性蛋白酶为例,报道说的范围从数百至一万多(u/ml)都有。导致这种差别的原因可能是不同类的菌种,不同来源的同类菌种,不同的菌株改良程度,不同的发酵工艺优化水平等等。 1.4中性蛋白酶的应用 蛋白酶在工业化应用酶中占的比例很大(超过50%),而中性蛋白酶在蛋白酶中占的比例也很大。占比大的原因之一是应用范围大而广。以中性蛋白酶为例,它可用于皮革业提高皮革的质量;可用于牙膏帮助清除牙渍;可用于饲料以提高消化吸收率;用于食品加工最为广泛,加入待焙烤的面团中可以调节面团筋力,加入肉类中可以使肉制品嫩化、改善口感,加入牛奶中可以加速凝乳,加入以蛋白质为主的废弃料中可以制取多种水解产品。 在蛋白酶应用中有些问题令人困惑不解值得重视,例如不同来源的蛋白酶水解蛋白质的主要位点有差别,所以即使使用同一种蛋白质原料,不同来源蛋白酶的水解产物和水解率也会有所区别;如果混合食用不同来源的蛋白酶,假如总酶量与单一蛋白酶相同,由于水解的主要位点增加,也有可能提高水解率和水解程度。 另外用于食品水解的蛋白酶还有一层要求就是风味和口味,目前主要问题是口味即苦味。尽管“风味蛋白酶”的诞生在一定程度上降低了疏水基团的外露,很大程度上减少了水解产物的苦味,不过因其高昂的价格和苦味的残留依然不能得心应手地应用。 1.5本课题的研究目的与意义 从上述内容可知,虽然蛋白酶的研究、生产与应用已相对成熟,但是还有一些问题值得研究和解决,包括为提高产酶量而进行的菌种特性的改善、发酵工艺的优化、发酵酶液的浓缩与纯化等等。其中最基础的就是菌种产酶能力的提高。 尽管前面提到各种改善菌种的现代生物技术,包括物理或化学诱变技术、细胞质融合技术、转基因技术以及克隆技术等等,有的已经相当先进。但是从成本性、发酵副产物的安全性与稳定性、实用技术的可推广性等方面考虑,对菌种进行诱变不失为行之有效和有研究价值的研究。虽然诱变

蛋白酶整理

一、蛋白酶的分类、主要用途及作用 二、产蛋白酶菌株的筛选 三、产酶发酵 四、蛋白酶活性测定的方法

蛋白酶的分类、主要用途及作用 酶:酶是具有生物催化功能的生物大分子。 蛋白酶:水解蛋白质肽键的一类酶的总称 蛋白酶分类: 1据水解多肽的方式分为内肽酶和外肽酶 2据反应的最适pH值分为酸性,碱性,中性蛋白酶 蛋白酶简介:广泛存在于动物内脏、植物茎叶、果实和微生物中。微生物蛋白酶,主要由霉菌、细菌,其次由酵母、放线菌生产。催化蛋白质水解的酶种类很多,重要的有胃蛋白酶、胰蛋白酶、组织蛋白酶、木瓜蛋白酶和枯草杆菌蛋白酶等。蛋白酶对所作用的底物有严格的选择性,一种蛋白酶只能作用于蛋白质分子中一定的肽键,如胰蛋白酶催化水解碱性氨基酸所形成的肽键。蛋白酶分布广泛,主要存在于人和动物消化道中,在植物和微生物中含量丰富,由于动植物资源有限,工业生产上生产蛋白酶制剂主要利用枯草杆菌等微生物发酵设备。

一、酸性蛋白酶 定义: 酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类 注:酸性蛋白酶是指蛋白酶具有较低的最适pH,不是指酸性基团存在于酶的活性部位. 简介: 主要来源于动物的脏器和微生物分泌物,包括胃蛋白酶、凝乳酶和一些微生物蛋白酶。根据其产菌的不同,微生物酸性蛋白酶可以分为霉菌酸性蛋白酶、酵母菌酸性蛋白酶和担子菌酸性蛋白酶,根据作用方式可以分为两类:一类是与胃蛋白酶相似,主要的产酶微生物是曲霉、青霉和根酶等;另一类是与凝乳酶相似,主要产酶微生物是毛酶和栗疫酶等, 从酶的活力-PH曲线分析,在酶的活性部位中含有一个或更多的羧基,这一类蛋白酶中研究最彻底的是胃蛋白酶。酸性蛋白酶具有较好的耐酸性,目前用于工业化生产的酸性蛋白酶大多为霉菌酸性蛋白酶,此类酶的最适作用pH值为3.0左右,当pH值升高时,酸性蛋白酶的酶活会明显降低,且此类酶不耐热,当温度达到50℃以上时很不稳定,从而限制了酸性蛋白酶的应用范围。 基本性质 酸性蛋白酶的最适PH从2左右(胃蛋白酶)到4左右 应用 1酿酒:酸性蛋白酶在酿酒的过程中起协同作用,具有溶解发酵原料,促进微生物繁殖,降解酵母菌体蛋白等多种功能。 2毛用酸性蛋白酶最适ph3.5,最适温度40度,用该酶处理预处理后的羊毛,可以得到较大的减量率和较好的细度。面临的问题:酶对羊毛的作用活力不高。3食品工业:食品上用以淀粉改良,提高食品风味、改良品质,因能提高氨基酸含量 4啤酒生产:能有效阻断双乙酰生成,缩短啤酒成熟期。 饲料添加剂:提高饲料利用率。 二、碱性蛋白酶 简介 碱性蛋白酶是由造育的地衣芽孢杆菌发酵而得,主要成分为枯草杆菌蛋白酶,是一种内切酶,催化部位为丝氨酸,分子量约为27300。碱性蛋白酶是由造育的地衣芽孢杆菌发酵而得,主要成分为枯草杆菌蛋白酶,是一种内切酶,催化部位为丝氨酸,分子量约为27300。

相关文档
相关文档 最新文档