文档库 最新最全的文档下载
当前位置:文档库 › 三相异步电机在SIMULINK下的建模与仿真2

三相异步电机在SIMULINK下的建模与仿真2

三相异步电机在SIMULINK下的建模与仿真2
三相异步电机在SIMULINK下的建模与仿真2

论文苑地

THESIS◆图4电机仿真结构图

图5三相异步电机仿真模型图8电机三相电流图6电机转速图图7电机的电磁转矩

【1】薛定宇.基于MATLAB/SIMULINK的系统仿真技术与

应用【M1.北京:清华大学出版社.2001

f2J闫哲.基于MATLAB的异步电机在不同坐标系下的仿

真分析【J】.哈尔滨理工大学学报.2001.5(3):33-35

【3】洪乃刚.电力电子和电力拖动控制系统的MATLAB仿

真fMl.北京:机械工业出版社.2006.1

【4j魏伟基于SIMULINK异步电机矢量控制仿真实验研究。

【J】.实验技术与管理.2009,1f26):73-77

三相异步电机在SIMULINK下的建模与仿真

作者:刘媛媛

作者单位:大连交通大学电气信息学院,辽宁,大连,116028

刊名:

电子元器件资讯

英文刊名:ECDN

年,卷(期):2010(9)

参考文献(4条)

1.魏伟基于SIMULINK异步电机矢量控制仿真实验研究[期刊论文]-实验技术与管理 2009(26)

2.洪乃刚电力电子和电力拖动控制系统的MATLAB仿真 2006

3.闫哲基于MATLAB的异步电机在不同坐标系下的仿真分析 2001(03)

4.薛定宇基于MATLAB/SIMULINK的系统仿真技术与应用 2001

本文链接:https://www.wendangku.net/doc/c12441979.html,/Periodical_dzyqjzx201009022.aspx

三相异步电动机Matlab仿真

中国石油大学胜利学院综合课程设计总结报告 题目:三相异步电机直接启动特性实验模型 学生姓名:潘伟鹏 系别:机械与电气工程系 专业年级: 2012级电气工程专业专升本2班 指导教师:王铭

2013年 6 月 27日

一、设计任务与要求 普通异步电动机直接起动电流达到额定电流的6--7倍,起动转矩能达到额定转矩的1.25倍以上。过高的温度、过快的加热速度、过大的温度梯度和电磁力,产生了极大的破坏力,缩短了定子线圈和转子铜条的使用寿命。但在电网条件和工艺条件允许的情况下,异步电动机也可以直接启动。本次课程设计通过MATLAB软件建模模拟三相异步电动机直接启动时的各个元器件上的电量变化。 参考: 电力系统matlab仿真类书籍 电机类教材 二、方案设计与论证 三相异步电动机直接起动就是利用开关或接触器将电动机的定子绕组直接接到具有额定电压的电网上。 由《电机学》知三相异步电动机的电磁转矩M与直流电动机的电磁转矩有相似的表达形式。它们都与电机结构(表现为转矩常数)和每级下磁通有关,只不过在三相异步电动机中不再是通过电枢的全部电流,而是点数电流的有功分量。三相异步电机电磁转矩的表达式为: (1-1)式中——转矩常数 ——每级下磁通 ——转子功率因数 式(1-1)表明,转子通入电流后,与气隙磁场相互作用产生电磁力,因此,反映了电机中电流、磁场和作用力之间符合左手定则的物理关系,故称为机械特性的物理表达式。该表达式在分析电磁转矩与磁通、电流之间的关系时非常方便。 从三相异步电动机的转子等值电路可知, (1-2) (1-3)将式(1-2)、(1-3)代入(1-1)得:

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

电机MATLAB仿真实验

实验一单相变压器空载仿真实验 一、实验目的 1 用仿真的方法了解并求取变压器的空载特性。 2 通过变压器空载仿真了解并求取变压器的参数与损耗。 二、预习要点 1 变压器空载运行有什么特点? 2 在变压器空载实验仿真中,如何通过仿真测取变压器的铁耗。 三、仿真项目 1 完成变压器空载运行仿真模型的搭建与参数设定。 2 仿真测取空载特性U0=f(I0),P0= f(U0),cosΦ0= f(U0)。 四、仿真方法 1 仿真模块 三相交流电压源 可饱与单相变压器 交流电压表 交流电流表 有功、无功功率表 示波器 显示测量数据 计算均方根值(有效值)模块 电力系统仿真环境模块(电力系统仿 真模型中必须含有一个) 2 仿真模型

三 相 交 流 电 压 源 V 1 W A V2 U V W P0 U0 I0 a A x X 55V U AX * * 图1 变压器空载实验接线图 图2 单相变压器空载仿真模型示例图 图3 变压器参数设置示例图(右侧饱与曲线数据请输入到左侧Saturation Characteristic一栏) 3 空载仿真 1)根据图1的接线图进行仿真模型搭建,搭建仿真模型如图2所示,所有频率的设置均改成50。 2)对单相变压器以及其她元器件模块的参数设置,选定额定电压,变压器变比等。设定其额定容量S N=77 V A,U1N/U2N=55/220V。变压器低压侧接电源,高压侧开路。变压器参数设置如图3所示。

3)可自行根据需要选择需要测量的波形以及有效值量,加入示波器以及计算模块进行测量并设定仿真时间。 4)调节电压源电压,调节范围在(1、25~0、2)U N范围内,测取变压器的U0,I0,P0,cosΦ0以及二次侧电压U AX等数据。 5)测取数据时,在额定电压附近侧的点较密,共测取10组数据记录于下表。 表1 空载实验数据 五、实验报告 1、完成表1 2、绘制U0-I0特性曲线 3、计算变压器变比 4、计算低压侧的励磁参数

Simulink建模方法

Simulink 建模方法 在一些实际应用中,如果系统的结构过于复杂,不适合用前面介绍的方法建模。在这种情况下,功能完善的Simulink 程序可以用来建立新的数学模型。Simulink 是由Math Works 软件公司1990年为MATLAB 提供的新的控制系统模型图形输入仿真工具。它具有两个显著的功能:Simul(仿真)与Link(连接),亦即可以利用鼠标在模型窗口上“画”出所需的控制系统模型。然后利用SIMULINK 提供的功能来对系统进行仿真或线性化分析。与MATLAB 中逐行输入命令相比,这样输入更容易,分析更直观。下面简单介绍SIMULINK 建立系统模型的基本步骤: (1) SIMULINK 的启动:在MATLAB 命令窗口的工具栏中单击按钮或者在命令提示符>>下键入simulink 命令,回车后即可启动Simulink 程序。启动后软件自动打开Simullink 模型库窗口,如图 7所示。这一模型库中含有许多子模型库,如Sources(输入源模块库)、Sinks(输出显示模块库)、Nonlinear(非线性环节)等。若想建立一个控制系统结构框图,则应该选择File| New 菜单中的Model 选项,或选择工具栏上new Model 按钮,打开一个空白的模型编辑窗口如图 8所示。 (2) 画出系统的各个模块:打开相应的子模块库,选择所需要的元素,用鼠标左键点中后拖 到模型编辑窗口的合适位置。 (3) 给出各个模块参数:由于选中的各个模块只包含默认的模型参数,如默认的传递函数模 型为1/(s+1)的简单格式,必须通过修改得到实际的模块参数。要修改模块的参数,可以用鼠标双击该模块图标,则会出现一个相应对话框,提示用户修改模块参数。 (4) 画出连接线:当所有的模块都画出来之后,可以再画出模块间所需要的连线,构成完整 的系统。模块间连线的画法很简单,只需要用鼠标点按起始模块的输出端(三角符号),再拖动鼠标,到终止模块的输入端释放鼠标键,系统会自动地在两个模块间画出带箭头的连线。若需要从连线中引出节点,可在鼠标点击起始节点时按住Ctrl 键,再将鼠标拖动到目的模块。 (5) 指定输入和输出端子:在Simulink 下允许有两类输入输出信号,第一类是仿真信号, 可从source(输入源模块库)图标中取出相应的输入信号端子,从Sink(输出显示模块库)图标中取出相应输出端子即可。第二类是要提取系统线性模型,则需打开Connection(连接模块库)图标,从中选取相应的输入输出端子。 例9 典型二阶系统的结构图如图9所示。用SIMULINK 对系统进行仿真分析。 图 7 simulink 模型库 图8 模型编辑窗口

经典-同步电机模型的MATLAB仿真h

安徽工业大学工商学院课程设计(论文)同步电机模型的MATLAB仿真 学生姓名:李春笋 学号:111842161 专业班级:气1142 指导教师:范国伟 2013年12月20日

摘要 采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。再使用MATLAB中用于仿真模拟系统的SIMULINK 对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模拟、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。关键词:同步电机 d/q模型 MATLAB SIMULINK 仿真。 The Simulation Platform of Synchronous Machine by MATLAB Abstract: The utilization of transducer realizes the control of voltage’s frequency. It changes the situation that Synchronous Machine is always running with constant speed. Just like Asynchronous Machine, Synchronous machine can also be viewed as a member of the timing machine. This thesis intends to aim at the typical salient pole machine in Synchronous Machine. Some quantitative analysis are made on relations of salient pole machine among current, voltage, flux, flux linkage and torque, under the condition that some factors such as harmonic electric potential are ignored. These factors have less influence on error but greatly increase complexity of arithmetic. Thus, simplified mathematic model is established on the basis of a, b, c three phase variables. By the Park transformation, this model is transformed to d, q model which, is easy to be controlled by computer. Simulink is used to masking and linking all the parts of the system. The system can be divided into four main parts, namely power system, abc/dq transformation, simulation model of the machine and feedback control. Special blocks are designed for the four parts and a series of parameters in these parts are configured. The results of simulation show that each output has a satisfactory response when there is disturbance. Key Words: Synchronous Machine Simulation d/q Model MATLAB SIMULINK

Simulink建模与仿真

《通信系统仿真》实验报告 姓名杨利刚班级A0811 实验室203 组号28 学号28 实验日期 实验名称实验三Simulink建模与仿真实验成绩教师签字 一、实验目的 1、了解simulink的相关知识 2、掌握Matlab/simulink提供的基本模块库和常用的模块 3、掌握simulink建模仿真的基本方法 二、实验原理 Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模。它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率,并且提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。 Simulink基本库是系统建模中最常用的模块库,原则上一切模型都是可以由基本库中的模块来构建,为了方便专业用户使用,Simulink还提供了大量的专业模块库,如为通信系统和信号处理而提供的CDMA参考库、通信模块库和DSP模块库等,但是,建议初学者不宜过多使用这些专业库,而应当从所建摸的系统原理入手,利用基本模块来构建系统,以深入理解系统运行情况。 Simulink的常用库模块有12个: (1)连续时间线性系统库;(2)非连续系统库;(3)离散系统库;(4)查表操作模块;(5)数学函数库;(6)模型检查和建模辅助工具;(7)端口和子系统;(8)信号路由库;(9)信号属性转换库;(10)信号源库;(11)信宿和仿真显示仪器库;(12)用户自定义函数库。 Simulink的建模主要是子系统的建模,子系统建模完成后,再对其进行封装,即完成了一个基本模型的建立。 三、实验内容 1、现有对RLC充放电电路进行仿真的模型。请参照仿真模型,进行Simulink的建模仿真,相关参数按照例题中的参数设置。

单闭环直流电机调速Simulink仿真

单闭环直流电机调速S i m u l i n k仿真 Revised by Petrel at 2021

直流调速系统及其仿真 首先,我先大致讲一下电机调速的基本原理: 01()d d n a U E I R R R =+++(1) e e E C n K n ==Φ(2) 3) 直流他励电动机供电原理图 由此公式可知直流他励电动机调速方法有: (1) 改变电枢供电电压的调速 (2) 减弱励磁磁通的调速 (3) 改变电枢回路电阻调速 由晶闸管整流装置给直流电动机供电的调速系统简称为V-M 系统,今天我们选用的就是改变 电枢电压的V-M 调速系统。n U 闭环系统的结构图 电压比较环节*n n n U U U =- 放大器ct p n U K U = 晶闸管整流器及触发装置0d s ct U K U = V-M 系统开环机械特性0d d e e U I R E n C C -== 速度检测环节22n tg etg U U C n n ααα=== 式中,p K 为放大器的电压放大系数;s K 为晶闸管整流器及触发装置的电压放大系数;2α为反馈电位器分压比;etg C 为测速发电机额定磁通下的电动势转速比;2etg C αα=为转速反馈系数。

以上就是单电机比较简单的理论,下面我要向大家介绍一下无静差转速负反馈调速系统的构成、建模及仿真。单闭环无静差转速负反馈调速系统的电气原理图如图所示: 系统的建模包括主电路的建模和控制电路的建模两部分。 该系统由给定、速度调节器、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机、速度给定环节、限流环节等部分组成。 (一) 三相交流电源 A 超前C120度,C 超前B120度。 同步脉冲触发器和封装之后的子系统符号 六脉冲触发器需要用三相线电压同步,所以同步电源的任务是将三相交流电源的相电压转换成线电压。图中触发器开关信号block 为0时,开放触发器;为1时,封锁触发器。 晶闸管整流桥及其参数设置 直流电机模块 PID 模块及其参数设置 PI 的控制器可以通过现有的PID 模块进行设置。 限幅器模块及其参数设置 通过对ct U 参数变化范围的探索而知:在单闭环无静差系统中,当ct U 在110~207范围内变化 时,同步脉冲触发器能够正常工作;当ct U 为110时,对应的整流桥输出电压最大;而;而207对 应的输出电压最小。为此,我们将限幅器的上、下限幅值设置为[97,0],用加法器加上偏置“-207”后调整为[-110,-207],再经反相器转换为[110,207]。这样通过限幅器、偏置、反向器等模块的应用,就可将速度调节器的输出限制在使用同步脉冲触发器能够正常工作的范围之内了。 系统的给定信号设置为150rad/s,p K =2,n =40,平波电抗器电感5e-3H ,其他的参数和上一 系统的参数一样。 (二)

电机MATLAB仿真实验

(此文档为Word格式,下载后可以任意编辑修改!)(文件备案编号:) 单相变压器空载仿真实验 工程名称: 编制单位: 编制人: 审核人: 批准人: 编制日期:年月日

单相变压器空载仿真实验 一、实验目的 1 用仿真的方法了解并求取变压器的空载特性。 2 通过变压器空载仿真了解并求取变压器的参数和损耗。 二、预习要点 1 变压器空载运行有什么特点? 2 在变压器空载实验仿真中,如何通过仿真测取变压器的铁耗。 三、仿真项目 1 完成变压器空载运行仿真模型的搭建和参数设定。 2 仿真测取空载特性U0=f(I0),P0= f(U0),cosΦ0= f(U0)。 四、仿真方法 1 仿真模块 2 仿真模型

AX 图1 变压器空载实验接线图 图2 单相变压器空载仿真模型示例图 图3 变压器参数设置示例图(右侧饱和曲线数据请输入到左侧Saturation Characteristic 一栏) 3 空载仿真 1)根据图1的接线图进行仿真模型搭建,搭建仿真模型如图2所示,所有频率的设置均改成50。 2)对单相变压器以及其他元器件模块的参数设置,选定额定电压,变压器变比等。设定其额定容量S N =77 V A ,U 1N /U 2N =55/220V 。变压器低压侧接电源,高压侧开路。变压器参数设置如图3所示。

3)可自行根据需要选择需要测量的波形以及有效值量,加入示波器以及计算模块进行测量并设定仿真时间。 4)调节电压源电压,调节范围在(1.25~0.2)U N范围内,测取变压器的U0,I0,P0,cosΦ0以及二次侧电压U AX等数据。 5)测取数据时,在额定电压附近侧的点较密,共测取10组数据记录于下表。 表1 空载实验数据 五、实验报告 1. 完成表1 2. 绘制U0-I0特性曲线 3. 计算变压器变比 4. 计算低压侧的励磁参数

电机控制系统与simulink仿真

电机控制系统与simulink仿真 笔名:小san 【摘要】对simulink特点、以及工作原理进行简单的概述,并将simulink 仿真用于电机控制系统仿真研究中,同时以一个具体实例较为深入地对其进 行说明。 【关键词】simulink电机仿真 1、引言 系统仿真的通俗说法就是模拟实验,simulink是MATLAB的仿真工具箱,它从编程转向模型构造,快速、准确的实现了动态系统建模和仿真。Simulink 在建模仿真中支持各类系统,如线性系统、非线性系统、混合系统、连续和离散系统等,为我们提供了不少基本模块,我们可以根据需要从库浏览器里复制出模块,并进行修改参数就可以得到我们要的模型了,从而轻松有效的完成系统仿真。 目前,电机控制系统越来越复杂,同时也不断有新的控制算法被采用。仿真是对其进行研究的一个重要的、不可缺少的手段,而值得考虑的是采用何种软件才使得仿真方便、快速、准确且容易收敛和计算精度。simulink软件在其仿真研究中被成功方便地应用在电动车电驱动系统的研制过程中。 2、simulink 仿真软件的简介 (1)simulink的特点 a、simulink仿真软件最大的特点是非常直观,直接面向“方框图”,它可 完成控制系统模型输入与仿真分析,在simulink界面下,可以直接用鼠标“画” 出所需要的控制系统模型,然后利用simulink提供的功能来对系统进行仿真或线性化分析。这样无论多么复杂的系统,相当容易且直观地就可完成模型的输入和仿真计算,适用于科学研究与工程设计。仿真过程中和结束后都有示波器供查看、分析,所有数据都在内存,可存贮在磁盘中。 b、simulink仿真软件工具带有相应的系统模型库,当进行模型输入时可

车辆悬架 四分之一整车模型Simulink建模仿真

车辆悬架 四分之一整车模型的Simulink建模与仿真车身质心加速度相对动载荷悬架动行程Simulink建模与仿真

运用simulink 中的状态空间模型计算四分之一车模型的,ACC ,DTL 和SWS 。首先运用吴志成老师一片文献的方法利用simulink 建立路面不平度模型,生成路面谱。 所运用的公式如下: q t =?0.111?v ?q t +0.111?40? G q n 0 ?v 利用上述式子得出路面不平度生成如下所示: 图1 路面谱生成 因为选择的是E 级路面,40KM/h ,因此增益2和3分别为,11.1111和8.5333。此外,限带白噪声功率的大小为白噪声的协方差与采样时间的乘积。又白噪声W E (t)的协方差满足下式: E w E t w E t +τ =2ρ2αvδ(τ) 此处δ(τ)为脉冲函数,并且选择采样时间为0.01s ,则计算可得白噪声功率为8.9*10-3。计算的路面不平度均方根值为0.0531m 。 四分之一车模型根据拉格朗日方程有下式: 状态空间模型:xb=z2 xw=z1 kt=k1 ks=k2 mb=m2 mw=m1 xr=u 建立状态方程和输出方程,在此选取状态变量向量为: X =[z1,z2,z 1 ,z 2]′ 0)()(=-+-+w b s w b b b x x k x x C x M ()()()0w w w b s w b t w r x C x k x x k x x x M +-+-+-=

输入向量为: u=[qt]′则输出向量为 Y=[z2,z2,z1?u? kt m2?g ,z2?z1]′ 建立如下的状态方程和输出方程: X=AX+Bu Y=CX+du 解得A,B,C,D分别为: A= 010 001 ?(k1+k2)/m1 k2/m2 k2/m1 ?k2/m2 ?c/m1c/m1 c/m2?c2/m2 B=[0 0 k1 0]′ C=k2 m2 ? k2 m2 c m2 ? c m2 ; 0 1 0 0; k1 m2g 0 0 0;?1 1 0 0 D=[0 0? k1 0]′ 将各个已知量代入即可得出具体的矩阵。从而有下面的simulink仿真: 图2simulink仿真模型

Simulink建模与仿真

【实验名称】 Simulink建模与仿真 【实验目的】 1.学习SIMULINK 软件工具的使用方法; 2.用SIMULINK 仿真线性系统; 【实验内容】 1.SIMULINK简介 SIMULINK是MATLAB软件的扩展,它是实现动态系统建模和仿真的一个软件包,它与MATLAB语言的主要区别在于,其与用户交互接口是基于Windows的模型化图形输入,其结果是使得用户可以把更多的精力投入到系统模型的构建,而非语言的编程上。 所谓模型化图形输入是指SIMULINK提供了一些按功能分类的基本的系统模块,用户只需要知道这些模块的输入输出及模块的功能,而不必考察模块内部是如何实现的,通过对这些基本模块的调用,再将它们连接起来就可以构成所需要的系统模型(以.mdl文件进行存取),进而进行仿真与分析。 2.SIMULINK的启动 进入SIMULINK界面,只要你在MA TLAB命令窗口提示符下键入‘SIMULINK’,按回车键即可启动SIMULINK软件。在启动S IMULINK软件之后,SIMULINK的主要方块图库将显示在一个新的Windows中。 如图8-1所示: ?在MA TLAB命令窗口中输入simulink : 结果是在桌面上出现一个称为Simulink Library Browser的窗口,在这个窗口中列出了按功能分类的各种模块的名称。 图8-1 SIMULINK的主要方块图库

3.SIMULINK的模块库介绍 ?SIMILINK模块库按功能进行分为以下8类子库: Continuous(连续模块) Discrete(离散模块) Function&Tables(函数和平台模块) Math(数学模块) Nonlinear(非线性模块) Signals&Systems(信号和系统模块) Sinks(接收器模块) Sources(输入源模块) 4.SIMULINK简单模型的建立 (1)建立模型窗口 (2)将功能模块由模块库窗口复制到模型窗口 (3)对模块进行连接,从而构成需要的系统模型 5.SIMULINK功能模块的处理 (1)模块库中的模块可以直接用鼠标进行拖曳(选中模块,按住鼠标左键不放)而放到模型窗口中进行处理。 (2)在模型窗口中,选中模块,则其4个角会出现黑色标记。此时可以对模块进行以下的基本操作: ?移动:选中模块,按住鼠标左键将其拖曳到所需的位置即可。若要脱离线而移动,可按 住shift键,再进行拖曳; ?复制:选中模块,然后按住鼠标右键进行拖曳即可复制同样的一个功能模块; ?删除:选中模块,按Delete键即可。若要删除多个模块,可以同时按住Shift键,再用 鼠标选中多个模块,按Delete键即可。也可以用鼠标选取某区域,再按Delete键 就可以把该区域中的所有模块和线等全部删除; ?转向:为了能够顺序连接功能模块的输入和输出端,功能模块有时需要转向。在菜单 Format中选择Flip Block旋转180度,选择Rotate Block顺时针旋转90度。或 者直接按Ctrl+F键执行Flip Block,按Ctrl+R键执行Rotate Block。 ?改变大小:选中模块,对模块出现的4个黑色标记进行拖曳即可。 ?模块命名:先用鼠标在需要更改的名称上单击一下,然后直接更改即可。名称在功能模

MATLAB仿真同步电机模型

电机模型MATLAB仿真 第1章引言 1.1引言 世界工业进步的一个重要因素是过去几十年中工厂自动化的不断完善。在上个世纪70年代初叶,席卷全球世界先进工业国家的石油危机,迫使他们投入大量人力和财力去研究高效高性能的交流调速系统,期望用它来节约能源。经过十年左右的努力,到了80年代大见成效,高性能交流调速系统应用的比例逐年上升,能源危机从而得以缓解。从此以后,高性能交流电机的研究从未再停止过。 而且众所周知,电机的数学模型是多变量、强耦合的非线性系统。对非线性系统中的混沌和分支现象的研究是当前非线性科学研究的热点,在理论上、计算机仿真以及实验上都有了一些研究成果,提出了一些方法。但要从理论上研究一个非线性动力系统,一般比较困难,我们往往希望在保持其动力学特性的基础上,将其简化。要简化一个动力系统,有两条途径:一是减少系统的维数;二是消除非线性[1]。 1.2同步电机概述 同步电机历来是以转速与电源频率严格保持同步而著称的,只要电源频率保持恒定,同步电动机的转速就绝对不变。小到电钟和记录仪表的定时旋转机构,大到大型同步电动机直流发电机组,无不利器转速恒定的特点。除此以外,同步电动机还有一个突出的优点,就是可以控制励磁来调节它的功率因数,可使功率因数高到1.0甚至超前。在一个工厂中只需要少数几台大容量恒转速的设备(例如水泵、空气压缩机等)采用同步电动机,就足以改善全厂的功率因数。由于同步电动机起动费事、重载有振荡以至于失步的危险,因此除了上述要求以外,一般的工业设备很少应用。 自从电力电子变频技术蓬勃发展以后,情况就完全改变了。采用电压频率协调控制后,同步电动机便和同步电动机一样成为调速电机大家庭的一员。原来阻碍同步电动机广泛应用的问题已经得到解决。例如起动问题,既然频率可以由低调到高,转速也就逐渐升高,不需要任何其他起动措施,甚至有些容量达数万千瓦的大型高速拖动电机,还专门配上变频装置

基于simulink信号与系统的建模与仿真

安康学院 学年论文﹙设计﹚ 题目基于simulink信号与系统的建模与仿真 学生姓名学号 所在院(系) 专业班级 指导教师 年月日

基于simulink的信号与系统建模和仿真 () 指导教师: 【摘要】本文着重论述了如何利用MATLAB Simulink工具在计算机上实现信号与系统分析,通过程序使一些运算量较大、抽象问题简单而直观,详细介绍了利用系统框图模拟实际系统的分析方法,该方法对连续或离散时不变因果系统具有普遍性,借助Matlab/Simulink 仿真工具对基本结构实现了建模和仿真分析。 【关键词】信号与系统、建模、仿真、Simulink Based on simulink modeling and simulation of signal and system Author: ZhangXiu (Grade2011,Class1,Major Electronic information engineering,Ankang University,Ankang 725000, Shaanxi) Directed by Yushunyuan Abstract:This article discusses the methods of realizing signal and system analysis by MATLAB and making complicated arithmetic and abstract problems easy and direct by programs.It introduces an analysis method of simulating actual system by system diagram,which is universal to continuous and discrete time invariable causal system.It realizes modeling and simulation analysis on the basic structures based on Matlab /Simulink simulation tools. Keywords: signal and system; modeling; simulation; Matlab /Simulink 0引言 信号与分析系统是自动化、通信、电信、测控、电子类专业基础课,信号与系统分析就在给定系统的情况下,研究系统在输入不同信号时所产生的响应,由获得的参数,达到对系统的功能和特性的认知。传统的理论分析方法是和数学紧密联合在一起的,初学者不得不把大量的时间和精力浪费在许多繁琐的工程计算上,而忽略了系统的基本概念,对概念模糊。然而在现代实际工程中,对系统进行实验研究时,通常使用数学模型来模拟实际系统,分析不同的信号输入和系统参数改变时,系统响应或性能的变化。而这一切,都是利用计算机技术和各种应用软件强有力的分析手段来完成的。【1】

广西大学 实验8:Simulink建模与仿真实验报告

广西大学实验报告纸 姓名: 电气工程学院自动化2 2011年1月1日 实验内容_______________________________________________指导老师________________ 【实验名称】Simulink建模与仿真 【实验目的】 1.学习SIMULINK 软件工具的使用方法; 2.用SIMULINK 仿真线性系统; 【实验设备】 1) PC机一台 2) MATLAB软件 【实验内容】 1.SIMULINK简介 SIMULINK是MATLAB软件的扩展,它是实现动态系统建模和仿真的一个软件包,它与MATLAB语言的主要区别在于,其与用户交互接口是基于Windows的模型化图形输入,其结果是使得用户可以把更多的精力投入到系统模型的构建,而非语言的编程上。 所谓模型化图形输入是指SIMULINK提供了一些按功能分类的基本的系统模块,用户只需要知道这些模块的输入输出及模块的功能,而不必考察模块内部是如何实现的,通过对这些基本模块的调用,再将它们连接起来就可以构成所需要的系统模型(以.mdl文件进行存取),进而进行仿真与分析。 2.SIMULINK的启动 进入SIMULINK界面,只要你在MA TLAB命令窗口提示符下键入‘SIMULINK’,按回车键即可启动SIMULINK软件。在启动S IMULINK软件之后,SIMULINK的主要方块图库将显示在一个新的Windows中。 如图8-1所示: ?在MA TLAB命令窗口中输入simulink : 结果是在桌面上出现一个称为Simulink Library Browser的窗口,在这个窗口中列出了按功能分类的各种模块的名称。

电机制动方式的SIMULINK仿真

扬州大学 专业软件应用综合设计报告 水能学院11级电气专业题目直流电机制动仿真设计 学生 ** 学号111704*** 指导教师张老师 2013年12 月30日

目录 1引言 (5) 2设计依据及框图 (6) 2.1设计平台 (6) 2.2设计思想 (9) 2.3设计结构框图或流程图 (10) 2.4各模块功能简介 (18) 3软件调试分析 (22) 4结语 (27) 4.1结论与讨论 (27) 参考文献 (27) 致谢 (29)

直流电动机综合仿真设计三 摘要:对于制动,直流电机制动有很多种方式,一般可以分为三类,能耗制动,反接制动,回馈制动。例如他励直流电机能耗制动在工程上得到了广泛的使用,因为这种制动方式,简单可靠,安全经济。能耗制动原理其实就是将电流方向反向,产生相反的电磁转矩,从而产生一个与转速方向相反的力矩,达到减速制动的目的。而我们通过MATLAB仿真,在图示上直观的解释了他励直流电动机的停机过程,讲解了在不同的阶段,电动机的工作特性曲线的变动,在关键点的(电动机的瞬时态)讲解。并且运用之前所介绍的基础知识来解 T,TL,To之间的关系 本文针对直流电动机能耗制动、反接制动、回馈制动,在忽略一部分对误差影响较小而使算法复杂度大大增加的因素,对电动机制动前后电压、电流、及转速进行对比研究分析,再使用MATLAB 中用于仿真模拟系统的SIMULINK对系统的各个部分进行封装及连接,并为其设计了专用模块,同时对其中的一系列参数进行了配置。系统启动仿真后,各项参数都平稳地达到预期值。实际工程上通过系统模拟实验表明:该系统设计合理,自动化程度高,实验过程时间短,工作稳定可靠,基本满足设计相关要求。 关键字:直流电机;制动方式;MATLAB;SIMULINK

电机制动方式的SIMULINK仿真

目录 1引言 (5) 2设计依据及框图 (6) 2.1设计平台 (6) 2.2设计思想 (9) 2.3设计结构框图或流程图 (10) 2.4各模块功能简介 (18) 3软件调试分析 (22) 4结语 (27) 4.1结论与讨论 (27) 参考文献 (27) 致谢 (29)

直流电动机综合仿真设计三 摘要:对于制动,直流电机制动有很多种方式,一般可以分为三类,能耗制动,反接制动,回馈制动。例如他励直流电机能耗制动在工程上得到了广泛的使用,因为这种制动方式,简单可靠,安全经济。能耗制动原理其实就是将电流方向反向,产生相反的电磁转矩,从而产生一个与转速方向相反的力矩,达到减速制动的目的。而我们通过MATLAB仿真,在图示上直观的解释了他励直流电动机的停机过程,讲解了在不同的阶段,电动机的工作特性曲线的变动,在关键点的(电动机的瞬时态)讲解。并且运用之前所介绍的基础知识来解T,TL,To之间的关系 本文针对直流电动机能耗制动、反接制动、回馈制动,在忽略一部分对误差影响较小而使算法复杂度大大增加的因素,对电动机制动前后电压、电流、及转速进行对比研究分析,再使用MATLAB 中用于仿真模拟系统的SIMULINK对系统的各个部分进行封装及连接,并为其设计了专用模块,同时对其中的一系列参数进行了配置。系统启动仿真后,各项参数都平稳地达到预期值。实际工程上通过系统模拟实验表明:该系统设计合理,自动化程度高,实验过程时间短,工作稳定可靠,基本满足设计相关要求。 关键字:直流电机;制动方式;MATLAB;SIMULINK

Abstract: For braking , DC There are many ways moving mechanism , can generally be divided into three categories , dynamic braking , reverse braking , regenerative braking . He excited DC motor braking energy on the project has been widely used because this braking mode , simple, reliable , safe and economical. In fact, the principle of dynamic braking is to reverse current direction , the opposite of the electromagnetic torque and the rotational speed to generate a torque in the opposite direction , to achieve the purpose of the braking deceleration . By MATLAB simulation, the icon intuitive explanation excited DC motor shutdown process , to explain the changes in the different stages of the motor operating characteristics curve at key points ( motor instantaneous state ) to explain. Before applying the basics and introduced to solve the relationship between T, TL, To between In this paper, the DC motor braking , reverse braking , regenerative braking , part of a small error in ignoring the fallout of greatly increased complexity of the algorithm factors , before and after the motor brake voltage, current , and speed of a comparative study analysis , and use SIMULINK MATLAB simulation system used for the various parts of the system are encapsulated and connectivity , and to design a specific module , while a series of parameters for which the configuration. After starting the system simulation , the parameters are smoothly reaches zero. Through the system simulation experiments show that: the system is designed, high degree of automation , the experiment short time , stable and reliable , basically meet the design requirements. Keywords: DC; BRAKING; MATLAB; SIMULINK

Matlab Simulink建模与仿真例题源代码

〔實例3.1〕試設計一個模擬低通濾波器,f p = 2400Hz,f s = 5000Hz,R p = 3 dB,R s = 25dB。分別用巴特沃斯和橢圓濾波器原型,求出其3dB 截止頻率和濾波器階數,傳遞函數,並作出幅頻、相頻特性曲線。 巴特沃斯濾波器設計的程序代碼如下: % ch3example1A.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 設計要求指標 [n, fn]=buttord(f_p,f_s,R_p,R_s, 's'); % 計算階數和截止頻率 Wn=2*pi*fn; % 轉換為角頻率 [b,a]=butter(n, Wn, 's'); % 計算H(s) f=0:100:10000; % 計算頻率點和頻率範圍 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 計算相應頻率點處H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅頻特性 axis([0 10000 -40 1]); xlabel('頻率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相頻特性 xlabel('頻率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接畫出H(s)的頻率響應曲線。 橢圓濾波器設計的程序代碼如下: 〔程序代碼〕ch3example1B.m % ch3example1B.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 設計要求指標 [n, fn]=ellipord(f_p,f_s,R_p,R_s,'s'); % 計算階數和截止頻率 Wn=2*pi*fn; % 轉換為角頻率 [b,a]=ellip(n,R_p,R_s,Wn,'s'); % 計算H(s) f=0:100:10000; % 計算頻率點和頻率範圍 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 計算相應頻率點處H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅頻特性 axis([0 10000 -40 1]); xlabel('頻率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相頻特性 xlabel('頻率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接畫出H(s)的頻率響應曲線。

相关文档
相关文档 最新文档