文档库 最新最全的文档下载
当前位置:文档库 › 通孔回流焊接工艺

通孔回流焊接工艺

通孔回流焊接工艺
通孔回流焊接工艺

通孔回流焊接工艺

在过去三到四年期间,美国 Alcatel 公司 (Richardson, TX) 已经在作消除对尽可能多的混合技术 PCB 的波峰焊接需要的工作。减少波峰焊接的计划已经提供了成本与周期时间的重要改善。

通孔回流焊接工艺的实施已经是该计划的一个必要部分。该工艺涉及在通孔

(through-hole) 组件要插位置印刷锡膏。这些组件然后在表面回流焊接炉之前安装,并与其它组件一起焊接。适合该工艺的组件类型包括针栅数组 (PGA, pin grid array) 、 DIP(dual in-line package) 和各种连接器。

初始结果

能力分析 (capability studies)

Alcatel 公司的工艺质量标准对所有通孔组件一直要求至少 75% 的通孔填充。焊接工业标准J-STD-001 B 1 ( 第三类应用 ) 要求垂直填充至少 75% ,并明显有良好的熔湿。计算显示,假设将孔的尺寸从波峰焊接和手工焊接正常使用的减少, 0.007" 的模板可提供足够的焊锡满足这些要求。

通过使用一种为新工艺重新设计的波峰焊接产品电路板,对回流焊接炉提供必要温度曲线的能力进行了研究。该电路板是 10"x15.2" ,厚度 0.093" ,安装一个 47-mm 2 的陶瓷PGA ,以及一些典型的标准与密间距的表面贴装组件。该炉子是标准的带有氮气的强制对流型的。

图一显示得到的温度曲线。板上所有的点都在锡膏供货商对峰值温度和回流以上时间的规格内。 PGA 引脚的温度实际上是两面相同的,尽管有组件的热质量 (thermal mass) 。小型表面贴装电阻与 PGA 引脚之间的峰值温度之差只有9 ° C

初始实施

当工艺在产品电路板实施时,遇到许多的问题。由于焊锡对引脚的分布不均,有时要求焊接点的返工。有些引脚特别少锡,而相邻的引脚又多锡。其它的情况,大的锡“块”保留在引脚端上,因此由于孔内少锡而要求手工的补焊。最后,旧的电路板经常通孔太大,用

0.007" 厚度的模板不能充满 75% 的焊锡。没有考虑用更厚的模板,因为使用了 0.020" 间距的表面贴装组件。

对表面贴装装配过程的观察发现,为通孔组件印刷的锡膏有时会在组件贴装所要求的时间内塌落 (slump) ,使得锡膏沈积跑到一起,或相互“汇合” ( 图二 ) 。这些电路板的模板具有 0.090" 或 0.092" 方形开孔,用来提供尽可能最大的锡膏量。这些开孔只允许

0.008"~0.010" 的锡膏沈积之间的间隔,因为组件引脚之间的间距为 0.100" 。

回流焊接后对板的检查证实,放在汇合的锡膏沈积中的连接器几乎总会出现焊锡“抢夺”的效果,造成引脚之间焊锡分布不均匀。如果保持了锡膏沈积之间的分离,引脚的焊锡分配就会一致。

这些观察提出了许多问题。特别是,锡膏沈积 ( 模板网格 ) 之间的分离怎样达到最佳以避免汇合,同时又提供最大的锡量以形成焊接点?我们还不了解阻焊 (solder mask) 开口的几何形状对引脚之间焊锡分布的影响,如果有的话;需要更好的了解来促进回流期间焊锡从引脚端回到通孔内的运动。最后,在基本问题上还需要数据,多少焊锡、或多少百分比的孔内填充需要用力提供可靠的机械与电气的连接?

试验程序

设计

使用专门的试验板,建立一个试验程序;有些试验也在产品板上进行。使用 10 个引脚的直线插座 (in-line socket) ,通常用于混合包装,作为将要焊接的组件;设计出试验板。引脚直径是 0.019" ,间距 0.100" ,锡 / 铅表面涂层。订购的插座引脚长度为 0.120" 和0.180" 。 0.120" 引脚的基体金属为紫铜 (copper) ,而 0.180" 引脚为黄铜 (brass) 。

0.120" 引脚长度用于所有不涉及拉力试验的应用,假设名义引脚的背部突出对 0.062" 厚度的板和 0.093" 的板分别 0.058" 和 0.027" 。

在用于拉力试验的插座上,插座每一端的一个引脚向外弯曲,提供拉力试验夹具所要求的离板高度 (standoff) 。 0.120" 长的引脚用于在 0.062" 厚板上的拉力试验,留下大约0.010"~0.020" 的引脚突出。 0.180" 的引脚主要用于 0.093" 厚板上的拉力试验,靠外引脚弯曲以提供 0.030"~0.040" 的突出。焊接之后,每个插座的引脚被分出来用于拉力试验,使用手磨工具将塑料壳从引脚去掉。

表一列出板与锡膏模板设计的详细数据。包括了各种尺寸的方形阻焊层开口和标准的圆形开口,来评估阻焊层开口对“抢夺(robbing) ” 的效果。锡膏模板的厚度为 7-mil 。对方形阻焊开口的模板开孔比阻焊开口大 0.008" ,以得到印刷期间良好的“密封(gasketing) ” 。对标准圆形开口的焊盘开孔覆盖了 0.040"~0.090" 的范围,对应于

0.062" 厚板的 36%~185% 和 0.093" 板的 24%~123% 的计算通孔填充量。

试验步骤

试验板的装配

试验板用标准的 Bellcore 检定的免洗锡膏印刷。所有锡膏沈积物在印刷之后马上在四倍放大镜下进行视觉检查。将用于拉力试验的插座放在各种提供所希望的通孔填充量的位置。其它插座用来评估由于锡膏汇合所引起的“抢夺”效果。通过在插座安装后马上故意的使插座引脚污染锡膏,来模拟这个效果。使用带氮气的强制对流炉来进行回流焊接,使用锡膏供货商所推荐的回流曲线。

视觉评估

完成的板使用 7~35 倍的立体显微镜来检查。印刷于阻焊层上的锡膏全部流到通孔孔内,因此没有形成锡球。抢夺效果的严重程度与回流前锡膏的汇合程度有关。阻焊层开口的尺寸与形状似乎很少或者没有影响。 0.085" 或更小的锡膏沈积通常不容易产生抢夺作用,因为很难出现引脚尖的锡膏污染。

孔内焊锡分布是通过有代表性的电路板截面来评估的。除了一些放在 0.093" 厚度的板中的引脚有 24% 的焊锡填充量之外,所有回流焊接的引脚 ( 图三 ) 都显示引脚整个周围的焊锡熔湿 (wetting) 。对一些极其少锡的焊接点,几乎所有的焊锡保持在引脚与通孔的接触点上 ( 图四 ) ,并且没有形成引脚周围一整圈。

拉力试验

试验板分开成 2"x4.5" 的小板,进行拉力试验。一个特制的钩状夹爪安装在测试机的横臂上,然后钩在要测试的引脚肩下。

表二总结了拉力试验的结果。初始的试验是在手工焊接和波峰焊接的引脚上,形成一个基线。除了一种情况之外,全部的引脚都是以传统的拉力失效形式断裂,没有明显的焊点变形。然后试验回流焊接的引脚。在 0.062" 厚的板上、低至 36% 与高至 146% 通孔填充的焊接点没有发现明显的焊锡变形。都是引脚断裂。手工焊接引脚的断裂强度更高是由于焊锡熔湿到引脚肩部的整个长度。

在有 24%~97% 通孔填充的 0.093" 厚的板上的焊点试验产生相同的结果。这些引脚是黄铜,而不是紫铜,大约高出 3~6 磅的断裂力。

然后板放在空对空 (air-to-air) 的热冲击室内作加速老化。温度周期的组成是, 9 分钟85 ° C ,接着 11 分钟 -40 ° C 。温度转变速度是每分钟88 ° C 冷却和每分钟115 ° C 加热。

在 100 次温度循环之后的拉力试验结果显示很少的变化,除了在 0.093" 厚的板上只有 24% 的焊锡填充的引脚之外。这些焊接点的一半是通过把引脚拉出焊锡而失效的,但是最少的断裂力还是 16.5 磅。焊接点的强度虽着进一步的加速老化而逐渐下降,因此拉出的失

效多过引脚断裂。

附加试验

在前面的研究中注意到焊锡在引脚端形成“焊锡滴”的趋势 2,3 。使用 0.093" 厚度的板对这个效果作进一步的研究。有 0.180" 焊锡尾的插座放置在印刷与标准焊盘上的

0.085" 的锡膏方块内。一些插座完全座落,产生大约 0.087" 的引脚突出。其它插座进行调节以产生一个离板高度,留下大于 0.020"~0.030" 的引脚突出。图五与图六显示该结果。在较长引脚上的锡膏分散在较大的面积上,不能移上到引脚上以形成与 PCB 可接受的焊接点。

讨论

焊接点强度

拉力试验结果证实了适当地回流的焊接点,甚至最小的焊锡填充量 ( 通常 30~40%) ,具有很高的机械强度,甚至在加速老化之后。这些结果与在最佳时间与温度条件下形成的通孔焊接点是一致的,通孔焊点具有比表面贴装焊点相对较大的表面积。

加速老化是发现了焊接点强度的一点下降。这个作用在 0.093" 的伴随特别明显,主要由于用于较厚板的黄铜引脚的较高强度。由于温度疲劳引起的焊接点强度的下降是一个复杂的现象 4,5 。在任何情况中,焊接点要保持足够的强度,要有超过 1000 次温带冲击循环的可靠性。

设计上的考虑

在为通孔回流焊接设计一个装配时,必须考虑到许多因素。首先,必须用引脚形状、通孔直径和板的厚度来计算要用锡焊锡填充的体积。然后可以计算出达到通孔填充百分比所需要的锡膏量,估计锡膏内金属的体积含量大约为 50% 。锡膏可得到的量受到模板厚度、通孔引脚间距和锡膏沈积物之间所要求的最小间隔的限制,锡膏最小间隔将防止装配过程中锡膏塌落而相互接触。

因为许多通孔回流组件不适合机器贴装,通孔必须足够大,有助于手工安装。通孔尺寸的上限是由可得到锡膏的量来决定的。多数装配制造商使用的“现实世界”的兼顾尺寸是,通孔直径比引脚尺寸 ( 直径或对角线 ) 大大约 0.010" 。应该规定引脚长度,以产生板的底面最小所允许的突出高度。组件最大允许长度将决定于板的厚度、可得到的锡量、和引脚表面涂层,并且必须经常对一个给定的板用试验的方法决定。

最后,注意现有的有关通孔填充的装配工艺标准是基于上锡的工艺过程,在该过程中焊锡供应是无限的,通孔填充不完整通常表示工艺或组件的可能负面影响可靠性的问题 6 。这个假设不适合于通孔回流焊接工艺,因为每个焊点可得到的焊锡供应是有限的。焊锡填充程度不可以用来指示良好的可焊性。

回流焊点的不同外表,不是拒绝或返工的理由。工艺标准应该谈到对每个引脚的焊锡均匀分布和引脚与通孔的适当的焊锡熔湿。

结论

通孔组件的回流焊接是将这些组件结合到表面贴装工艺的一个有吸引力的工艺方法。通过适当的设计与过程控制,回流焊接点的质量与可靠性将可以与通过传统替代工艺所形成的焊接点相媲美。一个高效的工艺过程将要求对板与组件的仔细开发的设计指南,工艺标准必须与工艺特征相协调。

回流焊工艺常用中英文术语

回流焊工艺常用中英文术语 1. Solder Paste Technology(焊膏工艺) Solder Powder ( 锡粉) 休息再来接着说。 Solder Paste Rheology(锡膏流变学) Solder Paste Composition & Manufacturing(锡膏成分和制造) 2. Fundamentals of Solders and Soldering(焊料及焊接基础知识) Soldering Theory(焊接理论) Microstructure and Soldering(显微结构及焊接) Effect of Elemental Constituents on Wetting(焊料成分对润湿的影响) Effect of Impurities on Soldering(杂质对焊接的影响) 3. SMT Problems Occurred Prior to Reflow(回流前SMT问题) Flux Separation(助焊剂分离) Paste Hardening(焊膏硬化) Poor Stencil Life(网板寿命问题) Poor Print Thickness(印刷厚度不理想) Poor Paste Release From Squeegee(锡膏脱离刮刀问题) Smear(印锡模糊) Insufficiency(印锡不足) Needle Clogging(针孔堵塞) Slump(塌落) Low Tack(低粘性) Short Tack Time (粘性时间短) 4. SMT Problems Occurred During Reflow(回流过程中的SMT问题) Cold Joints(冷焊) Nonwetting(不润湿) Dewetting(反润湿) Leaching(浸析) Interllics(金属互化物) Tombstoning(立碑) Skewing(歪斜) Wicking(焊料上吸) Bridging(桥连) Voiding(空洞) Opening(开路) Solder Balling(锡球) Solder Beading(锡珠) Spattering(飞溅)

焊接作业规程指导指导方案

精心整理 2019年-9月 焊接作业指导书 (一)、电焊作业指导书 为确保生产、安装和服务的质量,使生产过程在受控状态下进行,根据国家职业技能鉴定教材内容,结合我处电焊作业实际情况,特制定电焊作业工艺规范。 一、对人员、设备、安全的要求 1发的特殊工种操作证方能上岗作业。 2求,正确执行安全技术操作规程。 3 A 1、平焊:平焊是在水平面上任何方向进行焊接的一种 操作方法。由于焊缝处在水平位置,溶滴主要靠自重过度,操作技术比较容易掌握,可以选用较大直径焊条和较大焊接电流,生产效率高,因此在生产中应用较为普遍。如果焊接工艺参数选择和操作不当,打底时容易造

成根部焊瘤或未焊透,也容易出现熔渣或熔化金属混杂不清或溶渣超前而引起的夹渣。常用平焊有对接平焊、T形接头平焊和搭接接头平焊。 2、立焊:是在垂直方向进行焊接的一种操作方法,由于受重力作用,焊条溶化所形成的溶滴及溶池中的金属要下淌,造成焊缝成形困难,质量受影响。因此,立焊时选用的焊条直径和焊接电流均应小于平焊,并采用短弧焊接。 3 4 B 钢和低合金钢主要是按等强原则选择焊条的强度级别,对一般结构选择酸性焊条,重要结构选用碱性焊条。(见表1—1—1) C、焊电源种类和极性的选择 手弧焊时采用的电源有交流和直流两大类,根据焊条的性质进行选择。通常,酸性焊条可同时采用交、直流两种电源,一般优先选用交流弧焊机。 2019年-9月

碱性焊条常采用反接、酸性焊条如使用直流电源时通常采用正接。采用低压高流电源,一般电焊机容量多在5~45仟伏安之间。 D、焊条直径 可根据焊件厚度进行选择,厚度越大,选用的焊条直径应越粗,见表1—1。但厚板对接接头坡口打底焊要选用较细焊条,另外接头形式不同, 2019年-9月

通孔回流工艺

穿孔回流焊是一项国际电子组装应用中新兴的技术。当在PCB的同一面上既有贴装元件,又有少量插座等插装元件时,一般我们会采取先贴片过回流炉,然后再手工插装过波峰焊的方式。但是,如果采取穿孔回流焊技术,则只需在贴片完成后,进回流炉前,将插件元件插装好,一起过回流炉就可以了。 通过这项比较,就可以看出穿孔回流焊相对于传统工艺的优越性。首先是减少了工序,省去了波峰焊这道工序,在费用上自然可以节省不少。同时也减少了所需工作人员,在效率上也得到了提高。其次是回流焊相对于波峰焊,生产桥接的可能性要小得多,这样就提高了一次通过率。穿孔回流焊技术相对传统工艺在经济性、先进性上都有很大的优势。所以,穿孔回流焊技术是电子组装中的一项革新,必然会得到广泛的应用。 但如果要应用穿孔回流焊技术,也需要对器件、PCB设计、网板设计等方面提出一些不同于传统工艺的要求。 a)元件: 穿孔元件要求能承受回流炉的回流温度的标准,最小为230度,65秒。这一过程包括在孔的上面涂覆焊膏(将在回流焊过程中进入孔中)。为使这一过程可行,元件体应距板面0.5毫米,所选元件的引脚长度应和板厚相当,有一个正方形或U形截面,(较之长方形为好)。 b)计算孔尺寸 完成孔的尺寸应在直径上比引脚的最大测量尺寸大0.255毫米(0.010英寸),通常用引脚的截面对角,而不包括保持特征。钻孔的尺寸比之完成孔再大0.15毫米(0.006英寸),这是电镀补偿,这样算得的孔就是可接受的最小尺寸。 c)计算丝网:(焊膏量) 第一部分计算是找出焊接所需的焊膏量,孔的体积减去引脚的体积再加上焊角的体积。(需要什么样的焊接圆角)。所需焊接体积乘以2就是所需焊膏量,因为焊膏中金属含量为50%体积(以ALPHA 的UP78焊膏为例)。丝印过程中将焊膏通过网孔印在PCB上,由于压力一般能将焊膏压进孔中0.8毫米(当刮刀与网板成45度角时)。我们计算进入孔中焊膏的体积,从所需焊膏量中减去它就得到在网孔中留下的焊膏的体积。这一体积除以网板的厚度就可以求出网孔所需的面积了。 d)网板设计: 网板的位置将取决于以下几个因素: 1、网孔的一边到孔中心的最小距离要求等于钻孔半径。 2、网孔总是比焊盘要大,所以焊膏将涂在阻焊层上,回流焊后确认不会有焊膏残留在阻焊盘上,网孔的边要求笔直,因为当回流焊过程焊膏进入孔中,将不会有焊膏在表面进行回流焊。 3、器件底面的下模形状有设计限制,下底面和丝印的焊膏之间需要有0。2毫米的空间。(在设计中必须包含) 4、在插座上,许多网孔提供笔直和窄的丝印,所以元件定位和在穿孔插座旁的测试点要留下一定的空间给焊膏层。 5、一般元件比如晶振,在元件下有足够的空间满足丝印需要的面积,这意味着将没有必要将焊膏涂覆在元件的外部。 e)元件管脚的准备: 管脚有一个正确的长度非常重要,当它们进入这一过程之前它们必须被预先剪切以达到比板厚多1.5毫米的条件。所有的引脚尺寸和网孔尺寸的变动偏差都将会被焊接圆角的量所包含,所以一些变动会体现在焊接圆角的高度变动上。 回流炉的温度曲线要求设置成:在4.5分钟内平滑提升到165+20度,从165~220+5度只经过一个温区,在220+5度保持50秒。 f)焊接: 由于实际原因,当穿孔回流焊时总是有焊膏的变动,所以设计有一个焊接圆角,可以解决一系列变

通孔回流工艺解析经典版

通孔回流焊接的作用 一.什么叫通孔回流焊接技 在传统的电子组装工艺中,对于安装有过孔插装元件采用波峰焊接技术。但波峰焊接有许多不足之处:不适合高密度、细间距元件焊接;桥接、漏焊较多;需喷涂助焊剂; PCB板受到较大热冲击翘曲变形。因此波峰焊接在许多方面不能适应高精密度电子组装技术的发展。为了适应这种高精密度表面组装技术的发展,解决以上焊接难点的措施是采用通孔回流焊接技(THRThrough-holeReflow),又称为穿孔回流焊PIHR(Pin-in-HoleReflow)。该技术原理是在PCB板完成贴片后,使用一种安装有许多针管的特殊钢网模板,调整模板位置使针管与插装元件的过孔焊盘对齐,使用刮刀将模板上的锡膏漏印到焊盘上,然后安装插装元件,最后插装元件与贴片元件同时通过回流焊完成焊接。从中可以看出穿孔回流焊相对于传统工艺的优越性:首先是减少了工序,省去了波峰焊这道工序,节省了人工费用,在效率上也得到了提高;其次回流焊相对于波峰焊,产生桥接的可能性要小的多,这样就提高了一次通过率。穿孔回流焊相对传统工艺在生产效率、先进性上都有很大优势。通孔回流焊接技术起源于日本SONY公司,20世纪90年代初已开始应用,但它主要应用于SONY自己的产品上,如电视调谐器及CDWalkman。 通孔回流焊有时也称作分类元件回流焊,正在逐渐兴起。它可以去除波峰焊环节,而成为PCB混装技术中的一个工艺环节。通孔回流焊最大的好处就是可以在发挥表面贴装制造工艺的优点的同时使用通孔插件来得到较好的机械联接强度。对于较大尺寸的PCB板的平整度不能够使所有表面贴装元器件的引脚都能和焊盘接触,同时,就算引脚和焊盘都能接触上,它所提供的机械强度也往往是不够大的,很容易在产品的使用中脱开而成为故障点。尽管通孔回流焊可发取得偿还好处,但是在实际应用中通孔回流焊仍有几个缺点,锡膏量大,这样会增加因助焊剂的挥了冷却而产生对机器污染的程度,需要一个有效的助焊剂残留清除装置。通孔回流焊另外一点是许多连接器并没有设计成可以承受通孔回流焊的温度,早期通孔回流焊基于直接红外加热的回流焊炉子已不能适用,这种回流焊炉子缺少有效的热传递效率来处理一般表面贴装元件与具有复杂几何外观的通孔连接器同在一块PCB上的能力。只有大容量的具有高的热传递的强制对流通孔回流焊炉子,才有可能实现通孔回流,并且也得到实践证明,剩下的问题就是如何保证通孔中的锡膏与元件脚有一个适当的回流焊温度曲线。随着工艺与元件的改进,通孔回流焊也会越来越多被应用。影响回流焊工艺的因素很多,也很复杂,需要工艺人员在生产中不断研究探讨,将从多个方面来进行探讨。 二.通孔回流焊接工艺的特点 1. 通孔回流焊与波峰焊相比的优点 (1)通孔回流焊焊接质量好,不良比率PPM(百万分率的缺陷率)可低于20。 (2)虚焊、连锡等缺陷少,返修率极低。 (3)PCB布局的设计无须像波峰焊工艺那样特别考虑。 (4)工艺流程简单,设备操作简单。 (5)通孔回流焊设备占地面积少,因其印刷机及回流炉都较小,故只需较小的面积。 (6)无锡渣问题。 (7)机器为全封闭式,干净,生产车间里无异味。 (8)通孔回流焊设备管理及保养简单。 (9)印刷工艺中采用了印刷模板,各焊接点及印刷的焊膏量可根据需要调节。

回流焊接工艺

回流焊接工艺 回流焊接是表面贴装技术(SMT)特有的重要工艺,焊接工 艺质量的优劣不仅影响正常生产,也影响最终的质量和可靠性。在使用表面贴装元件的印刷电路板(PCB)装配中,要得到优质的 焊点,一条优化的回流温度曲线是最重要的因素之一。温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表 PCB 上一个特定点上的温度形成一条曲线。几个参数影响曲线的形状,其中最关键的是传送带速度和每个温区的温度设定。链速决定基板暴露在每个温区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该温区的温度设定。每个温区所花的持续时间总和决定总共的处理时间。每个区的温度设定影响 PCB 的温度上升速度。增加温区的设定温度允许基板更快地达到给定温度。因此,必须作出一个较好的图形来决定 PCB 的温度曲线,理想的温度曲线由基本的四个区组成,前面三个区加热、最后一个区冷却。回流炉的温区越多,越能使温度曲线的轮廓达到更准确和接近设定。大多数锡膏都能用四个基本温区成功回流。在回流焊接过程中,锡膏需经过溶剂挥发;焊剂清除焊件表面的氧化物;锡膏的熔融、再流动以及锡膏的冷却、凝固。以下就对温度曲线图及四个区进行介绍: 1

Peak: 熔点 220℃以 上 210~220℃ 180℃150℃ 时间 S 250S 200S 150S 100S 50S 预热区:也叫斜坡区。目的:使 PCB 和元器件预热,达到平衡,同时除去焊膏中的水份、溶剂,以防焊膏发生塌落和焊料飞溅。要保 证升温比较缓慢,溶剂挥发。较温和,对元器件的热冲击尽可能小, 在这个区,尽量将升温速度控制在 2~5℃/S,较理想的升温速度为 1~3 ℃/S,时间控制在 60~90S 之间。升温过快会造成对元器件的 伤害,如会引起多层陶瓷电容器开裂。同时还会造成焊料飞溅,使 在整个PCB的非焊接区域形成焊料球以及焊料不足的焊点。而温度上 升太慢,锡膏会感温过度,没有足够的时间使 PCB 达到活性温度。锡 炉的预热区一般占整个加热通道长度的 25~33%。 保温区:也称活性区、有时叫做干燥或浸润区。目的:保证在达到回流温度之前焊料能完全干燥,同时还起着焊剂活化的作用,清除 元器件、焊盘、焊粉中的金属氧化物。在这个阶段助焊剂开始挥发,

关于回流焊工艺发展的讨论

关于回流焊工艺发展的讨论 2003-6-18 9:00:31 文章作者:本站新闻管理员阅读818次 双击鼠标自动滚屏,单击停止最近几年,SMT生产技术已发生了巨大的变化,其中:生产标准的改变,新型焊膏的利用、不同基材的出现,以及元器件本身材料和设计的革新都使得热处理工艺不断发展。新型元器件的设计动力是来自于产品小型化的不断驱使。这些新型元器件封装包括:BGA(球栅阵列)、COB(裸芯片)、CSP(微型封装)、MCM(多芯片模块),以及flip chip(倒装片)等。产品小型化回流焊使得元器件越做越小,并使管脚数增加,使间距变小。另外为减少成本,免清洗和低残留焊膏使用的更加广泛,与之相应的是氮气的使用也随之增加。市场对手持式电子产品的不断需求始终是一个强大的驱动力,它使得封装工艺必须适应这些产品的技术要求。因此更小、更密、更轻的组装技术,以及更短的产品周期、更多、更密的I/O引线,更强的可操控性----都把回流焊技术提到一个新的层次上来讨论。同时也对热处理工艺的控制手段和设备提出了新的要求。 考虑到这些压力,我们提出了一个简单的设想图,其中的一些方案可以回答回流焊工艺今后会遇到的挑战。 氮气惰性保护 使用惰性气体,一般采用氮气,这种方法在回流焊工艺中已被采用了相当长的一段时间,但它的价格还是一个问题。因为惰性气体可以减少焊接过程中的氧化,因此,这种工艺可以使用活性较低的焊膏材料。这一点对于低残留物焊膏和免清洗尤为重要。另外,对于多次焊接工艺也相当关键。比如:在双面板的焊接中,氮气保护对于带有OSPs的板子在多次回流工艺中有很大的优势,因为在N2的保护下,板上的铜质焊盘与线路的可焊性得到了很好的保护。使用氮气的另一个好处是增加表面张力,它使得制造商在选择器件时有更大的余地(尤其是超细间距器件),并且增加焊点表面光洁度,使薄型材料不易褪色。真正最大的好处是降低了成本。氮气保护的费用取决于各种各样的因素,包括氮气在机器中使用的位置,氮气的利用率等。当然,我们通常感觉氮气消耗是一种工艺过程中额外的费用,因此总是想方设法减少氮气的消耗。目前焊膏的化学成份也在不断的改进提高,以便将来的工艺中不再使用氮气保护;或者至少在较高的O2浓度值下(比如:1000ppm对比目前为50ppm)取得良好的焊接效果,以便减少氮气的用量。对于是否使用氮气的保护,我们必须综合考虑许多问题,包括:产量要求的质量等级,以及每一对应的氮气消耗费用。使用氮气是有费用的问题,但是如果将它对提高产量与质量所带来的好处计算进来,那么它的费用是相对微不足道的。 如果焊接炉不是强制回流的那一种,并且气流是分层状态,那么氮气的消耗是比较容易控制的。但是,目前大多数炉的工作方式都是大容量循环强制对流加热,炉体内的气流是在不停的流动,这给氮气的控制与消耗提出了一个新的难题。一般,我们采取这几种方法降低氮气用量。首先,必须减少炉体进口的尺寸,尤其是垂直方向上的开口尺寸,使用遮挡板、卷帘幕,或者利用一些其它的东西来堵住进出口的孔隙。由遮挡板、卷帘幕向下形成的隔离区可以阻挡氮气的外泄,并且使外部的空气无法进入炉体内部,也有些回流炉是采用自动的

焊接工艺指导书

xx市中心城区供水系统工程—泵房工程及绿化环网工程—上部管线工程项目(PPP) 焊接工艺指导书 编制: 审核: 审批: 中国航天建设集团公司 2017年09月 目录

1.适用范围 2.编制依据 3.焊工管理 4. 焊材管理、坡口加工、管口组对、焊接以及检验4.1 焊材管理 4.2 坡口加工 4.3 管口组对 4.4 焊接要求 4.5焊接检验 4.6 焊接验收 附表:焊接工艺规程

1.适用范围 本指导书适用于xx市中心城区供水系统工程—泵房工程及绿化环网工程—上部管线工程项目(PPP)输气管道工程管道焊接,包括焊工管理、焊材管理、坡口加工、组对、焊接以及检验。 2.编制依据 2.1.设计图纸 2.1.1. xx市中心城区供水系统工程—泵房工程及绿化环网工程—上部管线工程项目(PPP)输气管道工程线路施工图 2.2.施工技术标准及验收规范 2.2.1.GB 50184-2011《工业金属管道工程施工及验收规范》 2.2.2.GB 50268-2008《给水排水管道工程施工及验收规范》 3.焊工管理 ●参加本工程施焊的焊工必须持有与焊接项目相适应的焊工合格证。 ●在本工程施焊过程中,焊工应严格按焊接工艺要求施焊。焊工若违反工艺纪律应立即 停止该焊工的施焊。 ●焊工应对自己施焊的焊缝进行自检,合格后作好焊缝标记。 4.焊材管理、坡口加工、管口组对、焊接以及检验 4.1焊材管理 ●焊接材料设专人验收、保管和发放。 ●焊接材料应按类别、型号、规格和入库时间等分别存放。 ●焊材仓库应干燥且通风良好,相对湿度不应大于60%。 ●焊材存放必须垫高,离地及墙的距离均不得小于300mm。 ●焊材应按要求进行发放和回收,并作好记录。 4.2 坡口加工 ●焊接坡口角度、钝边、根部间隙、对口错边量应符合设计、规范和焊接工艺指导书的 要求。 ●管段坡口若有机械加工形成的卷边,用电动砂轮清除整平。 4.3 管口组对 4.3.1 选管 测量每一管段管口以及管体的直径、椭圆度及其弯头端口的直径及其椭圆度,在管段

通孔回流焊接的工艺技术

通孔回流焊接的工艺技术如图2,可实现在单一步骤中同时对通孔元件和表面贴装元件(SMC/SMD)进行回流焊。相对传统工艺,在经济性、先进性上都有很大的优势。所以,通孔回流工艺是电子组装中的一项革新,必然会得到广泛的应用。 二通孔回流焊接工艺与传统工艺相比具有以下优势: 1、首先是减少了工序,省去了波峰焊这道工序,多种操作被简化成一种综合的工艺过程; 2、需要的设备、材料和人员较少; 3、可降低生产成本和缩短生产周期; 4、可降低因波峰焊而造成的高缺陷率,达到回流焊的高直通率。; 5、可省去了一个或一个以上的热处理步骤,从而改善PCB可焊性和电子元件的可靠性,等等。 尽管用通孔回焊可得到良好的工艺效果,但还是存在一些工艺问题。 1、在通孔回焊过程中锡膏的用量比较大,由于助焊剂挥发物质的沉积会增加对机器的污染,因而回流炉具有有效的助焊剂管理系统是很重要的; 2、对THT元件质量要求高,要求THT元件能经受再流焊炉的热冲击,例如线圈、连接器、屏蔽等。有铅焊接时要求元件体耐温235℃,无铅要求260℃以上。许多THT元件尤其是连接器无法承受回流焊温度;电位器、铝电解电容、国产的连接器、国产塑封器件等不适合回流焊工艺。 3、由于要同时兼顾到THT元件和SND元件,使工艺难度增加。 本文重点是确定对通孔回流工艺质量有明显影响的各种因素,然后将这些因素划分为材料、设计或与工艺相关的因素,揭示在实施通孔回流工艺之前必须清楚了解的关键问题。 1. 通孔回流焊焊点形态要求 2. 获得理想焊点的锡膏体积计算 3. 锡膏沉积方法 4. 设计和材料问题 5. 贴装问题 6. 回流温度曲线的设定 下面将逐项予以详细描述。

回流焊工艺参数管理规范(20171116160159)

回流焊工艺调试管理规程拟制日期 审核日期 批准日期

修订记录

目录 1 目的 (4) 2 适用范围 (4) 3 定义----------------------------------------------------------------------------------------------------------------------------------------------4 4 职责---------------------------------------------------------------------------------------------------------------------------------------4 5 内容 (4) 5.1 回流炉回流曲线,红胶固化曲线工艺窗口定义 ------------------------------------------------------------------------------------4 5.2回流炉程序命名规则 (6) 5.3回流炉程序制作及优化 (6) 5.4回流炉程序的使用 (7) 5.5 回流炉温度的测试-----------------------------------------------------------------------------------------------------------------------8 5.6回流曲线的保存 (8) 6 注意事项 (8) 7 参考文档 (9) 8 补充说明 (9) 附回流炉标准程序参数设置表: (9)

回流焊接技术

焊接(Soldering) 2003-12-21Phil Zarrow 点击: 1947 焊接(Soldering) 回流焊接表面贴装元件现在有二十年之久了。虽然基本理论没有改变,但在元件包装和材料方面已经有进步,再加上新一代的、“对流为主(convection-dominant)”的、极大改善热传导效率的回流炉。 大规模的回流焊接,特别是在对流为主的(强制对流forced convection),以及激光和凝结惰性的(condensation-inert)(即汽相Vapor phase)焊接中,在可见的未来将仍然是大多数表面贴装连接工艺的首选方法。尽管如此,新的装配工艺和那些要求整个基板均匀加热、温度变化很小、高的温度传导效率的新应用技术,在促进对流为主的回流焊接的进化。无数的因素,包括增加的装配复杂性、更新的互连材料和环境考虑,结合在一起对工艺和设备提出了额外的要求。更快更经济地制造产品,这个持之以恒不断增长的要求驱动这一切的前进。 回流焊接温度曲线 作温度曲线(profiling)是确定在回流整个周期内印刷电路板(PCB)装配必须经受的时间/温度关系的过程。它决定于锡膏的特性,如合金、锡球尺寸、金属含量和锡膏的化学成分。装配的量、表面几何形状的复杂性和基板导热性、以及炉给出足够热能的能力,所有都影响发热器的设定和炉传送带的速度。炉的热传播效率,和操作员的经验一起,也影响反复试验所得到的温度曲线。 锡膏制造商提供基本的时间/温度关系资料。它应用于特定的配方,通常可在产品的数据表中找到。可是,元件和材料将决定装配所能忍受的最高温度。 涉及的第一个温度是完全液化温度(full liquidus temperature)或最低回流温度(T1)。这是一个理想的温度水平,在这点,熔化的焊锡可流过将要熔湿来形成焊接点的金属表面。它决定于锡膏内特定的合金成分,但也可能受锡球尺寸和其它配方因素的影响,可能在数据表中指出一个范围。对Sn63/Pb37,该范围平均为200 ~ 225°C。对特定锡膏给定的最小值成为每个连接点必须获得焊接的最低温度。这个温度通常比焊锡的熔点高出大约15 ~ 20°C。(只要达到焊锡熔点是一个常见的错误假设。) 回流规格的第二个元素是最脆弱元件(MVC, most vulnerable component)的温度(T2)。正如其名所示,MVC就是装配上最低温度“痛苦”忍耐度的元件。从这点看,应该建立一个低过5°C的“缓冲器”,让其变成MVC。它可能是连接器、双排包装(DIP, dual in-line package)的开关、发光二极管(LED, light emitting diode)、或甚至是基板材料或锡膏。MVC 是随应用不同而不同,可能要求元件工程人员在研究中的帮助。 在建立回流周期峰值温度范围后,也要决定贯穿装配的最大允许温度变化率(T2-T1)。是否能够保持在范围内,取决于诸如表面几何形状的量与复杂性、装配基板的化学成分、和炉的热传导效率等因素。理想地,峰值温度尽可能靠近(但不低于)T1可望得到最小的温度变化率。这帮助减少液态居留时间以及整个对高温漂移的暴露量。 传统地,作回流曲线就是使液态居留时间最小和把时间/温度范围与锡膏制造商所制

回流焊接工艺参数设置与调制规范

回流焊接工艺参数设置与调制规范

1. 初始参数设定流程图 1.1、测温板制作 依照《SMT PROFILE 标准参数测量规范》制作测温板制作。 1.2、温度设定 a 、 以锡膏厂商提供的资料制定《焊锡膏(贴片胶)对应炉温要求》参数表, 依 此表设定温度,(见附表一) b 、以产品特性、PCB 材质与厚度、组件分布密度及吸热量设定温度, c 、考虑客户是否有特殊要求 最佳的有铅锡膏回焊曲线温度: (peak temp) 215℃±5℃ 开 制作测温板 设定参数 确定最高/低峰值温度 温度测试 PCB 裸板或PCBA 板 结束 是否有热敏器件 调试参数并测试 NG

0

1.)最高温度145℃. 2.)125℃~145℃时间 T:105~210S. 3.)用同一机种基板上体积最大(即吸热最严重)的组件引脚或CHIP焊盘 作为炉温测试点. 最佳的无铅锡膏回焊曲线温度 250 250 60 少于3℃ 1.)升温阶段:升温速率应低于3℃/Sec。 2.)最高温度不得低于230℃,最高温度不得高于250℃。 3.)预热段温度:30℃至150℃的时间: 60-90Sec; 4.)恒温段温度:150℃至217℃的时间:60 —120Sec; 目标:90_100sec 5.)回流段温度:大于217℃以上的时间:60 —90Sec;目标:70sec 峰值 温度: 230-245℃。 6).冷却速率3℃/Sec左右。

标准的SMT回流炉焊接工艺规范

标准的S M T回流炉焊接 工艺规范 Final approval draft on November 22, 2020

S M T回流焊接工艺规范编号:版次:发布:实施:页次: 编制:审核:批准: 1范围 本规范规定了回流焊接工艺的基本内容和要求,确定了回流焊接过程中的质量控制程序,使回流焊接过程中影响质量的各个因素得到有效控制。 本标准适用于SMT生产线的回流焊接生产过程。 2设备、工具和材料 设备 使用XXXX系列全热风回流焊炉。 工具 KIC 温度曲线测试仪、热电偶。 材料 高温胶带、高温链条润滑油、焊膏的技术特性表。 3 技术要求 传送宽度 对于厚度在以上,长度和宽度在150~300mm的PCB,一般采用链条传送方式;对于厚度小于,尺寸较小,不便于使用链条传送或采用拼板方式的PCB,为防止变形,可采用网带传送方式。 采用链条传送方式时,设置PCB的长、宽尺寸,设备自动调整宽度后,检查链条的实际宽度与PCB的宽度是否匹配,二者应有1~2mm的间隙。 温度曲线设置 影响温度曲线的参数主要有两个:链条速度和各温区温度设置。设定温度曲线需要根据所使用焊膏的技术要求,综合考虑链条速度和各温区温度。链条速度应根据整条生产线的生产节拍来确定,温度曲线通常分为四个区:预热区、保温区、焊接区、冷却区。升温速率应小于3℃/S,峰值温度通常应在210℃~230℃,在183℃以上的回流时间应为60(± 15)S,冷却速率应在3℃/S~4℃/S,一般,较快的冷却速率可得到较细的颗粒结构和较高强度与较亮的焊接点。故超过每秒4℃会造成温度冲击。

温度曲线设置时,可先根据经验资料进行设置,再用一块样板或与待焊PCB相近的一块PCB实测,测温度曲线时,KIC的热电偶放置应选择PCB中间、PCB边缘、大器件边缘、耐热要求严格的器件附近选取测试点,热电偶可用高温胶带固定在测试点上,温度曲线采样完成后,利用KIC的分析功能,主要检查峰值温度、升温速率、回流时间、温差,然后根据焊膏的技术要求调整回流焊炉的设置,下面以典型的Sn63Pb37锡铅锡膏为例,回流曲线性能规范要求如下图: 预热区(100—150℃)时间: 60—120Sec;升温速率: <℃/Sec; 保温区(150—183℃)时间: 30—90Sec;升温速率: <℃/Sec; 回流区(>183 ℃)时间: 40—80Sec;峰值温度: 210-235℃; 冷却区————降温速率: 1℃/Sec≤Slope≤4℃/Sec。 4 操作要求 设备的操作要求 严格按照设备操作规程进行操作,防止因操作不当造成设备损坏或产品不合格。 送板应保持一定的间隔,如有出错提示需及时处理,防止将PCB加热时间过长而损 坏。 链条应定期用高温润滑油进行润滑。 5 检验要求

焊接工艺指导

氩弧焊接 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书 2.编制依据 2.1.设计图纸 22《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3.焊接准备 3.1.焊接材料 焊丝:H1Cr18Ni9Ti ? 1、? 1.5、? 2.5、? 3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物, 露岀金属光泽。 3.2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度》99.95%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余 压不得低于0.5MPa,以保证充氩纯度。 3.3.焊接工具 3.3.1.采用直流电焊机,本厂用WSE-315和TIG400两种型号焊机。 3.3.2.选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 3.3.3.输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度 不超过30米。 3.4.其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消缺。 4.工艺参数 不锈钢焊接工艺参数选取表 表一

5.工序过程 5.1.焊工必须按照“考规”规定经相应试件考试合格后,方可上岗位焊接。 52严禁在被焊件表面随意引燃电弧、试验电流或焊接临时支撑物等。 53焊工所用的氩弧焊把、氩气减压流量计,应经常检查,确保在氩弧焊封底时氩气为层流状态。 5.4.接口前应将坡口表面及母材内、外壁的油、漆、垢锈等清理干净,直至发岀金属光泽,清理范围 为每侧各为10-15mm,对口间隙为2.5?3.5mm 5.5.接口间隙要匀直,禁止强力对口,错口值应小于壁厚的10%且不大于1mm 5.6.接口局部间隙过大时,应进行修整,严禁在间隙内添加塞物。 5.7.接口合格后,应根据接口长度不同点 4-5点,点焊的材料应与正式施焊相同,点焊长度10-15mm 厚度3-4mm 5.8.打底完成后,应认真检查打底焊缝质量,确认合格后再进行氩弧焊盖面焊接。 5.9.引弧、收弧必须在接口内进行,收弧要填满熔池,将电弧引向坡口熄弧。 5.10.点焊、氩弧焊、盖面焊,如产生缺陷,必须用电磨工具磨除后,再继续施焊,不得用重复熔化方法消除缺陷。| 5.11.应注意接头和收弧质量,注意接头熔合应良好,收弧时填满熔池。为保证焊缝严密性。 5.12.盖面完毕应及时清理焊缝表面熔渣、飞溅。 6.质量标准: 6.1.质量按Q/ZB74-73焊接通用技术条件和机械结构用不锈钢焊接管(GB/T12770—2002)标准检 验。 6.2.缺陷种类、原因分析及改进方法 氩弧焊焊接产生缺陷的原因及防止方法 表二

PCB电路板回流焊接工艺的经典PCB温度曲线

PCB电路板回流焊接工艺的经典PCB温度 曲线

回流焊接工艺的经典PCB温度曲线 本文介绍对于回流焊接工艺的经典的PCB温度曲线作图方法,分析了两种最常见的回流焊接温度曲线类型:保温型和帐篷型...。 经典印刷电路板(PCB)的温度曲线(profile)作图,涉及将PCB装配上的热电偶连接到数据记录曲线仪上,并把整个装配从回流焊接炉中通过。作温度曲线有两个主要的目的:1)为给定的PCB装配确定正确的工艺设定,2)检验工艺的连续性,以保证可重复的结果。通过观察PCB在回流焊接炉中经过的实际温度(温度曲线),可以检验和/或纠正炉的设定,以达到最终产品的最佳品质。 经典的PCB温度曲线将保证最终PCB装配的最佳的、持续的质量,实际上降低PCB的报废率,提高PCB的生产率和合格率,并且改善整体的获利能力。 回流工艺 在回流工艺过程中,在炉子内的加热将装配带到适当的焊接温度,而不损伤产品。为了检验回流焊接工艺过程,人们使用一个作温度曲线的设备来确定工艺设定。温度曲线是每个传感器在经过加热过程时的时间与温度的可视数据集合。通过观

察这条曲线,你可以视觉上准确地看出多少能量施加在产品上,能量施加哪里。温度曲线允许操作员作适当的改变,以优化回流工艺过程。 一个典型的温度曲线包含几个不同的阶段-初试的升温(ramp)、保温(soak)、向回流形成峰值温度(spiketoreflow)、回流(reflow)和产品的冷却(cooling)。作为一般原则,所希望的温度坡度是在2~4°C范围内,以防止由于加热或冷却太快对板和/或元件所造成的损害。 在产品的加热期间,许多因素可能影响装配的品质。最初的升温是当产品进入炉子时的一个快速的温度上升。目的是要将锡膏带到开始焊锡激化所希望的保温温度。最理想的保温温度是刚好在锡膏材料的熔点之下-对于共晶焊锡为183°C,保温时间在30~90秒之间。保温区有两个用途:1)将板、元件和材料带到一个均匀的温度,接近锡膏的熔点,允许较容易地转变到回流区,2)激化装配上的助焊剂。在保温温度,激化的助焊剂开始清除焊盘与引脚的氧化物的过程,留下焊锡可以附着的清洁表面。向回流形成峰值温度是另一个转变,在此期间,装配的温度上升到焊锡熔点之上,锡膏变成液态。 一旦锡膏在熔点之上,装配进入回流区,通常叫做液态以上时间 (TAL,timeaboveliquidous)。回流区时炉子内的关键阶段,因为装配上的温度梯

焊接工艺指导书

. 克拉玛依市中心城区供水系统工程—泵房工程及绿化环网工程—上部管线工程项目 (PPP) 焊接工艺指导书 编制: 审核: 审批: 中国航天建设集团公司 2017年09月

目录 1.适用范围 2.编制依据 3.焊工管理 4. 焊材管理、坡口加工、管口组对、焊接以及检验4.1 焊材管理 4.2 坡口加工 4.3 管口组对 4.4 焊接要求 4.5焊接检验 4.6 焊接验收 附表:焊接工艺规程

1.适用范围 本指导书适用于克拉玛依市中心城区供水系统工程—泵房工程及绿化环网工程—上部管线工程项目(PPP)输气管道工程管道焊接,包括焊工管理、焊材管理、坡口加工、组对、焊接以及检验。 2.编制依据 2.1.设计图纸 2.1.1. 克拉玛依市中心城区供水系统工程—泵房工程及绿化环网工程—上部管线工程项目(PPP)输气管道工程线路施工图 2.2.施工技术标准及验收规范 2.2.1.GB 50184-2011《工业金属管道工程施工及验收规范》 2.2.2.GB 50268-2008《给水排水管道工程施工及验收规范》 3.焊工管理 ●参加本工程施焊的焊工必须持有与焊接项目相适应的焊工合格证。 ●在本工程施焊过程中,焊工应严格按焊接工艺要求施焊。焊工若违反工艺纪律应立即 停止该焊工的施焊。 ●焊工应对自己施焊的焊缝进行自检,合格后作好焊缝标记。 4.焊材管理、坡口加工、管口组对、焊接以及检验 4.1焊材管理 ●焊接材料设专人验收、保管和发放。 ●焊接材料应按类别、型号、规格和入库时间等分别存放。 ●焊材仓库应干燥且通风良好,相对湿度不应大于60%。 ●焊材存放必须垫高,离地及墙的距离均不得小于300mm。 ●焊材应按要求进行发放和回收,并作好记录。 4.2 坡口加工 ●焊接坡口角度、钝边、根部间隙、对口错边量应符合设计、规范和焊接工艺指导书的 要求。 ●管段坡口若有机械加工形成的卷边,用电动砂轮清除整平。 4.3 管口组对 4.3.1 选管 测量每一管段管口以及管体的直径、椭圆度及其弯头端口的直径及其椭圆度,在管段

回流焊接工艺要求

回流焊接工艺要求 大功率LED是一种节能环保的绿色照明器件,在日趋发展的当今社会中,人们越来越注重生活环境的保护,绿色环保,节能减排,逐渐变为商家的竞争发展的目的和商业利益的源头。LED较传统白炽灯泡省电超过80%,相较一般路灯也有省电30%~50%的实证效果,在海外,已有许多案例显示LED户外照明方案在2~3年内即可回收投资成本。 但是在关于大功率LED光源的使用主要存在两个难题:第一,大功率LED的焊接制作方案。第二,大功率LED的散热解决方案。在大功率LED的散热问题许多灯饰制作都有其设计方案主要采取空气对流进行散热。问题主要集中在大功率LED的焊接方法。关于焊接现在主要采用三种方法进行焊接A.手工焊接B.恒温板加热焊接C.回流焊接在实际应用中手工焊接和恒温板焊接使用所有大功率LED的封装,虽然焊接效率很低,人力制作成本较高,但是焊接的大功率LED的工艺比较容易掌握,而且在后期的使用中问题点很少被大多数灯饰生产制作而采用。回流焊接虽然效率高,制作快但是工艺制作要求高,技术难度大,而且本很多生产厂家否定。 回流焊接,什么是回流焊接? 回流焊是英文Reflow Soldring的直译,是通过重新熔化预先分配到印制板焊盘上的膏装软钎焊料,实现表面组装元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。 回流焊又称“再流焊”或“再流焊机”(Reflow Machine),它是通过提供一种加热环境,使焊锡膏受热融化从而让表面贴装元器件和PCB焊盘通过焊锡膏合金可靠地结合在一起的设备。 回流焊根据技术的发展分为:气相回流焊、红外回流焊、远红外回流焊、红外加热风回流焊和全热风回流焊。另外根据焊接特殊的需要,含有充氮的回流焊炉。目前比较流行和实用的大多是远红外回流焊、红外加热风回流焊和全热风回流焊。 根据形状可以分为台式回流焊炉和立式回流焊炉,简要介绍这两种。 1、台式回流焊炉 台式设备适合中小批量的PCB组装生产,性能稳定、价格经济(大约在4-8万人民币之间),国内私营企业及部分国营单位用的较多。 2、立式回流焊炉 立式备型号较多,适合各种不同需求用户的PCB组装生产。设备高中低档都有,性能也相差较多,价格也高低不等(大约在8-80万人民币之间)。国内研究所、外企、知名企业用的较多。 回流焊与波峰焊是对应的,都是将元器件焊接到PCB板材上,回流是对表面帖装器件的,而对插接件使用波峰焊。回流焊的最简单的流程是丝印焊膏--贴片--回流焊,其核心是

回流焊接工艺规范

Q/ZDJG 青岛智动精工电子有限公司企业标准 Q/ZDJG G0204.3.34-2015 回流焊接工艺规范 青岛智动精工电子有限公司发布

Q/ZDJG G0204.3.34-2015 前言 本标准由青岛智动精工电子有限公司质量部提出。 本标准由青岛智动精工电子有限公司质量部起草。 本标准由青岛智动精工电子有限公司质量部负责解释。 本标准的修改状态为1/A。 本标准主要起草人:徐龙会 审核:日期:年月日 批准:日期:年月日

Q/ZDJG G0204.3.34-2015 回流焊接工艺规范 1 主题内容与适用范围 本工艺守则规定了生产中回流焊炉温测试、曲线确认等的工艺要求。适用于公司SMT车间回流焊生产工艺的管理。 2 规范性引用文件 无 3术语和定义 3.1回流温度曲线 回流温度曲线是指PCB基板在经过回流炉过程中板上指定位置的温度随时间的变化曲线,使焊锡膏受热融化从而让表面贴装元器件和PCB焊盘通过焊锡膏合金可靠地结合在一起。 3.2 固化温度曲线 固化温度曲线是指PCB基板在经过回流炉过程中板上指定位置的温度随时间的变化曲线,使贴片红胶受热固化从而让表面贴装元器件和PCB通过粘接可靠地结合在一起。 4职能部门与职责分工 质量部负责回流焊工艺规范的制定、监督和检查。 制造部负责按要求进行确认、操作。 5 管理内容和要求 5.1 管理流程图

5.2 炉温生成与管理要求 5.2.1 根据锡膏的技术规格书、推荐的炉温曲线要求和合金的生成原理初步设计出总体的制程界限,然后根据生产板件的板材、镀层特性、尺寸和布局的复杂程度设计出制程界限,如下表: 5.2.2 根据回流炉类型、特点和制程界限测定每种炉温类型在每条线体的《回流炉参数设定表》。 5.2.3 新品试制时,根据元器件资料(是否有耐热要求等)和PCB布局判断该产品是否符合现有的炉温类型,若没有,则需综合考虑PCB、元器件特殊要求、锡膏需求的制程界限、生产效率等方面生成新的炉温类型。 5.2.4 新生成的炉温类型或因焊接异常需要调整设置的炉温类型应经相关负责人和主管审核和批准,更新至《回流炉参数设定表》。 5.3 炉温测试板制作与管理要求 5.3.1制作测温板时尽量选取与生产基板相同或相似的报废基板。 5.3.2 在导入新品时,若产品有特殊要求、特殊元件和特殊板材,需要生产新的炉温类型,则必须制作相对应的特殊测温板或经客户同意使用通用的炉温测试板。 5.3.3主板复杂面的测温板应至少有5个测温点,主板简单面、副板和红胶板的测温板应至少有4个测温点,并均匀的分布在PCB板上。选择测温点时,外协产品测温点应包括:大型的BGA、QFP、电解电容、电感等元件,通信产品应包括BGA、QFP、连接器、UIM卡、TLLASH卡等元件。 5.3.4 测温点可使用高温胶、高温胶带或高温锡丝进行固定,测温固定点应尽量小,固定时引线暴露部分应尽量短,以免影响测温效果。 5.3.5 测温板制作完毕后应进行编号,如A类产品编号为RPT-A等,并标明启用日期。 5.3.6 测温板启用前必须经产品工艺确认所做测温板是否合格,判定合格后方可使用。 5.3.7 测温板每次使用后必须在《测温板使用记录表》对应测温板后依次打“√”以示使用次数,单个测试板的最多使用次数为50次。

焊接作业指导书与焊接工艺

焊接作业指导书及焊接工艺 1.目的:明确工作职责,确保加工的合理性、正确性及可操作性。规范安全操作,防患于未然,杜绝安全隐患以达到安全生产并保证加工质量。 2.范围: 2.1.适用于钢结构的焊接作业。 2.2.不适用有特殊焊接要求的产品及压力容器等。 3.职责:指导焊接操作者实施焊接作业等工作。 4.工作流程 4.1作业流程图 4.1.1.查看当班作业计划 4.1.2.阅读图纸及工艺 4.1.3.按图纸领取材料或半成品件 4.1.4.校对工、量具;材料及半成品自检 4.1. 5.焊接并自检 4.1.6.报检

4.2.基本作业: 4.2.1.查看当班作业计划:按作业计划顺序及进度要求进行作业,以满足生产进度的需要。 4.2.2.阅读图纸及工艺:施焊前焊工应仔细阅读图纸、技术要求及焊接工艺文件,明白焊接符号的涵义。确定焊接基准和焊接步骤;自下料的要计算下料尺寸及用料规格,参照工艺要求下料。有半成品分件的要核对材料及尺寸,全部满足合焊图纸要求后再组焊。 4.2.3.校准:组焊前校准焊接所需工、量具及平台等。 4.2.4.自检、互检:所有焊接件先行点焊,点焊后都要进行自检、互检,大型、关键件可由检验员配合检验,发现问题须及时调整。 4.2. 5.首件检验:在批量生产中,必须进行首件检查,合格后方能继续加工。 4.2.6.报检:工件焊接完成后及时报检,操作者需在图纸加工工艺卡片栏及施工作业计划上签字。(外加工件附送货单及自检报告送检)。 5.工艺守则:

5.1.焊前准备 5.1.1.施焊前焊缝区(坡口面、I型接头立面及焊缝两侧)母材表面20~30mm宽范围内的氧化物、油、垢锈等彻底清理干净,呈现均匀的金属光泽。 5.1.2.检查被焊件焊缝(坡口形式)的组对质量是否符合图纸要求,对保证焊接质量进行评估,如有疑义应向有关部门联系,以便采取相应工艺措施。 5.1.3. 按被焊件相应的焊接工艺要求领取焊接材料,并确认焊接牌号无误。 5.1.4. 检查焊接设备是否运转正常,各仪表指数是否准确可靠,然后遵照本工艺提供的工艺规范参数预调焊接电流、电压及保护气体流量。 5.1.5.合焊前应先行组对点焊,点焊的焊材应与正式施焊焊材相同,点焊长度一般应为10-15mm(可视情况而定),点焊厚度应是焊脚高度的1/2(至少低于焊脚高度)。 5.1. 6.对于有焊前预热要求的焊件,根据工艺文件要求规范参数预热,温度必须经热电偶测温仪测定,预热范围宽度应符合工艺文件的规定。 5.2.焊接过程

相关文档