文档库 最新最全的文档下载
当前位置:文档库 › 传感器信号通道

传感器信号通道

传感器信号通道
传感器信号通道

Maxim > 设计支持> 应用笔记> A/D和D/A转换器/采样电路> APP 4699

Maxim > 设计支持> 应用笔记> 放大器和比较器电路> APP 4699

Maxim > 设计支持> 应用笔记> 传感器信号调理> APP 4699

Jul 08, 2010

关键词: 压力传感器, 温度传感器, 信号通道, 信号调理器, 光敏元件, 接近检测, 变送器, 热管理

相关型号下载,PDF格式(342kB)

[?]

应用笔记4699

传感器信号通道

Sohail Mirza

Kerry Lacanette

Seckin Ozdamar

Reinhardt Wagner

Youssof Fathi

摘要:本设计指南阐述了常见传感器变送器的信号链路,适用于压力、温度、电流、光信号检测以及接近检测。文章介绍了信号通道错综复杂的选择,其中给出的设计案例和原理框图有助于读者选择最佳器件,以满足系统的不同需求。

压力传感器和称重(加载/感应)

概述

在现代工业控制和系统监测领域,通常需要监测、测量压力和重量。由于压力可直接用来测量流体、高度及其它物理量,压力测量尤其重要。由于加载是影响传感器输出的一项属性,压力、重量测量装置可以看作是“加载传感器”。加载传感器的应用非常广泛,包括从真空计到重型机械称重,以及工业液压设备、绝对压力传感器(MAP)等各个领域。每种应用对精度、准确度和成本都有不同的具体需求。

虽然压力和重量(加载/感应)的测量方法和技术有许多,但最常用的测量装置是应力计。

最常见的应力计有两种:一种是重量/压力传感器大多采用的金属箔;另一种是基于半导体的压阻式传感器,广泛用于压力测量。相对于金属箔传感器,压阻式传感器灵敏度更高,线性度也更好,但容易受温度的影响,并有一定的初始偏差。

从原理上讲,所有应力计在受到外力时都会改变电阻值。因此,有电信号激励时,即可有效地将压力、重量转换成电信号。通常在惠斯通电桥(有时称为测压元件)上放置1个、2个或4个这样的有源电阻元件(应力计),从而产生与压力或重量对应的差分输出电压。

工程师可以设计一种能够满足多种加载/感应系统需求的传感器模块。一款成功的设计需要包括用于检测物理量的传感器元件和设计合理的信号链路。

加载/感应系统的信号链路框图。关于Maxim推荐的压力传感器方案的详细信息,请访问:https://www.wendangku.net/doc/cb2501471.html,/psi。

完备的信号链路方案

传感器信号链路必须能够处理带有噪声的弱信号。为了准确测量电阻式传感器输出电压的变化,电路必须具备以下功能:激励、放大、滤波和采集。有些解决方案可能还要求采用数字信号处理(DSP)技术对信号进行处理、误差补偿、数字放大以及用户可编程操作。

激励

具有极低温漂的高精度、稳定的电压或电流源常常用作传感器激励。传感器输出与激励源成比例(往往以mV/V表示)。因此,设计时,模/数转换器(ADC)和激励电路通常采用一个公共基准,或者将激励电压作为ADC的基准。可以利用附加的ADC通道精确测量激励电压。

传感器/电桥

信号链路的这部分功能包括应力传感器,它被放置在测压元件(惠斯通电桥设计)部分,如上文中的“概述”部分。

放大和电平转换—模拟前端(AFE)

有些设计中,传感器输出电压范围非常小,要求分辨率达到nV级。这种情况下,在将传感器输出信号送至ADC输入之前,必须对信号进行放大。为了防止放大阶段引入误差,需要选择低失调电压(V OS)、低温漂的低噪声放大器(LNA)。惠斯通电桥的缺点是共模电压远远大于有用信号。这意味着LNA还必须具有非常高的共模抑制比(CMRR),通常大于100dB。如果采用单端ADC,则需附加电路在数据采集之前消除较高的共模电压。此外,由于信号带宽很窄,放大器的1/f噪声也会引入误差。因此,最好采用斩波稳定放大器。使用分辨率非常高的ADC,占用满量程范围的一小部分有助于降低对放大器的苛刻要求。

采集—ADC

选择ADC时需严格确认其技术指标,例如:无噪声范围或有效分辨率,该指标表示ADC 能够辨别固定输入电平的能力。一种替代指标是无噪声计数或编码。大多数高精度ADC 的数据资料把这些指标表示为噪声峰值或RMS噪声与速度的对应关系表,有时也以噪声直方图的形式表示这些指标。

其它需要考虑的ADC指标包括:低失调误差、低温漂及优异的线性度。对于特定的低功耗应用,速度与功耗的关系也是非常重要的规格。

滤波

传感器信号的带宽一般很窄,对噪声的敏感度较高。因此,通过滤波限制信号的带宽可显著降低总体噪声。利用Σ-Δ ADC能够简化噪声滤波要求,因为这种架构提供固有的过采样特性。

数字信号处理(DSP)—数字域

除模拟信号调理外,为了提取信号并降低噪声,还需要在数字域对所采集的信号作进一步处理。通常需要找到针对具体应用及其细微差别的算法。有些通用算法,例如,数字域的失调和增益校准、线性化处理、数字滤波和基于温度(或其它制约因素)的补偿。

信号调理/集成方案

有些集成方案把所有需要的功能模块集成在单一芯片,通常称为传感器信号调理器IC。信号调理器是一种专用IC (ASIC),它对输入信号进行补偿、放大和校准,能够覆盖较宽的温度范围。根据对信号调理器的不同精度要求,ASIC会集成以下全部或部分模块:传感器激励电路、数/模转换器(DAC)、可编程增益放大器(PGA)、模/数转换器(ADC)、存储器、多路复用器(MUX)、CPU、温度传感器以及数字接口。

常见的信号调理器有两种类型:模拟信号通路的调理器(模拟调理器)和数字信号通路的调理器(数字调理器)。模拟调理器的响应时间较快,提供连续的输出信号,反映输入信号的实时变化。它们通常采用硬件补偿机制(不够灵活)。数字调理器往往基于微控制器,

由于ADC和DSP算法具有一定的执行时间,响应时间较慢。应该考虑ADC的分辨率,将量化误差降至最小。数字信号调理器的最大好处是提供灵活的补偿算法,可根据用户的应用进行调整。

温度检测

概述

温度检测在工业系统中的主要作用表现在三个方面。

1. 温度控制,例如恒温炉、冷冻箱和环境控制系统,根据实测温度判断实施加热/

致冷操作。

2. 校准各种传感器、振荡器及其它经常随温度变化的元件。由此,必须通过测量温

度确保敏感系统元件的精度。

3. 保护元件和系统在极端温度下不被损坏。温度检测决定所要采取的相应措施。

热敏电阻、RTD、热电偶和IC是目前应用最广的温度检测技术。每种设计方案都有其自身的优势(例如成本、精度、测温范围),适合不同的特定应用。以下将逐一讨论这些技术。

除提供业内最全面的专用温度传感器IC外,Maxim还推出了系统与热敏电阻、RTD及热电偶接口所需的任何器件。

温度检测应用的信号链路框图。关于Maxim推荐的温度传感器解决方案的完整信息,请访问:https://www.wendangku.net/doc/cb2501471.html,/-40+85。

热敏电阻

热敏电阻的阻值取决于温度,一般由半导体材料制成,如金属氧化物陶瓷或聚合物。应用最广泛的热敏电阻是负温度系数电阻,因此,热敏电阻通常称为NTC。同样,也存在正温度系数的热敏电阻(PTC)。

热敏电阻能够测量中等温度范围,通常最高可达+150°C,有些热敏电阻可以测量更高温度;根据精度的不同,成本一般在中、低端;线性度虽然较差,但可预测。热敏电阻可以是探头、表贴封装、裸线等不同形式的专用封装。Maxim提供能够将热敏电阻阻值转换为数字信号的IC,如MAX6682和MAX6698。

热敏电阻往往连接一个或多个固定阻值电阻,形成分压器。分压器输出通常经过ADC 进行数字转换。利用查找表或通过计算对热敏电阻的非线性进行修正。

RTD

电阻温度检测器(RTD)是一种阻值随温度变化的电阻。铂是最常见、精度最高的金属丝材料。铂RTD称为Pt-RTD,镍、铜及其它金属亦可用来制造RTD。

RTD具有较宽的测温范围,最高达+750°C,具有较高精度和较好的可重复性,线性度适中。对于Pt-RTD,最常见的电阻值为:0°C时,标称值为100Ω或1kΩ,当然也有其它电阻值。

RTD的信号调理可以非常简单:将RTD与一个精密的固定阻值电阻相连,构成分压器;也可以采用更复杂的信号调理,尤其是在宽温测量中。方案中通常包括:精密电流源、电压基准和高分辨率ADC,如图1所示。利用查找表或通过计算、外部线性化处理电路对传感器进行线性化调整。

图1. RTD信号调理电路简化图

热电偶

热电偶由两种连接在一起的不同金属制成。金属丝之间的触点所产生的电压与温度近似成比例关系。有几种类型的热电偶分别以字母表示。最常见的热电偶为K型热电偶。

热电偶具有非常宽的测温范围,高达+1800°C;成本很低,具体成本与封装有关;具有较低的输出电压,K型热电偶的输出大约为40μV/°C;线性度适中,并可提供适当的复杂信号调理,即冷端补偿和放大。

由于热电偶输出信号较低,利用热电偶测量温度具有一定难度。由于热电偶金属丝连接到信号调理电路的铜线(或引线)时,在触点位置又会产生额外的热电偶,进一步加剧了测量的复杂性。该触点称为冷端(图2所示)。为了利用热电偶准确测量温度,必须在冷端位置增加第二个温度传感器,如图3所示。然后将冷端测量温度与热电偶测量值相叠加。图3所示电路是一种实施方案,其中包括多款精密元件。

图2. 热电偶电路简化图。金属1和金属2之间的结为主热电偶结。金属1和金属2与

测量装置铜线或印制板(PCB)引线的接触位置形成了额外的热电偶。

除图3所示所有元件外,Maxim还提供用于K型热电偶信号调理的器件MAX6674和MAX6675。这些器件简化了设计任务,并显著降低对热电偶输出放大、冷端补偿及数字化处理的元件数量。

图3. 热电偶信号调理电路示例

温度传感器IC

温度传感器IC充分利用了硅PN结所具备的线性度和预知的温度特性等优势。由于这些IC都是采用常规半导体工艺制成的有源电路,可提供各种外形封装。这些器件具备许多功能,例如:数字接口、ADC输入、风扇控制等,这是其它技术无法提供的。温度传感器IC的工作温度范围可低至-55°C、高达+125°C,部分产品的温度上限可以达到+150°C 左右。以下介绍了常见的温度传感器IC。

模拟温度传感器

模拟温度传感器IC将温度转换成电压,有些情况下则转换成电流。最简单的电压输出模拟温度传感器只有三个有效端:地、电源输入和信号输出。其它具有增强功能的模拟传感器提供更多的输入或输出,例如比较器或电压基准输出。

模拟温度传感器利用双极型晶体管的温度特性产生与温度成比例的输出电压。对这一电压信号进行放大并施加一定的偏置,可以使传感器输出电压与管芯温度形成适当的变化关系,获得较高的温度测量精度。例如,DS600业内精度最高的模拟温度传感器,在-20°C 至+100°C温度范围内保证误差小于±0.5°C。

本地数字温度传感器

将模拟温度传感器与ADC集成在一起即可形成直接输出数字信号的温度传感器。这种器件通常称为数字温度传感器或本地数字温度传感器。“本地”表示传感器测量的是自身温度。这种工作方式相对于远端传感器,后者用于测量外部IC或分立晶体管的温度。

基本的数字温度传感器只是简单地测量温度,温度数据通过各种特定接口读取,接口类型包括:1-Wire?、I2C、PWM和3线。复杂的数字传感器具备更多功能,例如:高温/

低温报警输出、设置触发门限的寄存器及EEPROM等。Maxim提供多款本地数字温度传感器,包括DS7505和DS18B20,能够在较宽的温度范围内保证±0.5°C的精度。

远端数字温度传感器

远端数字温度传感器又称为远端传感器或二极管温度传感器。远端传感器用于测量外部晶体管的温度,可以采用分立晶体管,也可以采用集成在另一IC内部的晶体管,如图4所示。微处理器、现场可编程门阵列(FPGA)及ASIC往往包含一个或多个温度传感器,通常称为温度二极管,与图4所示类似。

图4. 利用远端温度传感器MAX6642监测外部IC管芯的晶体管(或温度二极管)温度

远端温度传感器具有一个重要优势:可以利用单片IC监测多点温度。一个基本的单芯片远端传感器,例如,图4中的MAX6642,可以监测两个温度:自身温度和外部温度。外部位置可以是目标IC的管芯,如图4所示,也可以是被监测电路板的某个温度监测点(采用分立式晶体管)。有些远端传感器可以监测最多7个位置的外部温度。这样的话,包括IC和电路板的温度监测点在内,单芯片能够监测多达8个位置。以MAX6602为例,该温度传感器具有4路远端二极管输入,能够监测1对集成温度二极管的FPGA、2个电路板的温度监测点(采用分立晶体管)以及MAX6602所在位置的电路板温度。

MAX6602和MAX6642在测量外部温度二极管时都能达到±1°C的精度。

电流、光信号及接近检测

概述

电流检测对于很多应用都十分关键,有两种常见的测量方法。

?一种方法通常用于大电流检测,往往用来监测电源。典型应用包括:短路检测、瞬态检测以及电池反接检测。

?电流检测还用于那些需要检测弱电流(低至微安级)的系统,例如:光照下能够产生极小电流的光敏二极管。典型应用包括环境光检测、接近检测以及基于光吸收

/发射的化学过程监测。

这些电流检测技术都使用了电流检测放大器(具有多种配置)或互阻放大器(TIA)。以下分别讨论各种类型的电流检测放大器。

采用电流检测放大器检测电流

测量电流的技术有多种,但截至目前为止,最常见的是利用检流电阻进行测量。这种方法的基本原理是利用基于运放的差分增益级对检流电阻两端的电压进行放大,然后测量放大后的电压。虽然可以利用分立元件搭建放大电路,但集成电流检测放大器相对于分立设计具有明显优势:极小的温漂、占用极小的印制板(PCB)面积,而且能够处理较宽的共模范围。

多数电流检测设计采用低边或高边检测。在低边检测中,检流电阻与地通路相串联。电路只需处理较低的输入共模电压,输出电压以地为参考。但是,低边检流电阻在接地通路增加了所不希望的电阻。高边检测中,检流电阻与正电源电压相串联。此时负载的一端接地,但高边电阻必须承受相对较大的共模信号。

电流检测信号链路框图。关于Maxim推荐的电流检测方案的完整信息,请访问:https://www.wendangku.net/doc/cb2501471.html,/detect。

Maxim的高边电流检测放大器把检流电阻连接到电源的正端和被监测电路的电源输入之间。这种设计避免了接地通道的外接电阻,大大简化电路布局,有助于改善电路的总体性能。Maxim提供的单向和双向电流检测IC有些带有内部检流电阻,有些采用外部检流电阻。

利用互阻放大器(TIA)检测光信号

第二种常见的电流测量技术是利用具有极低输入偏置电流的运算放大器,例如TIA,它将电流输入转换成电压输出。这种方法适用于电流非常小、波动较大的应用,例如光检测应用中光敏二极管产生的信号。

一个简单的光敏二极管就是一个非常准确的光检测传感器。光检测可以用于从基于太阳能的电源管理到精密的工业过程控制等多种不同应用。由于给定环境下,光强的变化范围很大(例如从20klx到100klx),宽动态范围成为光信号检测的一项关键要求。MAX9635等集成方案在器件内部集成了一个光敏二极管、放大器和模/数转换器(ADC),动态范围为0.03lx至130,000lx。

利用光敏二极管进行接近检测

接近检测的方案有多种,光敏二极管相对而言能够提供较高的精度,功耗也更低。光敏二极管受到光照时,将产生与光强成正比的电流。低输入噪声、宽带缓冲器将该电流传递给系统的其它部分。可以选用低输入噪声放大器,例如MAX9945,提供精确的测量结果。

传感器通信接口

传感器通过模拟或数字技术传输检测信息。模拟技术基于电压或电流环;数字信息则通过CAN、CompoNet?、IO-Link?、RS-485及其它数据接口传输。

二进制传感器仅传输比特流。通常情况下,被测对象的“有”、“无”利用逻辑电平表示并进行传输。此外,当一个对象(例如阀门中的活塞)达到预定的临界点时,传感器能够检测到这一信息,然后通过二进制接口将信息传递给可编程逻辑控制器(PLC)系统。

由于工业环境条件恶劣,传感器接口必须高度可靠,能够承受各种误操作和EMI。

传感器与信号处理电路习题答案

第1章 传感器与检测技术基础 1.某线性位移测量仪,当被测位移由4.5mm 变到5.0mm 时,位移测量仪的输出电压由3.5V 减至 2.5V ,求该仪器的灵敏度。 解:该仪器的灵敏度为 25 .40.55.35.2-=--=S V/mm 2.某测温系统由以下四个环节组成,各自的灵敏度如下: 铂电阻温度传感器: 0.45Ω/℃ 电桥: 0.02V/Ω 放大器: 100(放大倍数) 笔式记录仪: 0.2cm/V 求:(1)测温系统的总灵敏度; (2)记录仪笔尖位移4cm 时,所对应的温度变化值。 解: (1)测温系统的总灵敏度为 18.02.010002.045.0=???=S cm/℃ (2)记录仪笔尖位移4cm 时,所对应的温度变化值为 22.2218 .04==t ℃ 6.有三台测温仪表,量程均为0~800℃,精度等级分别为2.5级、2.0级和1.5级,现要测量500℃的温度,要求相对误差不超过2.5%,选那台仪表合理? 解:2.5级时的最大绝对误差值为20℃,测量500℃时的相对误差为4%;2.0级时的最大绝对误差值为16℃,测量500℃时的相对误差为3.2%;1.5级时的最大绝对误差值为12℃,测量500℃时的相对误差为2.4%。因此,应该选用1.5级的测温仪器。 10.试分析电压输出型直流电桥的输入与输出关系。 答:如图所示,电桥各臂的电阻分别为R 1、 R 2、 R 3、R 4。U 为电桥的直流电源电压。当四臂电阻R 1=R 2=R 3=R 4=R 时,称为等臂电桥;当R 1=R 2=R ,R 3=R 4=R ’(R ≠R ’)时,称为输出对称电桥;当R 1=R 4=R ,R 2=R 3 =R ’(R ≠R ’)时,称为电源对称电桥。 D 直流电桥电路 当电桥输出端接有放大器时,由于放大器的输入阻抗很高,所以可以认为电桥的负载电阻为无穷大,这时电桥

传感器简答题及答案

1.用频域描述分析设备故障有何突出优点? 答:频域描述反映了信号的频率组成及其幅值。 2.信号调理阶段的放大滤波、调制。解调的作用分别是什么?什么是采样定理?采样频率是不是越高越好? 放大:提高传感器输出的电压、电流和电荷信号使其的幅值和功率可以进行后续的处理。调制:将微弱的缓变信号加载到高频交流信号中去,然后利用交流放大器进行放大。解调:从放大器的输出信号中提取放大的缓变信号。滤波:使信号中特定的频率成分用过而极大地衰减其他频率成分。 3.在设备故障诊断时,为什么要对测试信号进行频域分析? 频域分析法只要是对信号的频率结构进行分析,确定信号是由哪些成分所组成,以及这些频率成分幅值的大小。通过对故障特征频率及故障特征频率幅值的分析,就可以准确地对设备的故障情况进行诊断。 4.什么是功率信号?什么是能量信号?什么是随机信号?什么是模拟信号?什么是数字信号? 功率信号:若信号在区间(-∞,+∞)的能量是无限的。即dt t x )(2?+∞ ∞-,但它在有限区间(t t ,2t )的平均功率是有限的,即dt t x t t t t )(12121 2?-这种信号称功率信号。能量信号:当满足时,认为信号的能量是有限的,称为能量有限信号,简称能量信号。随机信号:是一种不能准确预测且未来瞬时值,也无法用数学关系式来描述的信号。模拟信号:在所讨论的时间间隔内,对任意时间值,除第一类间断点外都可以给出确定的函数的信号。数字信号:时间离散而幅值量化,称为数字信号(幅值和时间上都离散的信号)。 5. 试述信号的幅值谱与系统的幅频特性之间的区别。 信号的幅值谱表征信号的幅值随频率的分布情况,幅值特性指方法电路的电压放大倍数与频率的关系。前者描述信号各频率分量得幅度后者是系统对输入各频率分量得幅度怎么样变化。 6. 周期信号的频谱图有何特点?其傅里叶级数三角函数展开式与复指数函数展开式的频谱有何特点? (1)1.离散性2.谐波性3.收敛性。(2)周期信号的傅里叶级数三角函数展开式频率谱是位于频率右侧的离散谱,谱线间隔为整数个ω。复指函数是展开式的频谱其实频谱总是偶对称的其虚频谱总是奇对称的。 7. 已知某周期信号的傅立叶级数展开式为 00()25-5sin t+20cos(2t+/2)x t ωωπ=,试求该周期信号的均值,并 画出该信号的频谱图。 由已知得均值为25。 ()()()2/2cos 202/cos 52500πωπω++++=t t t x 当ω=0时25=n A 0=n ?当0ωω=时5=n A 2 -=n ?当 02ωω=20=n A 2/π?=n 8. 试说明信号的均值、方差、均方值的物理含义。并写出三者间的联系式。 均值表示集合平均值或数学期望,表达了信号变化的中心趋势,方差反映了信号围绕均值的波动程度,信号的波动量。均方值在电信号中表示有效值。三者关系ψx 2 =δx 2+μx 2 9.什么是测试?机械工程测试的主要任务是什么?用方框图表示计算机测试系统的一般组成及各部分作用 ①测试是人们从客观事物中提取所需信息,借以认识客观事物,并掌握其客观规律的一种科学方法。②机械工程测试的主要任务是⑴提供被测对象的质量依据⑵提供机械工程设计、制造研究所需的信息。 ③

传感器与信号处理

《传感器与检测技术》试题 一、填空:(20分) 1,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。(2分) 2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。 3、光电传感器的理论基础是光电效应。通常把光线照射到物体表面后产生的光电效应分为三类。第一类是利用在光线作用下光电子逸出物体表面的外光电效应,这类元件有光电管、光电倍增管;第二类是利用在光线作用下使材料内部电阻率改变的内光电 效应,这类元件有光敏电阻;第三类是利用在光线作用下使物体内部产生一定方向电动势的光生伏特效应,这类元件有光电池、光电仪表。 4.热电偶所产生的热电势是两种导体的接触电势和单一导体的温差电势组成的,其表达式为Eab (T ,To )=T B A T T B A 0d )(N N ln )T T (e k 0σ-σ?+-。在热电偶温度补偿中补偿导线法(即冷端延长线法)是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。 5.压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生机械压力,从而引起极化现象,这种现象称为正压电效应。相反,某些铁磁物质在外界磁场的作用下会产生机械变形,这种现象称为负压电效应。(2分) 6. 变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量(①增加②减小③不变)(2分) 7. 仪表的精度等级是用仪表的(① 相对误差 ② 绝对误差 ③ 引用误差)来表示的(2分) 8. 电容传感器的输入被测量与输出被测量间的关系,除(① 变面积型 ② 变极距型 ③ 变介电常数型)外是线性的。(2分) 9. 电位器传器的(线性),假定电位器全长为Xmax, 其总电阻为Rmax ,它的滑臂间的阻值可以用Rx = (① Xmax/x Rmax,②x/Xmax Rmax ,③ Xmax/XRmax ④X/XmaxRmax )来计算。 10、变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积增大时,铁心上线圈的电感量(①增大,②减小,③不变)。 11、在平行极板电容传感器的输入被测量与输出电容值之间的关系中,(①变面积型,②变极距型,③变介电常数型)是线性的关系。 12、在变压器式传感器中,原方和副方互感M 的大小与原方线圈的匝数成(①正比,②反比,③不成比例),与副方线圈的匝数成(①正比,②反比,③不成比例),与回路中磁阻成(①正比,②反比,③不成比例)。 13、传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,传感器通常由直接响应于被测量的敏感元件 和产生可用信号输出的转换元件以及相应的信号调节转换电路组成。 14、热电偶所产生的热电势是由两种导体的接触电势和单一导体的温差电势组成。 15、电阻应变片式传感器按制造材料可分为① _金属_ 材料和②____半导体__体材料。它们在受到外力作用时电阻发生变化,其中①的电阻变化主要是由 _电阻应变效应 形成的,而②的电阻变化主要是由 温度效应造成的。 半导体 材料传感器的灵敏度较大。 16、在变压器式传感器中,原方和副方互感M 的大小与 绕组匝数 成正比,与 穿过线圈的磁通_成正比,与磁回路中 磁阻成反比。 17.磁电式传感器是利用导体和磁场发生相对运动而在导体两端 产生感应电势的。而霍尔式传感器为霍尔元件在磁场中有电磁效应(霍尔效应)而输出电势的。霍尔式传感器可用来测量电流,磁场,位移,压力。(6分) 18.测量系统的静态特性指标通常用输入量与输出量的对应关系来表征(5分) 简答题 1 简述热电偶的工作原理。(6分)

常用传感器信号测量汇总.

常用传感器信号测量汇总 关键词:传感器;特性;传感器;SCC调理模块;SCXI调理模块;cDAQ 传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。人的五官就是天然的传感器,具有视、听、嗅、味、触觉,大脑就是通过五官来感知外界的信息(图1)。 工程科学与技术领域的传感器既是对人体五官的工程模拟物,是能将特定的被测量信息(包括物理量、生物量、生物量)按一定的规律转换成某种可用信号输出的器件或装置。可用信号既是便于处理和传输的信号,目前由于电信号最符合这一要求,传感器也可狭义定义为把外界非电信息转换成电信号输出的器件(图2)。

传感器的构成 传感器的具体构成根据被测对象、转换原理,使用环境和性能要求的情况有很大差异。自源型是仅含有转换元件的传感器构成形式,它不需要外能源,可直接从外部被测对象吸收能量转换为电效应,但输出的能量较弱。常见的有热电偶、压电器件等。 带激励源型是在转换器件外加了辅助能源的构成形式,辅助能源起到激励的作用,可以是电源或磁源,这样不需要变换电路也有较大电量输出。常见的有霍尔传感器等。 外源型是由利用被测量实现阻抗变换的转换元件构成,必须通过带外电源的变换电路才能获得电量输出。常见的有电桥等。 相同传感器补偿型(图3-a)是使用两个完全相同的转换元件置于同样环境下的构成形式。实际使用其中一个元件进行工作,另一个用于抵消其受到的环境干扰影响。常见的有应变式,固态压阻式传感器等。 差动结构补偿型(图3-b)和相同传感器补偿型类似,但其两个转换元件都进行工作,除了可以抵消环境干扰,还使有用的输出值增加。 不同传感器补偿型(图3-c)是两个原理和性质不同的转换元件置于同样环境下的构成形式,也是通过一个转换元件给工作的转换元件提供补偿。常见的有热敏电阻的温度补偿,加速度的干扰补偿等。 目前随着计算机技术的发展,传感器和微处理器结合在一起,形成了智能化传感器的概念,这种构成具有了信息处理的功能,前景十分广阔。 传感器的分类 传感器的种类繁多,分类方式多种多样。对于被测量,可以用不同的传感器来测量;而对于同一原理的传感器,通常又可以测量多种非电量。 具体分类可按转换的基本效应、构成原理等分多种,其中又以按照工作原理分类最为详细(表1)。

几种常见传感器总结

几种常见传感器总结 1、红外对管: 红外对管是根据红外辐射式传感器原理制作的一种红外对射式传感器。与一般红外传感器一样,红外对管也由三部分构成:光学系统(发射管)、探测器(接收管)、信号调理及输出电路。红外探测器是利用红外辐射与物质相互作用所呈现的物理效应来探测红外辐射的。在此接收管通过对发射管所发出的红外线做出反应实现,实现信号的采集,再通过后续信号处理电路完成信号的采集和输出。 2、霍尔传感器: 霍尔传感器是基于霍尔效应的一种传感器。霍尔效应是指置于磁场中的静止载流导体, 当它的电流方向与磁场方向不一致时, 载流导体上平行于电流和磁场方向上的两个面之间产生电动势的现象。该电势称霍尔电势。霍尔传感器是利用霍尔效应实现磁电转换的一种传感器,它具有灵敏度高,线性度好,稳定性高、体积小和耐高温等特点。对测速装置的要求是分辨能力强、高精度和尽可能短的检测时间。目前市场上的霍尔传感器都是集成了外围的测量电路输出的是数字信号,即当传感器检测到磁场时将输出高低电平信号。传感器主要包括两部分,一为检测部分的霍尔元件,一为提供磁场的磁钢。霍尔电流传感器反应速度一般在7微妙,根本不用考虑单片机循环判断的时间. 3、光电开关: 光电开关是一种利用感光元件对变化的入射光加以接收, 并进行光电转换, 同时加以某种形式的放大和控制, 从而获得最终的控制输出“开”、“关”信号的器件。上图为典型的光电开关结构图。是一种反射式的光电开关,它的发光元件和接收元件的光轴在同一平面且以某一角度相交,交点一般即为待测物所在处。当有物体经过时, 接收元件将接收到从物体表面反射的光, 没有物体时则接收不到。透射式的光电开关, 它的发光元件和接收元件的光轴是重合的。当不透明的物体位于或经过它们之间时, 会阻断光路, 使接收元件接收不到来自发光元件的光, 这样起到检测作用。光电开关的特点是小型、高速、非接触, 而且与TTL、MOS等电路容易结合。此类传感器目前也多为开关量传感器,输出的为1,0开关量信号,可以和单片机直接连接使用。光电开关广泛应用于工业控制、自动化包装线及安全装置中作光控制和光探测装置。可在自控系统中用作物体检测,产品计数, 料位检测,尺寸控制,安全报警及计算机输入接口等用途。 4、超声波传感器: 利用超声波在超声场中的物理特性和各种效应而研制的装置可称为超声波换能器、探测器或传感器。超声波探头按其工作原理可分为压电式、磁致伸缩式、电磁式等, 而以压电式最为常用。压电式超声波探头常用的材料是压电晶体和压电陶瓷, 这种传感器统称为压电式超声波探头。它是利用压电材料的压电效应来工作的: 逆压电效应将高频电振动转换成高频机械振动, 从而产生超声波, 可作为发射探头; 而利用正压电效应, 将超声振动波转换成电信号, 可用为接收探头。超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声

各种传感器的分类、比较和应用

传感器的定义传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成 1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2 从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度)

传感器电流输出信号的处理重点

传感器电流输出信号的处理 电流信号在传输中具有抗干扰能力强、传输距离远等优点,被广泛应用。目前,传感器24V供电、4-20mA 电流输出,已经成为一种工业标准。传感器的电流输出方式有两线制(传感器用两根导线对外连接)、三 线制(传感器用三根导线对外连接)、四线制(传感器用四根导线对外接)。它们具有各自的特点,如果使用不当,会影响其功能,甚至不能正常工作。本文对它们的原理作出一些介绍,以便用户对传感器作出 正确地选型和使用。(关键词传输; 两线制;三线制;四线制) 1传输原理及技术指标 1.1 传输原理 1.1.1 终端连接 对于电流输出的传感器,在终端要把它变换成电压信号才能使用。如图1所示。 在图中1中Rr为负载电阻,它的大小决定转换成电压的大小,通常取值250Ω,把传感器输出的4-20mA电流转换成对应的1-5V电压。在实际使用中,测控设备也有内阻,多少会产生一些分流。因此,Is不是完全流经Rr。一般情况下,测控设备的内阻都很大,几乎不产生分流,Rr可按常规取值。在个别测控设备内阻较小的情况下,可适当提高Rr的取值,以达到转换相应电压的要求。 有些终端模块有电流输入接口(转换电阻Rr在模块内部)。使用时,可把电流信号直接接入模块。如图2所示。由上所述,在电流传输的终端接法中,有外置电阻和内置电阻两种接法。在以后解说中,如无特殊说明,均以外置电阻为例。 1.1.2 与电压输出传感器的比较

图3和图4是电流输出传感器和电压输出传感器的应用原理图。图中的传感头和变送器合称为传感器。由两图相比可以看出,电流输出的传感器在变送器内部多一个电压-电流转换器,在接收终端多了一个电流-电压转换器。这么做主要是为了把电压传输变为电流传输。因为电流传输比电压传输有很多优点。下面对电流传输和电压传输作出分析。 电压输出的传感器和三线制电流输出的传感器可以共同建立图5的传输电路模型。 图中: Ro-传感器输出内阻 Rs-输出导线电阻 Rr-负载电阻 Rd-地线电阻 Uo-传感器输出电压 Us-Rs上的压降 Ur-Rr上的压降 Ud-Rd上的压降 Ig-传感器的工作电流 Is-传感器的输出电流

传感器与检测技术重点知识点总结

传感器与检测技术知识总结 1:传感器就是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。 一、传感器的组成 2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。①敏感元件就是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。②转换元件就是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。③基本转换电路就是将该电信号转换成便于传输,处理的电量。 二、传感器的分类 1、按被测量对象分类 (1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)与非接触式(视觉传感器、超声测距、激光测距)。 2、传感器按工作机理 (1)物性型传感器就是利用某种性质随被测参数的变化而 变化的原理制成的(主要有:光电式传感器、压电式传感 器)。 (2)结构型传感器就是利用物理学中场的定律与运动定律 等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。 3、按被测物理量分类 如位移传感器用于测量位移,温度传感器用于测量温度。 4、按工作原理分类主要就是有利于传感器的设计与应用。 5、按传感器能量源分类 (1)无源型:不需外加电源。而就是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型; (2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。 6、按输出信号的性质分类 (1)开关型(二值型):就是“1”与“0”或开(ON)与关(OFF); (2)模拟型:输出就是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性; (3)数字型:①计数型:又称脉冲数字型,它可以就是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号就是数字代码,各码道的状态随输入量变化。其代码“1”为高电平,“0”为低电平。 三、传感器的特性及主要性能指标 1、传感器的特性主要就是指输出与输入之间的关系,有静态特性与动态特性。 2、传感器的静态特性就是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。 表征传感器静态特性的指标有线性度,敏感度,重复性等。 3、传感器的动态特性就是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。传感器的动态特性取决于传感器的本身及输入信号的形式。传感器按其传递,转换信息的形式可分为①接触式环节;②模拟环节;③数字环节。评定其动态特性:正弦周期信号、阶跃信号。 4、传感器的主要性能要求就是:1)高精度、低成本。2)高灵敏度。3)工作可靠。4)稳定性好,应长期工作稳定,抗腐蚀性好;5)抗干扰能力强;6)动态性能良好。7)结构简单、小巧,使用维护方便等; 四、传感检测技术的地位与作用 1、地位:传感检测技术就是一种随着现代科学技术的发展而迅猛发展的技术,就是机电一体化系统不可缺少的关键技术之一。 2、作用:能够进行信息获取、信息转换、信息传递及信息处理等功能。应用:计算机集成制造系统(CIMS)、柔性制造系统(FMS)、加工中心(MC)、计算机辅助制造系统(CAM)。 五、基本特性的评价 1、测量范围:就是指传感器在允许误差限内,其被测量值的范围; 量程:则就是指传感器在测量范围内上限值与下限值之差。 2、过载能力:一般情况下,在不引起传感器的规定性能指标永久改变条件下,传感器允许超过其测量范围的能力。过载能力通常用允许超过测量上限或下限的被测量值与量程的百分比表示。 3、灵敏度:就是指传感器输出量Y与引起此变化的输入量的变化X之比。 4、灵敏度表示传感器或传感检测系统对被测物理量变化的反应能力。灵敏度越高越好,因为灵敏度越高,传感器所能感知的变化量越小,即被测量稍有微小变化,传感器就有较大输出。K 值越大,对外界反应越强。 5、反映非线性误差的程度就是线性度。线性度就是以一定的拟合直线作基准与校准曲线作比较,用其不一致的最大偏差△Lmax与理论量程输出值Y(=ymax—ymin)的百分比进行计算。 6、稳定性在相同条件,相当长时间内,其输入/输出特性不发生变化的能力,影响传感器稳定性的因素就是时间与环境。 7、温度影响其零漂,零漂就是指还没输入时,输出值随时间变化而变化。长期使用会产生蠕变现象。 8、重复性:就是衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标;(分散范围小,重复性越好)

手机信号检测传感器

手机信号检测传感器 简要说明: 一、长尺寸:32mm X宽11mm X高20mm 二、主要芯片:LM393、测波传感器 三、工作电压:直流5伏~12伏 四、特点: 1、具有信号输出指示。 2、单路信号输出。 3、输出有效信号为低电平。 4、可用于检测手机来电信号。 5、无需驱动。 6、电路板输出TTL高低电平!(可直接接单片机) 7、经测试5V 可以检测10厘米左右,12V 可以检测20厘米内 适用场合:单片机学习、电子竞赛、产品开发、毕业设计。。。

【图片展示】 【与单片机连接测试程序】 /******************************************************************** 汇诚科技 实现功能:此版配套测试程序 使用芯片:AT89S52 晶振:11.0592MHZ 波特率:9600 编译环境:Keil 作者:zhangxinchun 淘宝店:汇诚科技 【声明】此程序仅用于学习与参考,引用请注明版权和作者信息! *********************************************************************/

/******************************************************************** 说明:1、当测量浓度大于设定浓度时,单片机IO口输出低电平 *********************************************************************/ #include //库文件 #define uchar unsigned char//宏定义无符号字符型 #define uint unsigned int //宏定义无符号整型 /******************************************************************** I/O定义 *********************************************************************/ sbit LED=P1^0; //定义单片机P1口的第1位(即P1.0)为指示端 sbit DOUT=P2^0; //定义单片机P2口的第1位(即P2.0)为传感器的输入端/******************************************************************** 延时函数 *********************************************************************/ void delay()//延时程序 { uchar m,n,s; for(m=20;m>0;m--) for(n=20;n>0;n--) for(s=248;s>0;s--); } /******************************************************************** 主函数 *********************************************************************/ void main() { while(1) //无限循环 { LED=1; //熄灭P1.0口灯 if(DOUT==0)//当浓度高于设定值时,执行条件函数 { delay();//延时抗干扰 if(DOUT==0)//确定浓度高于设定值时,执行条件函数 { LED=0; //点亮P1.0口灯 } } } } /******************************************************************** 结束 *********************************************************************/

传感技术与信号处理

浙江工业大学之江学院010/011 学年 第二学期《传感技术与信号处理》期终试卷 (考试类型:闭卷) 班级姓名学号 一、填空( 每空1.5分共45分) 1.通常把频谱中作为信号的频宽,称为1/10法则;对于有跃变的信号,取作为频宽。 2.测试装置的灵敏度愈高,测量范围往往愈________,稳定性愈______。 3.若要信号在传输过程中不失真,测试系统的输出和输入的幅频特性必须满足(表达式)__________________,相频频特性必须满足(表达式)__________________。 4.为了消除应变片的温度误差,可采用的温度补偿措施包括:、、 和。 5. 电感式传感器按工作原理可分为_______________、________________和电涡流式三种。 6.为了提高极距变化式电容传感器的灵敏度,应_______初始间隙。但初始间隙过_______时,一方面使测量范围_______,另一方面容易使_______击穿。 7.压电式传感器测量电路的前置放大器有_________________和_________________两种,_________________作为前置放大器时压电式传感器输出信号与测量导线的距离无关。 8. 光电耦合器是由一个和一个共同封装在一个外壳内组成的复合型转换元件,又称为。 9.光栅传感器中莫尔条纹的一个重要特性是具有位移放大作用。如果两个光栅距相等,即W=0.02mm,其夹角θ=0.1°,则莫尔条纹的宽度B=_____________莫尔条纹的放大倍数K=_____________。 10.热电偶产生热电势必须具备的基本条件是 ____________、____________。 11.霍尔式传感器为______ _______在磁场中有电磁效应(霍尔效应)而输出电势的。霍尔式元件的电路符号图为:_________________。 14.热电动势由两部分电动势组成,一部分是两种导体的________电动势,另一部分是单一导体的______电动势。

压电式加速度传感器的信号输出形式

电荷输出型 传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。北智BW-Sensor采用进口陶瓷的加速度计可在温度-40oC~250oC范围内长期使用。 低阻抗电压输出型(IEPE) IEPE型压电加速度计即通常所称的ICP型压电加速度计。压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。IEPE型传感器通常为二线输出形式,即采用恒电流电压源供电;直流供电和信号使用同一根线。通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。IEPE型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE传感器能与数采系统直接相连而不需要任何其它二次仪表。在振动测试中IEPE传感器已逐渐取代传统的电荷输出型压电加速度计。 传感器的灵敏度,量程和频率范围的选择 压电型式的加速度计是振动测试的最主要传感器。虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.wendangku.net/doc/cb2501471.html,/

传感器简答题及答案

1.用频域描述分析设备故障有何突出优点? 答:频域描述反映了信号的频率组成及其幅值。 2. 信号调理阶段的放大滤波、调制。解调的作用分别是什么?什么是采样定理?采样频率是不是越高越好? 放大:提高传感器输出的电压、电流和电荷信号使其的幅值和功率可以进行后续的处理。 称能量信号。随机信号:是一种不能准确预测且未来瞬时值,也无法用数学关系式来描述的信号。模拟信号:在所讨论的时间 间隔内,对任意时间值,除第一类间断点外都可以给出确定的函数的信号。数字信号: 值和时间上都离 散的信号) 5. 试述信号的幅值谱与系统的幅频特性之间的区别 信号的幅值谱表征信号的幅值随频率的分布情况,幅值特性指方法电路的电压放大倍数与频率的关系。前者描述信号各频率分 量得幅度后者是系统对输入各频率分量得幅度怎么样变化。 6. 周期信号的频谱图有何特点?其傅里叶级数三角函数展开式与复指数函数展开式的频谱有何特点? (1) 1.离散性2.谐波性3.收敛性。(2)周期信号的傅里叶级数三角函数展开式频率谱是位于频率右侧的离散谱,谱线间隔为 整数个3。复指函数是展开式的频谱其实频谱总是偶对称的其虚频谱总是奇对称的。 x(t) 25-5sin 0 t+2Ocos(2 0 t+ /2),试求该周期信号的均值,并 画出该信号的频谱图。 25 8.试说明信号的均值、方差、均方值的物理含义 。并写出三者间的联系式。 均值表示集合平均值或数学期望,表达了信号变化的中心趋势,方差反映了信号围绕均值的波动程度,信号的波动量。均方值 在电信号中表示有效值。三者关系^ x 2 = S x 2+ g x 2 9.什么是测试?机械工程测试的主要任务是 什么?用方框图表示计算机测试系统的一般组成及各部分作用 ①测试是人们从客观事物中提取所 需信息,借以认识客观事物,并掌握其客观规律的一种科学方法。②机械工程测试的主要任 务是⑴提供被测对象的质量依据⑵提供机械工程设计、制造研究所需的信息。 调制:将微弱的缓变信号加载到 高频交流信号中去,然后利用交流放大器进行放大。 解调:从放大器的输出信号中提取放大的缓变信号。 滤波:使信号中特定 的频率成分用过而极大地衰减其他频率成分。 3. 在设备故障诊断时,为什么要对测试信号进行频域分析? 频域分析法只要是对信号的频率结构进行分析,确定信号是由哪些成分所组成,以及这些频率成分幅值的大小。 通过对故障特 征频率及故障特征频率幅值的分析,就可以准确地对设备的故障情况进行诊断。 4. 什么是功率信号?什么是能量信号?什么是随机信号?什么是模拟信号?什么是数字信号? 功率信号:若信号在区间(-^,+<^)的能量是无限的。即 x 2 (t)dt ,但它在有限区间(t t , t 2 )的平均功率是有限 的,即—1 一 0 x t 2 t 1 t1 这种信号称功率信号。能量信号:当满足时,认为信号的能量是有限的,称为能量有限信号,简 时间离散而幅值量化,称为数字信号(幅 7.已知某周期信号的傅立叶级数展开式为 25 5cos O t /2 20cos 2 0t /2 时A n 25 0时A n A n 20 /2

传感器与检测技术-1

习题一概论p16 1.测试系统一般是怎样构成的? ①传感器将被测物理量转换成以电量为主要形式的电信号; ②信号变换部分是对传感器所送出的信号进行加工; ③显示与记录部分将所测信号变为一种能为人们所理解的形式,以供人们观测和分析。 2.什么是测量误差?测量误差有几种表示方法? 测量误差:人们在进行各种实际测量时,尽管被测量在理论上存在真值,但由于客观实验条件的限制,被测量的真值实际上是测不到的,因而测量结果只能是真值的近似值,这就不可避免地存在着测量误差。 测量误差有:绝对误差、相对误差、引用误差。 3.测量误差按出现规律可分为几种?它们与准确度与精密度有什么关系? ①按出现规律可分为:系统误差、随机误差、粗大误差 ②准确度表示测量结果中系统误差的大小。系统误差越小,准确度越高,即真一民实际 值符合的程度越高。 精密度表示测量结果中随机误差大小的程度。随机误差越小,测量值越集中,表示精密度越高。 精确度是测量结果系统误差与随机误差的综合。表示测量结果与真值的一致程度。精确度用来反映系统误差和随机误差的综合影响。精确度越高,表示正确度和精密度越高,意味着系统误差和随机误差都小。

4.产生系统误差的常见原因有哪些?常用的减小系统误差的方法有哪些? ①产生系统误差的主要原因: ●仪器的制造、安装或使用方法不正确; ●环境因素影响(温度、湿度、电源等); ●测量原理中使用近似计算公式; ●测量人员不良读数习惯 ②减小系统误差的方法: ●发现判断:实验对比、残余误差观察、准则检测 ●减少消除:修正、特殊测量法(替代、差值、误差补偿、对称观察) 5.传感器有哪些几部分组成? 敏感元件、转换元件、转换电路 6.按传感器的工作机理、能量转换方式、输入量及测量原理四种方法,传感器分别是如何分 类的? ①按工作机理分: ●电参数式传感器(如电阻式、电感式和电容式); ●压电式传感器; ●光电式传感器; ●热电式传感器。 ②按能量转换方式分: ●能量控制型传感器(如电阻、电感、电容式) ●能量转换型传感器(如基于压电效应、热电效应传感器) ③按输入量分: 力传感器、位移传感器、温度传感器 ④按测量原理分: ●电路参量式传感器(包括电阻式、电感式、电容式) ●电动势式传感器(包括磁电感应式、霍尔式、压电式) ●光电式传感器(包括一般光电式、光栅式、激光式、光电码盘式、光导纤维式) ●半导体式传感器

流量传感器的输出信号

流量传感器的输出信号 压力损失和信号输出都是流量传感器的具有独特优势,它可实现其测量范围宽,测量精度高的优势,从而被用于测量工业导电液体和浆液。提高国民经济的发展。 流量传感器的压力损失,压力损失流量传感器(除电磁、超声)都有检测件(如孔板、涡轮等),以及强制改变流向(如弯头、科氏)都将产生不可恢复压力损失,它将额外增加输送的动力,才能维持正常运,有些数额很大,在提倡节能的今天应引起重视。 流量传感器的输出信号,输出信号一般为标准的模拟信号(0~10V,4~20MA等)已不能适应系统发展要求。通讯要求数字信号,ROSEMOUNT推出了HART协议,RS232/RS485转换器,RS232限于2KM 以内,RS485可达10KM。https://www.wendangku.net/doc/cb2501471.html,响应时间输出信号随流量参数变化反应的时间,对控制系统来说,越短越好;对脉动流,则希望有较慢的输出响应。 流量传感器的优缺点分析,流量传感器的优势很多:流量传感器可用来测量工业导电液体或浆液;无压力损失;测量范围大,电磁流量变送器的口径从2.5mm到2.6m。;流量传感器测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。 流量传感器的缺点:流量传感器的应用有一定局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体,酒精等不导电液体等;流量传感器用来测量带有污垢的粘性液体时,粘

性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。 液体流量传感器的应用满足很多用户的需要,它的独特设计,使得其既具有优势,也有缺点,故我们在生活中要正确的了解它,只要知己知彼,才可更好的利用它。

传感器和检测技术课后习题答案

第一章 1.什么是传感器?它由哪几个部分组成?分别起到什么作用? 解:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。2.传感器技术的发展动向表现在哪几个方面? 解:(1)开发新的敏感、传感材料:在发现力、热、光、磁、气体等物理量都会使半导体硅材料的性能改变,从而制成力敏、热敏、光敏、磁敏和气敏等敏感元件后,寻找发现具有新原理、新效应的敏感元件和传感元件。 (2)开发研制新型传感器及组成新型测试系统 ①MEMS技术要求研制微型传感器。如用于微型侦察机的CCD传感器、用于管道爬壁机器人的力敏、视觉传感器。 ②研制仿生传感器 ③研制海洋探测用传感器 ④研制成分分析用传感器 ⑤研制微弱信号检测传感器 (3)研究新一代的智能化传感器及测试系统:如电子血压计,智能水、电、煤气、热量表。它们的特点是传感器与微型计算机有机结合,构成智能传感器。系统功能最大程度地用软件实现。 (4)传感器发展集成化:固体功能材料的进一步开发和集成技术的不断发展,为传感器集成化开辟了广阔的前景。 (5)多功能与多参数传感器的研究:如同时检测压力、温度和液位的传感器已逐步走向市场。 3.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。 1)传感器的线性度是指传感器的输出与输入之间数量关系的线性程度; 2)传感器的灵敏度S是指传感器的输出量增量Δy与引起输出量增量Δy的输入量增量Δx 的比值; 3)传感器的迟滞是指传感器在正(输入量增大)反(输入量减小)行程期间其输出-输入特性曲线不重合的现象;

各类传感器的工作原理

传感家族-各类传感器的工作原理 一、传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: 1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器 2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。 3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 关于传感器的分类: 1.按被测物理量分:如:力,压力,位移,温度,角度传感器等; 2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等; 3.按照传感器转换能量的方式分: (1)能量转换型:如:压电式、热电偶、光电式传感器等; (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等; 4.按照传感器工作机理分: (1)结构型:如:电感式、电容式传感器等; (2)物性型:如:压电式、光电式、各种半导体式传感器等; 5.按照传感器输出信号的形式分: (1)模拟式:传感器输出为模拟电压量;

相关文档
相关文档 最新文档