文档库 最新最全的文档下载
当前位置:文档库 › 初中数学压轴题动态几何证明及实验题

初中数学压轴题动态几何证明及实验题

初中数学压轴题动态几何证明及实验题
初中数学压轴题动态几何证明及实验题

初中数学压轴题--动态几何证明及实验题

————————————————————————————————作者:————————————————————————————————日期:

动态几何证明及实验题

所谓动态几何是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.此类题目注重对几何图形运动变化能力的考查.动态几何问题是近几年各地试题中常见的压轴试题,它能考查学生的多种能力,有较强的选拔功能。解这类题目要“以静制动”,即把动态问题,变为静态问题来解。解动态几何题一般方法是针对这些点在运动变化的过程中相伴随着的数量关系(如等量关系、变量关系)、图形位置关系(如图形的特殊状态、图形间的特殊关系)等进行研究考察.抓住变化中的“不变量”,以不变应万变.

实验操作

【要点导航】

通过实验操作——观察猜想——科学论证,使我们体验和学到了发现、获得知识的过程和方法. 实验操作探索——理解题意、实验操作是基本保证,观察猜想、探索结论是关键,论证猜想的结论是落实. 【典例精析】

例1取一张矩形纸片进行折叠,具体操作过程如下:

第一步:先把矩形ABCD对折,折痕为MN,如图1;第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B',得R t△AB'E,如图2;第三步:沿EB'线折叠得折痕EF,使A点落在EC的延长线上,如图3.利用展开图4探究:

(1)△AEF是什么三角形?证明你的结论;

(2)对于任一矩形,按照上述方法能否折出这种三角形?请说明你的理由.

【思路分析】

1.图形翻折后能重叠部分的图形全等,所以∠BEA=∠AEB'=∠FEC,它们都是60°角,所以△AEF是等边三角形.

2.由操作可知AF>AD时,不能完整折出这种三角形.当图3中的点F、D重合时,便可求得矩形的长与宽的比例为2︰3.

解(1)△AEF是等边三角形.由折叠过程可得:60

BEA AEF FEC

∠=∠=∠=?.因为BC∥AD,所以60

AFE FEC

∠=∠=?.所以△AEF是等边三角形.

图1 图2 图3 图4

(2)不一定.当矩形的长恰好等于等边△AEF 的边AF 时,即矩形的宽∶长=AB ∶AF =2:3时正

好能折出.如果设矩形的长为A ,宽为B ,可知当a b 2

3

时,按此种方法一定能折叠出等边三角形;当a b a <<2

3

时,按此法无法折出完整的等边三角形. 〖方法点睛〗要从操作实验题中抽象出数学模型来,并借助图形运动的基本性质求解.

例2 已知:在△ABC 中,∠BAC =90°,M 为BC 中点.操作:将三角板的90°角的顶点与点M

重合,并绕着点M 旋转,角的两边分别与边AB 、AC 相交于点E 、F .

(1)探究1:线段BE 、EF 、FC 是否能构成三角形?如果可以构成三角形,那么是什么形状的三角形?请证明你的猜想.

(2)探究2:若改变为:“角的两边分别与边AB 、直线AC 相交于点E 、F .”其它条件都不变的情况下,那么结论是否还存在?请画出对应的图形并请证明你的猜想. 〖思路分析〗

1.由点M 是BC 中点,所以构造绕点M 旋转180°重合的全等三角形,将线段BE 、EF 、FC 移到同一个三角形中.

2.当角的两边分别与边AB 、直线AC 相交于点E 、F 时,构造和证明的方法不变.

证明(1)线段BE 、EF 、FC 可以构成直角三角形.如图1,延长EM 到G ,使得EM =M G ,联结GC 、FG .因为M 为BC 中点,所以BM =CM ,又因为∠EMB =∠GMC ,EM =M G ,所以△EMB ≌△GMC ,所以BE =GC ,EM =MG ,∠B =∠MCG .因为FM 垂直平分EG ,所以FE =FG .又因为∠BAC =90°,所以∠B +∠ACB =90°,所以∠MCG +∠ACB =90°,即∠FCG =90°,所以2

2

2

FG FC GC =+,所以2

2

2

EF FC BE =+.

(2)如图2,当点F 在CA 的延长线上时,延长EM 到G ,使得EM =M G ,联结GC 、FG .因为M 为BC 中点,所以BM =CM ,又因为∠EMB =∠GMC ,EM =EG ,所以△EMB ≌△GMC ,所以BE =GC ,EM =MG ,∠B =∠MCG .因为FM 垂直平分EG ,所以FE =FG .又因为

∠BAC =90°,所以∠B +∠ACB =90°,所以∠MCG +∠ACB =90°,

A

B

C

M

A B

C

M

E F G

A

E A

B C M

E F G

FCG △

FCG 标注

注标

即∠FCG =90°,所以222FG FC GC =+,所以2

22EF FC BE =+.

如图3,当点F 在AC 的延长线上时,同理可证

222EF FC BE =+.

〖方法点睛〗线段之间常见的关系是和差关系或者满足勾股定理.若能将所要求线段移动到同一条直线上,则线段之间是和差关系的可能性较大,若能将所要求线段移动后能构成三角形,则线段之间满足勾股定理的可能性较大.

【星级训练】

第 天 ,年 月 日

1. ★★★如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G .

(1)操作:由几个不同的位置,分别测量BF 、AG 、AE 的长,从中你能发现BF 、AG 、AE 的数量之间具有怎样的关系?并证明你所得到的结论;

(2)连结DF ,如果正方形的边长为2,设AE=x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域;

(3)如果正方形的边长为2,FG 的长为2

5

,求点C 到直线DE 的距离.

2. ★★★操作:将一把三角尺放在边长为1的正方形ABCD 上,

并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q . 探究:设A 、P 两点间的距离为x .

(1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到结论; (2)当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域;

(3)当点P 在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由.(图5、图6、图7的

G

F E

D

A C B

D

A

C B

供试验

形状大小相同,图5供操作、实验用,图6和图7备用)

3. ★★★在△ABC 中,AB =AC ,CG ⊥BA 交BA 的延长线于点G .一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 边在一条直线上,另一条直角边恰好经过点B .

(1)在图1中请你通过观察、测量BF 与CG 的长度,猜想并写出BF 与CG 满足的数量关系,然后证明你的猜想;

(2)当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE ⊥BA 于点E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE +DF 与CG 之间满足的数量关系,然后证明你的猜想;

(3)当三角尺在(2)的基础上沿AC 方向继续平移到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)

4. ★★如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究:

(1)由图观察易知A (0,2)关于直线l 的对称点A '的坐标为(2,0),请在图中分别标明B (5,3) 、C (-2,5) 关于直线l 的对称点B '、C '的位置,并写出他们的坐标:

B ' 、

C ' ;

D A C

B

D A C

B

D

A C

B

A B

C E

F G

图2

D A

B

C

D

E

F

G

图3 A

B

C F

G

图1

1

2

345

6-1

-2-3-4-5-6-1-2-3

1

234567O x

y

l

A

B

A

'

'

C

归纳与发现:

(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为(不必证明);

运用与拓广:

(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.

探索性问题

探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.

条件探索

【要点导航】

“探索”是人类认识客观世界过程中最生动、最活跃的思维活动,探索性问题存在于一切学科领域之中,数学中的“条件探索”题型,是指命题中缺少一定的题设,需经过推断、补充并加以证明的命题,因而必须利用题设大胆猜想、分析、比较、归纳、推理,由结论去探索未给予的条件。由于题型新颖、综合性强、结构独特,此类问题的一般解题思路并无固定模式或套路,因而具体操作时要更注重数学思想方法的综合应用.

【典例精析】

例1如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BE AB

<),连结EG并延长交DC于点M,过M作MN AB

⊥,垂足为N,MN交BD于点P.设正方形ABCD的边长为1.(1)证明△CMG≌△NBP;

(2)设BE=x,四边形MGBN的面积为y,求y关于x的函数解析式,并写出定义域.

(3)如果按照题设方法作出的四边形BGMP是菱形,求BE的长.

(4)联结PG,若BPG

?能否成为直角三角形?如果能,求BE的长;

如果不能,请说明理由.

(5)联结AC、AF、CF,求证△ACF的面积为定值.〖思路分析〗A N B E

F

G

C

M

D

P

1.第(3)小题把四边形BGMP 是菱形作为条件探索BE 的长.

2.BPG ?中∠PBG 始终是45°,而∠BPG 和∠PGB 有可能为90°,要分情况讨论. 3.第(5)小题即可用割补法求也可用利用AC ∥BF 将△ACF 的面积转化为△ABC 的面积. 证明(1)因为 正方形ABCD ,所以 ?=∠=∠90CBA C ,?=∠45ABD ,同理?=∠45BEG .因为 CD //BE ,所以 ?=∠=∠45BEG CMG ,因为 AB MN ⊥,垂足为N ,所以 ?=∠90MNB .所以 四边形BCMN 是矩形.所以 NB CM =,又 因为 ?=∠=∠90PNB C , ?=∠=∠45NBP CMG ,所以 △CMG ≌△NBP .

(2)因为 正方形BEFG ,所以 x BE BG ==,所以 x CG -=1.从而 x CM -=1,所以

22

1

21)1)(1(21)(21x x x BN MN BG y -=-+=?+=.定义域为:10<

(3)由已知易得 MN //BC ,MG //BP .所以四边形BGMP 是平行四边形.要使四边形BGMP 是菱形.则BG =MG ,所以)1(2x x -=.解得22-=x .所以 22-=BE 时四边形BGMP 是菱形.

(4)如图2,当∠PGB =90°时,BG =PG =MC ,即x x -=1,解得21=x ,所以BE 的长为2

1

.如图3,当∠GPB =90°时,BG =2MC ,即2(1)x x =-,解得32=x ,所以BE 的长为3

2

(5)如图4:1111

1(1)(1)2222

ACF ADHE ACD AEF HCF S S S S S x x x x x ????=---=+-

-+--=或者,由于 1(1)2AEF S x x ?=

+,1(1)2BCFE S x x =+,因此AEF

S ?=BCFE S .所以ABQ CFQ S S ??=,12

ACF ABC S S ??==.或者因为BF ∥AC ,所以点B 和F 到AC 的距离相等,即△AFC 和△ABC 同底等高,所以1

2

ACF ABC S S ??==

. 〖方法点睛〗第(5)小题体现了图形运动中的不变性,正方形BEFG 的边长虽然改变但是△AFC 的面积不变.

A

N

B E

F

G C

M

D

P

A

N B E

F

G

C M

D

P

A

B

E

F

C

D

Q

H

G

例2 在等边△ABC 的两边AB 、AC 所在直线上分别有两点M 、N .D 为△ABC 外一点,且∠MDN

=60°,∠BDC =120°,BD =DC . 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及△AMN 的周长Q 与等边△ABC 的周长L 的关系.

(1)如图1所示,当点M 、N 在边AB 、AC 上,且DM =DN 时,BM 、NC 、MN 之间的数量关系

是 ; 此时

=L

Q

(不必证明) (2)如图2所示,点M 、N 在边AB 、AC 上,且当DM ≠DN 时,猜想(1)问的两个结论还成立吗?

写出你的猜想并加以证明;

(3) 如图3所示,当M 、N 分别在边AB 、CA 的延长线上时,若AN =2,则Q = (用含有L 的式子表示). 〖思路分析〗

1.当DM =DN 时,△BDM 和△CDN 全等,设BM =CN =a ,则a Q 6=,a L 9=.

2.当DM ≠DN 时,在AC 的延长线上截取CP =BM ,连接DP ,通过两次全等可证BM +NC =MN .所以a Q 6=,a L 9=.结论依然成立.

3.当M 、N 分别在边AB 、CA 的延长线上时,通过两次全等可证NC —BM =MN . 解(1)BM +NC =MN ;

Q 2

=L 3

. (2)(1)问的两个结论任然成立.如图4,在AC 的延长线上截取CP =BM ,连接DP ,在等边△ABC ,∠ABC =∠ACB =60°,∠BDC =120°,BD =DC .,所以∠DBC =∠DCB =30°,所以∠DBM =∠DCP =90°.在△DBM 与△DCP 中,CP =BM ,∠DBM =∠DCP =90°,DB =DC ,所以

A B

C

D

M N 图

A

B

C

D

M

N

图 A

B C

D M

N

图 A M

N P

△DBM ≌△DCP (S .A .S )所以∠BDM =∠CDP ,DM =DP ,因为∠BDC =120°,∠PDN =∠CDP +∠CDN =∠BDM +∠CDN =120°-60°=60°.在△DMN 与△DPN 中,DM =DP ,∠MDN =∠PDN =60°,DN =DN ,所以△DMN ≌△DPN (S .A .S )所以MN =PN =NC +PC =NC +BM ,所以Q =AM +MN +AN =(AM +BM )+(CN +AN )=AB +AC =2AB .而L =AB +AC +BC =3AB ,所以

Q 2=L 3

(3)Q =

2

3

L +4.如图5,在AC 的上截取CP =BM ,连接DP ,同理可证△DCP ≌△DBM 和△DNP ≌△DNM ,所以Q =AN +AM +MN = AN +AB +BM +MN = AN +AB +CP +NP =2NC =2(AN +AC ).因为AN =2,AC =

L 3

1,所以Q =2

3

L +4.

〖方法点睛〗旋转对称图形中构造旋转型全等三角形是常用的方法.

【星级训练】

第 天 ,年 月 日

1. ★★★如图1所示,直线AB 交x 轴于点A (A ,0),交y 轴于点B (0,B ),且A 、B 满足

2b (4)0a a ++-=.

(1)如图1,若C 的坐标为(-1,0),且AH ⊥BC 于点H ,AH 交OB 于点P ,试求点P 的坐标; (2)如图2,连接OH ,求证:∠OHP =45°;

(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连接MD ,过D 作DN ⊥DM 交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子S △BDM -S △ADN 的值是否发生改变,如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.

第 天 ,年 月 日

A

B

O

y x

N M

D

图3

A B

C

H

P

O

y

x

图2

x

y

O

P

H C

B

A

图1

A

B

C

D

M

N 图

P

2. ★★★已知BD 、CE 分别是ABC △的AC 边、AB 边上的高,M 是BC 边的中点,分别联结MD 、ME 、DE .

(1)当?<∠90BAC 时,垂足D 、E 分别落在边AC 、AB 上,如图1.求证:EM DM =. (2) 当?>∠90BAC 时,垂足D 、E 分别落在边AC 、AB 所在的直线上,如图2,问(1)中的结论是否依然成立?无需说明理由,直接写出答案即可;若?=∠135BAC ,试判断DEM △的形状,简写解答过程.

(3)设BAC ∠的度数为x ,DME ∠的度数为y ,求y 与x 之间的函数关系式.

第 天 ,年 月 日

3. ★★★如图1,已知∠ABC =90°,△ABE 是等边三角形,点P 为射线BC 上任意一点(点P 与点B 不重合),连结AP ,将线段AP 绕点A 逆时针旋转60°得到线段AQ ,连结QE 并延长交射线BC 于点F .

(1)如图2,当BP =BA 时,∠EBF = °,猜想∠QFC = °;

(2)如图1,当点P 为射线BC 上任意一点时,猜想∠QFC 的度数,并加以证明;

(3)已知线段AB =32,设BP =x ,点Q 到射线BC 的距离为y ,求y 关于x 的函数关系式.

结论探索

A

B C

(备用图)

A

B C D M

E

A B

C

D M

E

A C

B E Q

F

P

A

B

E

Q

P F C

【要点导航】

探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.

探索型问题具有较强的综合性,因而解决此类问题用到了所学过的整个初中数学知识.经常用到的知识是:一元一次方程、平面直角坐标系、正、反比例和一次函数的求法(图象及其性质)、直角三角形的性质、四边形(特殊)的性质、等.其中用几何图形的某些特殊性质:勾股定理、相似三角形对应线段成比例等来构造方程是解决问题的主要手段和途径.因此复习中既要重视基础知识的复习,又要加强变式训练和数学思想方法的研究,切实提高分析问题、解决问题的能力.

【典例精析】

例1 如图1,在△ABC 中,∠ACB = 90°,AC = BC ,AB = 8,CD ⊥AB ,垂足为点D .M 为边AB 上任意一点,点N 在射线CB 上(点N 与点C 不重合),且MC = MN ,NE ⊥AB ,垂足为点E .当点M 在边AB 上移动时,试探索线段ME 的长是否会改变?说明你的理由. 〖思路分析〗

射线CB 包括线段CB 和线段CB 的延长线两部分,点N 在射线

CB 上运动时,可证明△CMD 和△MEN 全等,所以线段ME 的长始终和线段CD 相等,所以不会改变长度.

解:当点M 在边AB 上移动时,线段ME 的长不变,ME = 4.由点N 在射线CB 上,可知点N 在边BC 上或点N 在边CB 的延长线上.

(ⅰ)如图1,如果点N 在边BC 上,可知点M 在线段AD 上.因为 AC = BC ,∠ACB = 90°,所以 ∠A =∠B = 45°.又因为 AC = BC ,CD ⊥AB ,AB = 8,所以 CD = BD = 4.即得 45BCD ∠=?.因为 MC = MN ,所以 ∠MCN =∠MNC .因为 ∠MCN =∠MCD +∠BCD ,∠MNC =∠B +∠BMN ,所以 ∠MCD =∠NME .

又因为 CD ⊥AB ,NE ⊥AB ,所以 ∠CDM =∠ MEN = 90°.所以 △MCD ≌△MNE (A .A .S ).所以 ME = CD = 4.

(ⅱ)如图2,如果点N 在边CB 的延长线上,可知点M

在线段BD 上,且点E 在边AB 的延长线上.

因为∠ABC =∠MNC +∠BMN = 45°, ∠BCD =∠MCD +∠MCN = 45°,∠MCN =∠MNC ,所以∠MCD =∠BMN .因为MC = MN ,∠CDM =∠MEN = 90°,所以△MCD ≌△NME (A .A .S ).所以 ME = CD = 4.所以由(ⅰ)、(ⅱ)可知,当

A

B

C

图1

D N

M E A B C

图2 D

M E

点M 在边AB 上移动时,线段ME 的长不变,ME = 4.

〖方法点睛〗点M 在AB 上和在AB 的延长线上,从图1到图2是图形的变式题.随着点M 的运动线段之间的关系不变,所以证明思路不变.

例2 如图,已知在正方形ABCD 中,AB = 2,P 是边BC 上的任意一点,E 是边BC 延长线上一

点,联结AP .过点P 作PF ⊥AP ,与∠DCE 的平分线CF 相交于点F .联结AF ,与边CD 相交于点G ,联结PG .

(1)求证:AP = FP ;

(2)探索线段BP 、DG 、PG 之间的数量关系,并给出证明过程; (3)当BP 取何值时,PG // CF . 〖思路分析〗

1.过点F 作FH ⊥BC ,结合所给条件无法证明△ABP 和△PHF 全等.在边AB 上截取线段AH ,使AH = PC ,便可证明△AHP ≌△PCF .

2.由第(1)小题的结论得△APF 是等腰直角三角形,所以∠P AF =45°,将△ADG 绕点A 顺时针旋转90°后,BP 与DG 联结成一条线段,通过全等三角形可证BP 与DG 的和等于PG .

3.当PG // CF 时,△PCG 是等腰直角三角形,由第(2)小题结论得PG =DG +BP ,在R t △PCG 中,由勾股定理可求得BP 的长.

证明(1)如图2,在边AB 上截取线段AH ,使AH = PC ,联结PH .由正方形ABCD ,得∠B =∠BCD =∠D = 90°,AB = BC = AD .因为∠APF = 90°,所以∠APF =∠B .因为∠APC =∠B +∠BAP =∠APF +∠FPC ,所以∠P AH =∠FPC .又因为∠BCD =∠DCE = 90°,CF 平分∠DCE ,所以∠FCE = 45°.所以∠PCF = 135°.又因为AB = BC ,AH = PC ,所以BH = BP ,即得∠BPH =∠BHP = 45°.所以∠AHP = 135°,即得∠AHP =∠PCF .在△AHP 和△PCF 中,∠P AH =∠FPC ,AH = PC ,∠AHP =∠PCF ,所以△AHP ≌△PCF .所以AP = PF .

(2)证明:如图3,延长CB 至点M ,使BM = DG ,联结AM . 由AB = AD ,∠ABM =∠D = 90°,BM = DG ,得△ADG ≌△ABM ,即得AG = AM ,∠MAB =∠GAD .因为AP = FP ,∠APF = 90°,所以∠P AF = 45°.因为∠BAD = 90°,所以∠BAP +∠DAG = 45°,即得∠MAP =∠P AG = 45°.于是,由AM = AG ,∠MAP =∠P AG ,AP = AP ,得△APM ≌△APG .所以PM = PG .即得PB + DG = PG .

(3)解:由PG // CF ,得∠GPC =∠FCE = 45°.于是,由∠BCD = 90°,

得∠GPC =∠PGC = 45°.所以PC = GC .即得DG = BP .设BP = x ,则DG = x .由AB = 2,得PC = GC = 2 – x .因为PB + DG = PG ,所以PG = 2 x .在R t △PGC 中,∠PCG = 90°,得2

2

2

PG CG PC =+.即得

B A

C

D E

P

F G

B A

C D E

P F

G M 图

B A C

D

E

P

F G 图2

H

A

B

E P

D

M

C

222)2()2()2(x x x =-+-.解得222x =-.所以当(222)BP =-时,PG // CF .

〖方法点睛〗本题所需添加的辅助线比较特殊,在旋转型图形如:正方形,等边三角形,等腰直角三角形中较为常见.

【星级训练】

第 天 ,年 月 日

1. ★★已知:在△ABC 中,AB =AC ,点P 在直线BC 上,PD ⊥AB 于点D ,PE ⊥AC 于点E ,BH 是△ABC 的高.

(1)当点P 在边BC 上时,求证:PD +PE =BH

(2)当点P 在边BC 的延长线上时,试探索PD 、PE 和BH 之间的数量关系.

第 天 ,年 月 日

2. ★★★已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为H 1,H 2,H 3,△ABC 的高为H .“若点P 在一边BC 上如图(1),此时H 3=0可得结论:H 1+H 2+H 3=H .”请直接应用上述信息解决下列问题:当点P 在△ABC 内如图(2),以及点P 在△ABC 外如图(3)这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,H 1,H 2,H 3与H 之间又有怎样的关系,请写出你的猜想,不需要证明.

第 天 ,年 月 日

3. ★★★已知在正△ABC 中,AB =4,点M 是射线AB 上的任意一点(点M 与点A 、B 不重合),点N 在边BC 的延长线上,且AM = CN .联结MN ,交直线AC 于点D .设AM = x ,CD = y .

(1)如图,当点M 在边AB 上时,求y 关于x 的函数解析式,并写出自变量x 的取值范围.

(2)当点M 在边AB 上,且四边形BCDM 的面积等于△DCN 面积的4倍时,求x 的值.

A B

C

M N

D

图图图

(3)过点M 作ME ⊥AC ,垂足为点E .当点M 在射线AB 上移动时,线段DE 的长是否会改变?请证明你的结论.

第 天 ,年 月 日

4. ★★★在R t △ABC 中,∠C =900,∠A =300,AB =4,将一个300

角的顶点P 放在AB 边上滑动,保持300角的一边平行于BC ,且交边

AC 于点E ,300

角的另一边交射线..

BC 于点D ,联结ED .

(1)如图1,当四边形PBDE 为等腰梯形时,求AP 的长; (2)四边形PBDE 有可能为平行四边形吗?若可能,求出PBDE 为平行四边形时AP 的长;若不可能,说明理由;

(3)若D 在BC 边上(不与B 、C 重合),试写出线段AP 取值范围。

第 天 ,年 月 日

5. ★★★在梯形ABCD 中,AD //BC ,AB=CD=AD =5cm ,BC =11cm ,点P 从点D 出发沿DA 边以每秒1cm 的速度移动,点Q 从点B 出发,沿BC 边以每秒2cm 的速度移动(当点P 到达点A 时,点P 与点Q 同时停止移动),假设点P 移动的时间为x (秒),四边形ABQP 的面积为y (平方厘米)。 (1)求y 关于x 的函数解析式,并写出它的定义域; (2)在移动的过程中,求四边形ABQP 的面积与四边形QCDP 的面积相等时x 的值;

(3)在移动的过程中,是否存在x 使得PQ =AB ,若存在求出所有的x 的值,若不存在请说明理由

6. ★★★★如图,平面直角坐标系中,O 是坐标原点,正比例函数kx y =(x 为自变量)的图像与双曲线x

y 2

-

=交于点A ,且点A 的横坐标为2-.

(1)求k 的值;

(2)将直线kx y =(x 为自变量)向上平移4个单位得到直线BC ,直线BC 分别交x 轴、y 轴于B 、C ,如点D 在直线BC 上,在平面直角坐标系中求一点P ,使以O 、B 、D 、P 为顶点的四边形是菱形.

A B

C P E D

30

(图1)

A B

D

C

Q

P x

y C B A O

7. ★★★★如图1,直线122+-=x y 分别与x 轴、y 轴交于点A 、B ,点C 是线段AB 的中点,点D 在线段OC 上,点D 的纵坐标为4. (1)求点C 的坐标和直线AD 的解析式;

(2)P 是直线AD 上的点,请你找一点Q ,使以O 、A 、P 、Q 这四个点为顶点的四边形是菱形,写出所有满足条件的点Q 的坐标.

猜想证明

【要点导航】

此类问题通常由一个特殊图形到一般情况,引出一系列探究的问题.经历对一些命题和结论的猜想、证明、推广的过程,体会知识之间的内在联系,感受特殊到一般、数形结合等数学思想,对学生的想象、思维、归纳、分析都有较高的要求.此类题目变式多,证明方式也不尽相同,可以说是精彩纷呈.借题发挥,拓宽视野,这样做不仅有助于学生综合而灵活的运用知识,而且能不断提高学生独立探究问题解决的能力,更有助于培养学生思维的深刻性与批判性。

【典例精析】

例1 如图1,已知点D 在AC 上,△ABC 和△ADE 都是等腰直角三

角形,点M 为EC 的中点.

(1)求证:△BMD 为等腰直角三角形.

(2)将△ADE 绕点A 逆时针旋转?45,如图2,(1)中的“△BMD 为等腰直角三角形”是否仍然成立?请说明理由.

(3)将ADE ?绕点A 逆时针旋转?135,如图3,(1)中的“BMD ?为等腰直角三角形”成立吗?(不用说明理由).

(4)我们是否可以猜想,将ADE ?绕点A 任意旋转一定的角度,如图4,(1)

A

O

x C D B y 图

A B C D

E M

图A

B C D E

M

图B

B

中的“BMD ?为等腰直角三角形”均成立? 〖思路分析〗

1. 利用直角三角形斜边中线性质和三角形的内外角和定理不难证明DM 与BM 垂直且相等.

2. 将△ADE 绕点A 转过?45或?135时,加倍延长DM ,可构造出全等三角形,再利用等腰三角形三线合一的性质可证明BMD ?为等腰直角三角形.

3. 将△ADE 绕点A 任意旋转一定的角度时,可以D 、M 、B 为顶点构造正方形再证明BMD ?为等腰直角三角形.

证明(1)因为点M 是R t △BEC 的斜边EC 的中点,所以BM =

2

1

EC =MC ,所以∠MBC =∠MCB .所以∠BME =2∠BCM .同理可证:DM =

2

1

EC =MC ,∠EMD =2∠MCD .所以∠BMD =2∠BCA =90°,所以BM =DM .所以△BMD 是等腰直角三角形.

(2)第(1)题中的结论仍然成立.如图5,延长DM 与BC 交于点N ,因为DE ⊥AB ,CB ⊥AB ,所以∠EDB =∠CBD =90°,所以DE ∥BC .所以∠DEM =∠MCN .又因为∠EMD =∠NMC ,EM =MC ,所以△EDM ≌△MNC .所以DM =MN .DE =NC =AD .又AB =BC ,所以AB -AD =BC -CN ,所以BD =BN .所以BM ⊥DM .即∠BMD =90°.因为∠ABC =90°,所以BM =2

1

DN =DM .所以△BMD 是等腰直角三角形.

(3)成立.

(4)BMD ?为等腰直角三角形的结论仍然成立.如图6,过点

D 作DN ⊥DM ,使得DN =DM ,联结BN 、AN .因为∠EDA =∠NDM =90°,所以∠EDM =∠AND ,AD =A

E ,DM =DN ,所以△EDM ≌△AND .所以AN ⊥DM ,AN =EM ,又因为EM =MC ,所以AN =MC .利用三角形内角和可证∠BCM =∠NAB ,又因为AB =BC ,BM =BN ,所以△MBC ≌△NBA ,

所以∠NBA =∠MBC ,因为∠ABC =90°,所以∠NBM =90°,联结MN ,所以∠BMD =∠BND =90°,所以四边形DNBM 是正方形.所以△BMD 是等腰直角三角形.

〖方法点睛〗本题还可研究将△ADE 绕点A 旋转后当C 、D 、E 三点一线,当B 、A 、D 三点一线,E 在AC 上等多种情况下△BMD 都是等腰直角三角形.

例2 点A 、B 、C 在同一直线上,在直线AC 的同侧作ABE ?和BCF ?,连接AF ,CE .取AF 、CE 的中点M 、N ,连接BM ,BN , MN .

A

B C

D E

M 图

N A B

C

D E

M 图

N

P

(1)若ABE ?和FBC ?是等腰直角三角形,且0

90=∠=∠FBC ABE (如图1),则MBN ?是 三角形.

(2)在ABE ?和BCF ?中,若BA =BE ,BC =BF ,且α=∠=∠FBC ABE ,(如图2),则MBN ?是 三角形,且=∠MBN .

(3)若将(2)中的ABE ?绕点B 旋转一定角度,(如图3),其他条件不变,那么(2)中的结论是否成立? 若成立,给出你的证明;若不成立,写出正确的结论并给出证明.

〖思路分析〗

1.△ABF 和△EBC 可看作绕点B 旋转90°后可重合的两个三角形,BM 和BN 是对应斜边上的中线,夹角为90°,所以MBN ?是等腰直角三角形.

2.∠MBN 可看作是两个全等三角形△ABF 和△EBC 对应边上的中线,它们的夹角∠MBN 和对应边的夹角∠ABE 和∠FBC 相等.

3.要证明∠MBN 和∠FBC 相等,只要证明∠FBM 和∠CBN 相等,所以要证明△MFB 和△NCB 全等. 解(1)等腰直角. (2)等腰、α.

(3)结论仍然成立.证明:在△ABF 和△EBC 中,BA =BE ,∠ABF =∠EBC ,BF =BC ,所以△ABF ≌△EBC .所以AF =CE ,∠AFB =∠ECB .因为M ,N 分别是AF 、CE 的中点,所以FM =CN .所以△MFB ≌△NCB .所以BM =BN ,∠MBF =∠NBC ,所以所以∠MBN +∠FBN =∠FBC +∠FBN ,即∠MBN =∠FBC .所以结论依然成立.

〖方法点睛〗从图1到图3是连续的图形变式题.图形由特殊到一般,虽然图形改变,但是证明思路不变.

【星级训练】

第 天 ,年 月 日

1. ★★★如图1,四边形ABCD ,将顶点为A 的角绕着顶点A 顺时针旋转,若角的一条边与DC 的延长

线交于点F ,角的另一条边与CB 的延长线交于点E ,连接EF .

A B

C E F M

N

A

B

C

E

F

M N

A

B

C

E F M

N

(1)若四边形ABCD 为正方形,当∠EAF =45°时,有EF =DF -BE .请你思考如何证明这个结论(只思考,不必写出证明过程);

(2)如图2,如果在四边形ABCD 中,AB =AD ,∠ABC =∠ADC =90°,当∠EAF =2

1

∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论);

(3)如图3,如果四边形ABCD 中,AB =AD ,∠ABC 与∠ADC 互补,当∠EAF =2

1

∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式并给予证明.

(4)在(3)中,若BC =4,DC =7,CF =2,求△CEF 的周长(直接写出结果即可).

第 天 ,年 月 日

2. ★★★在正方形ABCD 的边AB 上任取一点E ,作EF ⊥AB 交BD 于点F ,取FD 的中点G ,连接EG 、

CG ,如图1,易证 EG =CG 且EG ⊥CG .

(1)将△BEF 绕点B 逆时针旋转90°,如图2,则线段EG 和CG 有怎样的数量关系和位置关系?请直接写出你的猜想.

(2)将△BEF 绕点B 逆时针旋转180°,如图3,则线段EG 和CG 又有怎样的数量关系和位置关

系?请写出你的猜想,并加以证明.

第 天 ,年 月 日

A

B

C D

E F

A

B C

D

E F 图

A

B

C D

E F 图

A B C D E

F

G 图

A

B C

D

E

F

G

A B C

D

E

F G

3. ★★★已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为

DF 中点,连接EG ,CG .

(1)直接写出线段EG 与CG 的数量关系;

(2)将图1中△BEF 绕B 点逆时针旋转45o,如图2所示,取DF 中点G ,连接EG ,CG . 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.

(3)将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)

第 天 ,年 月 日

4. ★★★如图, 已知等边三角形ABC 中,点D 、E 、F 分别为边AB 、AC 、BC 的中点,M 为直线BC

上一动点,△DMN 为等边三角形(点M 的位置改变时,△DMN 也随之整体移动).

(1)如图1,当点M 在点B 左侧时,请你连结EN ,并判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?请写出结论,并说明理由;

(2)如图2,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立? 若成立,请利用图2证明;若不成立,请说明理由;

(3)如图3,若点M 在点C 右侧时,请你判断(1)的结论中EN 与MF 的数量关系是否仍然成

立? 若成立,请直接写出结论;若不成立,请说明理由.

(图1) (图2) ( 图3)

N F E

D C

B

A

M N

F

E

D C

B

A

M

A

E F D B N C

M F B A D C

E G 图1

F

B

A D C

E G 图2

F B

A C

E

图3

D

相关文档