文档库 最新最全的文档下载
当前位置:文档库 › 受力分析专项训练

受力分析专项训练

受力分析专项训练
受力分析专项训练

受力分析专项练习

1.概念:把研究对象(指定物体)在指定的物理环境中受到的所有力都分析出来,并画出物体所受力的示意图,这个过程就是受力分析.

2.受力分析的一般顺序

先分析场力,再分析接触(弹力、摩擦力),最后分析其他力.(因人而异,最好自成体系)

3.受力分析的一般方法

(1)整体法与隔离法

(2)假设法

若分析某个作用力是否作用在物体上,答案又不好确定时,就可以用这种方法.如图所示,水平传送带上,一物体随传送带一起做匀速运动,问物体受到向前的水平作用力吗?由于水平方向上的受力不好确定,这时假设法就派上用场了.假设物体受到向前的作用力,但这样一来,物体就得做加速运动.这与已知的做匀速运动相矛盾,所以水平方向上的作用力是不存在的.

巩固练习

1.分析下列各图中小球或三角形物体的受力情况,画出受力示意图。

2.下列各图中A 、B 均静止,画出A 、B 受力示意图。(可以画在原图旁边)

3下列各图中A 、B 均静止,不计摩擦,画出A 、B 受力示意图。

4.下列各图中接触面均粗糙,v

5. 下列各图中左边三图是小球被绳拴着绕O 点左右摆动过程中的三个不同位置,画出小球在摆动过程中经过这三个位置时小球的受力示意图。右边两图中A 、

B 在力F 作用下一起向右匀速运动,在原图旁边画出A 、B 受力示意图。(不计空气阻力)

6.

,画出杆的受力示意图.

F

B

B

v

v

v

v

v

球内表面光滑 球内表面光滑

v F v v

v v B

7.分析下列各图中物块在传送带上的受力情况,画出受力示意图。(接触面均粗糙)

(1)物块轻轻放到沿图中v

(2)上面三图中,物块随传送带一起沿图中v

方向匀速运动时;

(3)物块从斜面上滑下,并以速度v0滑上水平传送带时。

8.水平地面光滑,长木板和物块粗糙,画出长木板和物块在开始运动时的受力示意图。

9. 下列各图中弹簧左端固定在墙壁上,右端与物块相连,物块在光滑水平面上以某一位置为中心做往复运动。v为某时刻物块的运动方向,画出物块在下图各时刻的受力示意图。

弹簧处于拉伸v=0 弹簧处于拉伸

初速度v0滑上木板时

向左运动的木板上时

2

速度v1向左运动的木板时

张力减径机的动力学和运动学的分析详细版

文件编号:GD/FS-1093 (解决方案范本系列) 张力减径机的动力学和运动学的分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

张力减径机的动力学和运动学的分 析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 文章主要对三辊式张力减径机进行分析,主要分析张力减径机的动力学和运动学原理,通过对张力减径机的速度分析、转速分析和速度控制来分析张力减径机运动学特征,通过对张力减径机受力分析、轧制压力和轧制力矩进行分析张力减径机的动力学特征分析。 张力减径机是现代化的生产机组,其作用和优越性使其在大规模无缝钢管生产中不可缺少。随着我国钢管工业的发展张力减径机组正被广泛运用。对三辊式张力减径机进行分析,该机组是90年代研制的,具有许多独特的优点。以下分析张力减径机的运动学

和动力学原理。 1.张力减径机的运动学特征 1.1.运动学特征 在张力减径的过程中,要求各个机架的延伸系数和轧辊圆周协调一致,同时决定连轧机工作的基本条件要求通过每个机架的金属的秒流量相等。 在所有的机架都充满金属而C不等于0的情况下,对于每对轧辊在任意瞬间都遵守秒流量、相等的原则,这种相等可通过轧辊和金属之间的滑移达到。因此当C不等于0时,减径机任何一个机架中的变形条件发生变化,都会影响其余机架中的变形条件,但由于连轧过程本身存在着相适应,自相调整的过程,因此即使在这种相互作用的复杂关系中减径过程仍然能够在任一瞬间保持秒流量相等。但是当差别较大时,必然会造成严重的拉钢和推钢,轻者不能获得

难点之一----物体的受力分析

难点之一物体受力分析 一、难点形成原因: 1、力是物体间的相互作用。受力分析时,这种相互作用只能凭着各力的产生条件和方向要求,再加上抽象的思维想象去画,不想实物那么明显,这对于刚升入高中的学生来说,多习惯于直观形象,缺乏抽象的逻辑思惟,所以形成了难点。 2、有些力的方向比较好判断,如:重力、电场力、磁场力等,但有些力的方向难以确定。如:弹力、摩擦力等,虽然发生在接触处,但在接触的地方是否存在、方向如何却难以把握。 3、受力分析时除了将各力的产生要求、方向的判断方法熟练掌握外,同时还要与物体的运动状态相联系,这就需要一定的综合能力。由于学生对物理知识掌握不全,导致综合分析能力下降,影响了受力分析准确性和全面性。 4、教师的教学要求和教学方法不当造成难点。教学要求不符合学生的实际,要求过高,想一步到位,例如:一开始就给学生讲一些受力个数多、且又难以分析的物体的受力情况等。这样势必在学生心理上会形成障碍。 二、难点突破策略: 物体的受力情况决定了物体的运动状态,正确分析物体的受力,是研究力学问题的关键。受力分析就是分析物体受到周围其它物体的作用。为了保证分析结果正确,应从以下几个方面突破难点。 1.受力分析的方法:整体法和隔离法 2.受力分析的依据:各种性质力的产生条件及各力方向的特点 3.受力分析的步骤: 为了在受力分析时不多分析力,也不漏力,一般情况下按下面的步骤进行: (1)确定研究对象—可以是某个物体也可以是整体。 (2)按顺序画力 a.先画重力:作用点画在物体的重心,方向竖直向下。 b.次画已知力 c.再画接触力—(弹力和摩擦力):看研究对象跟周围其他物体有几个接触点(面),先对某个接触点(面)分析,若有挤压,则画出弹力,若还有相对运动或相对运动的趋势,则再画出摩擦力。分析完一个接触点(面)后,再依次分析其他的接触点(面)。 d.再画其他场力:看是否有电、磁场力作用,如有则画出。

stewart运动学分析

Stewart型并联支撑机构运动学公式推导 一、构型分析及坐标系建立 静基座自动调平系统Stewart平台型并联支撑机构为双三角形机构,由一个活动上平台和一个固定的下平台所组成。上平台铰链点和基座平台铰链点的分布形式相同,但铰接点相互交错,六根支链分别用移动副和两个球铰链与上下平台连接。并联机构示意图如图1所示。 图1 Stewart并联机构示意图 支链与动平台铰接点为A1,A2,A3,支链与基座铰接点标记为B1,B2,B3。坐标系选在平台的三角几何中心,由右手螺旋法则确定。动平台三角边长为a,定平台三角边长为b,动平台起始高度为h。根据设定的初始值,各支链与定平台、动平台铰接点的坐标如表一所示。

二、并联支撑机构正反解 两个坐标系,o 和o ′,其中,o 为固定坐标系。 (1)将坐标系o 绕自身的x 轴旋转γ; (2)将旋转后的坐标系绕固定坐标系的y 轴旋转β; (3)将第二步的坐标系绕固定坐标系的z 轴旋转α; 旋转矩阵分别为 R x = 1000cγ?sγ0sγcγ R y = cβ 0sβ0 10?sβ 0cβ R z = cα?sα0sαcα0001 按上述方式得到的总旋转变换矩阵为: R o ′o =R z R y R x = cαcβcαsβsγ?sαcγcαsβcγ sαcβsαsβsγ+cαcγsαsβcγ?cαsγ?sβcβsγcβcγ 设动平台的平移参数为(d x ,d y ,d z ),则坐标的齐次变换矩阵为: T o ′o = cαcβ cαsβsγ?sαcγcαsβcγ+sαsγ0sαcβsαsβsγ+cαcγ sαsβcγ?cαsγ 0?sβcβsγcβcγ00 1 对于与动平台铰接的各点A i (i=1,2,3),点的齐次坐标为p A i ,经过变换后的点对应标记为A i ′,变换后的齐次坐标为p A i ′,则, p A i ′=T o ′o p A i 带入初始坐标后,得出变换后与动平台铰接的各点坐标值为: A 1x ′ A 1y ′ A 1z ′ = ? 3 6acαcβ+1 2a sαcγ?cαsβsγ +? cαsβcγ+sαsγ +d x ? 36asαcβ?12 a sαsβsγ+cαcγ +? sαsβcγ?cαsγ +d y 3 6 asβ?12acβsγ+?cβcγ+d z A 2x ′A 2y ′A 2z ′ = 3 3acαcβ+? cαsβcγ+sαsγ +d x 3 3 asαcβ+? sαsβcγ?cαsγ +d y ? 3 3asβ+?cβcγ+d z

(完整word)精选受力分析练习题(含答案及详解),推荐文档

精选受力分析练习题15道(含答案及详解) 1.如右图1所示,物体M 在竖直向上的拉力F 作用下静止在斜面上,关于M 受力的个数,下列说法中正确的是(D ) A .M 一定是受两个力作用 B .M 一定是受四个力作用 C .M 可能受三个力作用 D .M 不是受两个力作用就是受四个力作用 2、如图2所示,物体A 靠在竖直墙面上,在力F 作用下,A 、B 保持静止.物体B 的受力个数为 ( ) A.2 B.3 C.4 D.5 答案 C 解析 B 物体受四个力的作用,即重力、推力F 、物体A 对B 的支持力和物体A 对B 的摩擦力. 3、如图3所示,物体A 、B 、C 叠放在水平桌面上,水平力F 作用于C 物体,使A 、 B 、 C 以共同速度向右匀速运动,那么关于物体受几个力的说法正确的是 ( A ) A .A 受6个, B 受2个, C 受4个 B .A 受5个,B 受3个,C 受3个 C .A 受5个,B 受2个,C 受4个 D .A 受6个,B 受3个,C 受4个 4、如图4所示,在水平力F 作用下,A 、B 保持静止.若A 与B 的接触面是水平的,且F≠0.则关于B 的受力个数可能为( ) A.3个 B.4个 C.5个 D.6个 解析:对于B 物体,一定受到的力有重力、斜面支持力、A 的压力和A 对B 的摩擦力,若以整体 为研究对象,当F 较大或较小时,斜面对B 有摩擦力,当F 大小适当时,斜面对B 的摩擦力为零,故B 可能受4个力,也可能受5个力.答案:BC 5、如右图5所示,斜面小车M 静止在光滑水平面上,一边紧贴墙壁.若再在斜面上加一物体m ,且M 、m 相对静止,小车后来受力个数为( B ) A .3 B .4 C .5 D .6 解析: 对M 和m 整体,它们必受到重力和地面支持力.对小车因小车静止,由平衡条件知墙面对小车必无作用力,以小车为研究对象.如右图所示,它受四个力;重力M g ,地面的支持力F N1,m 对它的压力F N2和静摩擦力Ff ,由于m 静止,可知F f 和F N2的合力必竖直向下,故B 项正确. 6、如图6所示,固定斜面上有一光滑小球,有一竖直轻弹簧P 与一平行斜面的轻弹簧Q 连接着, 小球处于静止状态,则关于小球所受力的个数不可能的是 ( A ) A .1 B .2 C .3 D .4 7、如图7所示,在竖直向上的恒力F 作用下,物体A 、B 一起向上做匀加速运动。在运动过程 中,物体A 保持和墙面接触,物体B 紧贴在A 的下表面,A 和B 相对静止,则下列说法正确的是( CD ) A.竖直墙面对物体A 有摩擦力的作用 B.如果物体运动的加速度较小,则物体A 、B 间可以没有摩擦力作用 图 1 图 2 图 3 图 4 图 5 图 6 图7

Stewart平台雅可比矩阵分析

Stewart平台雅可比矩阵分析 赵慧[1]张尚盈[2] [1]武汉科技大学机械自动化学院 430081 Email: [2]华中科技大学数字制造及设备技术国家重点实验室 430074 Email: 摘要:雅可比矩阵是对Stewart平台进行分析时的重要变量,通过对其的分析和计算,可以得到平台速度和液压缸速度之间的关系,得到平台承载与各液压缸出力之间的关系,可以判断液压缸的可控性,可以得到各自由度之间的运动耦合情况。因此,导出雅可比矩阵,并对其物理意义进行诠释和深刻理解非常重要。本文通过Stewart平台的运动学分析,推导出雅可比矩阵的公式,并通过仿真结果对其物理意义进行验证。 关键词:Stewart平台,运动学分析,雅可比矩阵 1 引言 随着科技的发展以及人们对未知世界探索的需求,Stewart平台在飞行模拟器、空中交会对接(RVD)仿真技术[1]、虚拟轴机床、力-扭矩传感器、装配机械手等领域有广泛的应用。其中液压驱动Stewart平台由于具有快速、高精度、大负载和结构紧凑等特点而受到青睐 [2]。 Stewart平台是一个典型的多变量和本质非线性的复杂系统。对Stewart平台运动学和动力学进行研究,是设计、分析和控制Stewart平台的基础。雅可比矩阵是在对Stewart平台进行运动学动力学分析过程中产生和定义的矩阵,具有重要的物理意义,本文将对其实质展开论述,并用仿真结果来验证。 2 Stewart平台描述 2.1 坐标系建立 如图1所示,Stewart平台的主体部分由上平台(Platform)、下平台(Base)以及六个液压缸组成。静止不动的下平台与可动作的上平台分别通过上、下胡克铰与液压缸的两端相连。选取体坐标系{}P— O X Y Z在上平台上,坐 p p p p

摩擦力及受力分析习题

专题一摩擦力及受力分析 【典型例题】 【例1】指明物体A在以下四种情况下所受的静摩擦力的方向. ①物体A静止于斜面上,如图5甲所示; ②物体A受到水平拉力F作用仍静止在水平面上,如图乙所示; ③物体A放在车上,在刹车过程中,A相对于车厢静止,如图丙所示; ④物体A在水平转台上,随转台一起匀速转动,如图丁所示. 【例2】传送带的运动方向如图所示,将物体无处速度放到传送带上,分析以下三种情况下所受摩擦力的情况。 【例3】2010·安徽高考)L型木板P(上表面光滑)放在固定斜面上,轻质弹簧一端固定在木板上,另一端与置于木板上表面的滑块Q相连,如图所示.若P、Q一起沿斜面匀速下滑,不计空气阻力.则木板P的受力个数为( ) A.3 B.4 C.5 D.6 【例4】如图4所示,物体 A靠在竖直墙面上,在力F 的作用下,A、B保持静止.物 体A的受力个数为( ) A.2 B.3 C.4 D.5 【能力训练】 1.下列说法中不正确的是( ) A.静止的物体不可能受滑动摩擦 力 B.两物体间有摩擦力,则其间必 有弹力 C.摩擦力力的方向不一定与物体 运动方向相同,但一定在一条直线上。

D.滑动摩擦力一定是阻力,静摩擦力可以是动力,也可以是阻力。 2.用手握住一个油瓶(油瓶始终处于竖直方向,如图所示)下列说法中正确的是( ) A.当瓶中油的质量增大时,手握瓶的力必须增大 B.手握得越紧,油瓶受到的摩擦力越大 C.不论手握得多紧,油瓶受到的摩擦力总是一定的 D.摩擦力等于油瓶与油的 总重力 3.如图2所示,在μ =的水平面上向右运动的物体,质量为20 kg,在运动过程中,还受到一个水平向左大小为10 N的拉力F作用,则物体受到滑动摩擦力为(g取10 N/kg)( ) A.10 N,水平向右B.10 N,水平向左 C.20 N,水平向右D.20 N,水平向左 4.如图所示,有三个相同的物体叠放在一起,置于粗糙水平地面 上,现用水平力F作用在B 上,三个物体仍然静止,下 列说法中正确的是( ) A.A受到B摩擦力的作用 B.B受到A、C摩擦力的作用 C.B只受C摩擦力的作用 D.C只受地面摩擦力的作用 5.如图所示,物体A置 于倾斜的传送带上,它能 随传送带一起向上或向 下做匀速运动,下列关于 物体A在上述两种情况下的受力描述,正确的是( ) A.物体A随传送带一起向 上运动时,A所受的摩擦力沿 斜面向下 B.物体A随传送带一起向下运动时,A所受的摩擦力沿斜面向下 C.物体A随传送带一起向下运动时,A不受摩擦力作用 D.无论物体A随传送带一起向上还是向下运动,传送带对物体A的作用力均相同 6.如图所示,位于水平桌面上的物块P,由跨过定滑轮的轻绳与物块Q 相连,从滑轮到P和Q的两段绳都是水平的.已知Q与P之间以及P与桌面之间的动摩擦因数都是μ,两物块的质量都是m,滑轮的质量、滑轮轴上的摩擦都不计.若用一水平向右的力F拉P使它做匀速运动,则F的大小为 ( ) A.4μmg B.3μmg C.2μmg D.μmg 7.如图13所示,用水 平力F推乙物块,使甲、

6_6_SPS型Stewart并联机构运动学正解的研究

试验研究现代制造工程2008年第3期 6/6 S PS型Ste wart并联机构运动学正解的研究* 周辉,曹毅 (江南大学机械工程学院,无锡214122) 摘要:对具有半对称结构的6/6 SPS型S te w art并联机构的运动学正解进行了研究。建立了一类具有半对称结构的6/6 SPS型S te w art并联机构运动学正解的数学模型,构造了一个关于该并联机构动平台位置参数及姿态参数的多元多项式方程组。基于该方程组并采用M athe m atica符号计算软件,编制了基于M athe m atica语言的6/6 SPS型Stewa rt并联机构运动学正解的求解程序,计算结果表明,对于任意给定的该并联机构的结构参数以及六个驱动杆杆长,该类6/6 SPS型Stew art并联机构的运动学正解在复数域内最多有28组解析解。并联机构运动学正解的研究为该类并联机构的工作空间分析、轨迹规划及控制奠定了重要的理论基础。 关键词:Ste w art机构;运动学正解;符号计算;M a t he m atica软件 中图分类号:TP242.2 文献标识码:A 文章编号:1671 3133(2008)03 0001 05 D irect kinem atics anal ysis of a speci a l class of the6/6 SPS Ste w artm ani pul ators Zhou H u,i Cao Y i (School ofM echan ica lEng i n eeri n g,Jiangnan Un i v ersity,W ux i214122,Jiangsu,CHN) Abstrac t:A ddresses t he direct kinem ati cs of a spec i a l c l ass of the6/6 SPS Ste w art m ani pulators i n wh i ch the mov i ng and base p l a tfor m s are t w o si m ilar sem isymm etr i ca l hex agons.A fte r proposi ng a m athe m atica lm ode l o f the d irect k i ne m atics of t h i s special class o f t he Ste w art m an i pu lators,a m ulti v ariate po lyno m ial equati ons se t i n the m oving p l atfor m pos iti on para m eters and or i enta ti on para m eters is constructed i n wh ich i npu t para m ete rs are geo m etric para m eters and the li nk length o f each li m b of t h is special class o f the6/6 SPS S te w art m an i pu lators.Based on t h ism ultivar i ate polynom ia l equa tions se t,an a l go rith m has been deve l oped inM a t he m a tica l anguag e for so lv i ng the d i rect k i ne m atics of t h is specia l c lass o f the6/6 SP S Stew artm anipulators by utilizi ng a sy m bo li c computati on so ft w are M athem ati ca,co m puta tion results first sho w tha t t he m ax i m u m number of the co m plete analytical so l uti on to t he direct k i ne m atic prob l em of t h is spec i a l class of t he6/6 SPS Stewart m an i pulators is up t o28i n the co m plex do m ain for any g i ven set of geo m etric para m eters and si x g iven li nk leng t hs o f the man i pu l a t o r cons i dered.D irec t k i ne m atic analysis o f th i s special c lass o f t he6/6 SPS Stewart m an i pu l a tors paves under l y i ng theoretical g rounds for the wo rkspace ana l y si s,pa t h p l ann i ng and contro l o f th i s specia l c lass o f the6/6 SPS S te w art m an i pu l a tors. K ey word s:Stewart m ani pulator;D irect kinem ati cs;Symbo lic co m putation;M athem ati ca so ft w are 0 引言 S te w art平台具有承载能力强、刚度好、无积累误差、精度高、系统动态响应快等特点[1],在飞行模拟器、机器人、新型机床等领域得到广泛应用。机器人运动学正解的研究在机器人机构学的研究中具有重要的地位,特别是对并联机器人机构,运动学正解问题一直是研究的难点和热点之一。国内外诸多学者分别采用数值法、解析法等对并联机构的运动学正解问题进行深入细致的研究[2 19]。但是,不难发现这些研究均是针对具有特殊结构形式的并联机器人机构,而对具有一般结构形式的6/6 SPS型S te w art并联机构的运动学正解,仅有少数学者进行了研究。 本文对具有半对称结构的6/6 SPS型S te w art并联机构的运动学正解进行了研究。建立了一类具有半对称结构的6/6 SPS型Ste w art并联机构运动学正 1 *国家自然科学基金资助项目(50275129);江南大学博士基金资助项目(207000-21050616)

管道机器人运动学分析与变径机构仿真

MECHANICAL ENGINEER 机械工程师 管道机器人运动学分析与变径机构仿真 史继新1a,1b,刘芙蓉1a,1b,胡啸2,袁显宝1a,1b,陈保家1a,1b,李响1a,1b (1.三峡大学 a.湖北省水电机械设备设计与维护重点实验室;b.机械与动力学院,湖北宜昌443002;2.中核武汉核电运行技 术股份有限公司,武汉430223) 摘要:基于对核电站压力容器和主管道接管内部检查的需要,研发了一种多履带可变径式管道检查机器人。分析机器人四种不同的运动情况,得出机器人履带轮角速度和机器人在管道内旋转速度及行走线速度的函数,建立了机器人在管道内的运动学模型。针对机器人可变径机构,建立力学模型,得出变径机构中弹簧的理论数据,并运用Inventor运动仿真分析验证了其合理性。 关键词:管道机器人;运动学模型;变径机构;Inventor运动仿真 中图分类号:TP242.3;TH122文献标志码:粤文章编号:员园园圆原圆猿猿猿(圆园员9)04原园014原园3 Kinematics Analysis and Variable Diameter Mechanism Simulation of Pipeline Robot SHI Jixin1a,1b,LIU Furong1a,1b,HU Xiao2,YUAN Xianbao1a,1b,CHEN Baojia1a,1b,LI Xiang1a,1b (1.China Three Gorges University a.Hubei Key Laboratory of Hydroelectric Machinery Design&Maintenance;b.College of Mechanical and Power Engineering,Yichang443002,China;2.China Nuclear Power Operation Technology Co.,Ltd.,Wuhan430223,China) Abstract院Based on the need for internal inspection of nuclear power plant pressure vessels and main pipelines,a multi-track variable-diameter pipeline inspection robot is developed.The four different motions of the robot are analyzed,and the angular velocity of the robot crawler wheel and the rotation speed of the robot in the pipeline and the traveling linear velocity are obtained.The kinematics model of the robot in the pipeline is established.For the robot variable diameter mechanism,the mechanical model is established,the theoretical data of the spring in the variable diameter mechanism is calculated,and the rationality is verified by Inventor motion simulation analysis. Keywords:pipeline robot;kinematics model;variable diameter mechanism;Inventor motion simulation 0引言 随着核电厂运行时间的增加,各种规格管道内表面可能会出现一些问题需要实施检查与维修。因这些部位处于强辐射区,人员无法直接实施这些工作,必须开发具有行走功能的管道机器人携带摄像头完成核电厂管道检查工作。目前,发达国家对于管道机器人的研究处于领先地位[1]:德国ECA公司研制出一系列管道爬行机器人,在满足多尺寸规格管道的前提下,能搭载多种检测工具,其检查的管道范围从150耀2000mm;日本东京工业大学研制出Thes系列管道机器人[2];韩国汉城汉阳大学研制出双模块协作管道检测机器人[3]。中国在管道检查机器人领域起步较晚,北京德朗检视科技有限公司研发的DNC100、DNC150等管道爬行器,已在核电领域中得到运用;东华大学研制除了自主变位履带足管道机器人[4];上海交通大学针对煤气管道的检测,研制出煤气管道检测机器人样机[5]。 针对目前国内外传统机器人在面对垂直、微小、复杂管时,存在通行性能差、稳定性弱、牵引力不足等缺点。本项目所研制的多履带可变径式管道检查机器人,在机器人的机械结构、移动方式等方面做出改进,能适应150耀160mm管径的管道内部运动,分析了其管道内部运动的运动学模型和变径机构的力学模型,并针对变径机构进行了仿真分析,验证设计的合理性。 1管道检查机器人整体结构设计 为了满足核电厂管道内部检查的需要,机器人必须具备三项基本能力:1)机器人的速度调节能力;2)机器人的转向能力;3) 析, 构设计,如图1 道机器人具有三组履带轮, 很好的夹紧力。 立的电动机控制, 每组履带轮的独立运动, 节不同电动机的转速来使机器人顺利通过弯管。履带轮和主体之间的连杆机构配上弹簧的特性使机器人具有很好的管道适应能力,可以适应150耀160mm管道直径的运动。2运动学分析 机器人每组履带轮的角速度决定机器人整体的运动情况,因此本节根据机器人履带轮角速度和机器人整体运动情况的函数关系建立运动学模型。该模型的坐标系、关节变量和参数如图2所示。XY Z表示全局坐标参考系,并且xyz表示附接到管线检查机器人的中心的局部坐标系;i、j 和k是局部坐标系的单位矢量。无论机器人如何移动,x轴 图1管道机器人 三维模型 1.履带轮组 2.变径机构 3.主体 3 2 1 基金项目:国家自然科学基金(11805112);湖北省教育厅 科学技术研究计划重点项目(D2*******);湖北省水电机械 设备设计与维护重点实验室开放基金项目(2016KJX15、 2017KJX04) 14 圆园员9年第4期网址:https://www.wendangku.net/doc/c52508211.html,电邮:hrbengineer@https://www.wendangku.net/doc/c52508211.html,

物体受力分析难点突破

物体受力分析难点突破 一、难点突破策略: 物体的受力情况决定了物体的运动状态,正确分析物体的受力,是研究力学问题的关键。受力分析就是分析物体受到周围其它物体的作用。为了保证分析结果正确,应从以下几个方面突破难点。 1.受力分析的依据:各种性质力的产生条件及各力方向的特点 2.受力分析的方法:整体法和隔离法 3.受力分析的步骤 : 为了在受力分析时不多分析力,也不漏力,一般情况下按下面的步骤进行: (1)确定研究对象 —可以是某个物体也可以是整体。 (2)按顺序画力 a .先画重力:作用点画在物体的重心,方向竖直向下。 b .次画已知力 c .再画接触力—(弹力和摩擦力):看研究对象跟周围其他物体有几个接触点(面),先对某个接触点(面)分析,若有挤压,则画出弹力,若还有相对运动或相对运动的趋势,则再画出摩擦力。分析完一个接触点(面)后,再依次分析其他的接触点(面)。 d .再画其他场力:看是否有电、磁场力作用,如有则画出。 (3)验证: a .每一个力都应找到对应的施力物体 b.受的力应与物体的运动状态对应。 说明: (1)只分析研究对象受的根据性质命名的实际力(如:重力、弹力、摩擦力等),不画它对别的物体的作用力。 (2)合力和分力不能同时作为物体所受的力。 (3)每一个力都应找到施力物体,防止“漏力”和“添力”。 (4)可看成质点的物体,力的作用点可画在重心上,对有转动效果的物体,则力应画在实际位置上。 (5)为了使问题简化,常忽略某些次要的力。如物体速度不大时的空气阻力、物体在空气中所受的浮力等。 (6)分析物体受力时,除了考虑它与周围物体的作用外,还要考虑物体的运动情况(平衡状态、加速或减速),当物体的运动情况不同时,其情况也不同。 整体法 隔离法 概念 将几个物体作为一个整体来分析的 方法 将研究对象与周围物体分隔开的方法 选用原则 研究系统外的物体对系统整体的作 用力 研究系统内物体之间的相互作用力 注意问题 分析整体周围其他物体对整体的作 用。而不画整体内部物体间的相互作 用。 分析它受到周围其他物体对它的 作用力

机构运动学分析-作业题

第五章 机构运动学分析 本章学习任务:基于速度瞬心法的机构速度分析,基于矢量方程图解法的平面机构运动分析,基于解析法的平面机构运动分析。 驱动项目的任务安排:项目中机构的运动分析,采用 Matlab 编程计算。 思考题 5-1 瞬心法用于机构运动分析有什么优缺点? 5-2 为什么速度影像法和加速度影像法只能用来分析同一构件上各点之间的速度和加速度关系,而不能用来分析不同构件上各点之间的速度和加速度关系? 5-3 什么情况下才会有哥氏加速度存在?其大小如何计算?方向又如何确定? 5-4 为什么说用解析法进行机构分析时,关键是位移分析? 习题 5 -1 题图 5-1 所求为摆动从动件盘形凸轮机构,凸轮为一偏心圆盘,其半径 r = 30 mm ,偏距 e = 10 mm , l AB = 90 mm , l BC = 30 mm , 1 = 20 rad/s ,试求 2 , v C 。 题图 5-1 题图 5-2 5-2 题图 5-2 所示机构中,设已知机构的尺寸及原动件以1 等速回转,试求:从动件 M 的线速度。 5 -3 题图 5-3 所示机构的位置,已知构件尺寸,原动件 AB 以等角速度逆时针方向转动,试求:(1) 在图上标出全部速度瞬心 P 12 , P 23 , P 34 , P 14 , P 13 ,和 P 24 ,并指出其中的绝对瞬心。(2)用矢量方程图解法以自定比例尺作出机构的速度图和加速度图,求构件 3 的角速度和角加速度。 E r B 2 1 A O 3 e 1 C C M 4 3 B 2 E D | 1? 1 A

1 F 3 2 B 1 O O ' A | 1? 1 2 4 B 3 4 C (a ) (b ) 题图 5-3 题图 5-4 5-4 找出题图 5-4 机构在图示位置时的所有瞬心。 5 - 题图 5-5 是一个对心直动滚子从动件盘形凸轮机构,凸轮为原动件,图示位置时凸轮在与滚子接 触点 B 的曲率中心在点 O ' 。试对机构进行高副低代,并确定机构的级别,验证替代前后机构的自由度、凸轮 1 与从动件 2 之间的速度瞬心都没有发生变化。 题 图 5-5 题 图 5-6 5 -6 如题图5-6 所示,已知凸轮1 的角速度 = 20 rad/s ,半径 R = 50 mm , ∠ACB = 60ο , ∠CAO = 90ο , 试用瞬心法及矢量方程图解法求出构件 2 的角速度 2 。 5 -7 如题图 5-7 所示机构尺寸: l AC = l BC = l CE = l CD = l DF = l EF = 20 mm ,两滑块以匀速且 v 1 = v 2 = 0.002 m/s 作反方向移动,求图示位置(= 45ο )时的速度之比 v / v 的大小。 1 | 1í | 2í 题图 5-7 题图 5-8 5-8 如题图 5-8 所示的齿轮连杆机构中,三齿轮的节圆分别切于点 E 和 F ,试用矢量方程图解法求齿轮 2、3 的角速度 2 、 3 和构件 4、5 的角速度 4 、 5 。 5 -9 如题图 5-9 机构所示,已知滚轮 2 在地面上作纯滚动,构件 3 以已知速度 v 3 向左移动,试用瞬心 2 1 3 4 2 n 1 3 n C 2 B 1 O A 1 1 A D 3 6 | è C | c í F | íF 7 4 E 5 B 2 P 35 2 C 4 F 3 D E B 5 1 1 A 6

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

运动学、动力学知识要点

《直线运动》知识要点 一、基本概念:时间、位移、速度、加速度 位移x ?——路程l 速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t v a ??=??,物理意义 二、基本模型 质点 匀速直线运动 匀变速直线运动(自由落体运动、竖直抛体运动) 三、基本规律(模型草图) 1.匀速直线运动:vt x = 2.匀变速直线运动: at v v ±=0,202 1at t v x ±=,ax v v 2202±=-,220 t v v v v =+=,2aT x =? 3.t v -图象、t x -图象(点、线、面积、斜率、截距) 四、基本方法(过程草图) 比例法——相等时间、相等位移 逆向运动法——末速度为零的匀减速运动,其它 对称法——往返运动(竖直上抛运动) 平均速度法 逐差法 图象法 五、基本实验 打点计时器 纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法) 六、难点题型 1.刹车问题——刹车时间 2.追击、相遇问题(草图、图象) (1)相遇问题——同一时刻、同一地点 (2)追击问题——关键:速度相等; 分析:速度相等前后; 结果:相距最近、最远,或能否追上。 *3.相对运动:相对参考系绝对v v v ???+= 七、易错点汇集 1.纸带处理:2naT x x m n m =-+,21234569)()(T x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向) 3.图象问题:用图象解决追击相遇问题 4.答题技巧:抓关键词,统一单位,字母区别 画过程草图,灵活选取公式——平均速度法

机械系统动力学作业---平面二自由度机械臂运动学分析

机械系统动力学作业---平面二自由度机械臂运动学分 析 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度机械臂动力学拉格朗日方程 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

高中物理难题汇编-受力分析

【例1】 A 、B 、C 三物块的质量分别为M ,m 和 0m ,作如图所示的连接.绳 子不可伸长,且绳子和滑轮的质量、滑轮的摩擦均可不计.若B 随A 一起沿水平桌面做匀速运动,则可以断定( ) A .物块A 与桌面之间有摩擦力,大小为0m g B .物块A 与B 之间有摩擦力,大小为0m g C .桌面对A ,B 对A ,都有摩擦力,两者方向相同,合力为0m g D .桌面对A ,B 对A ,都有摩擦力,两者方向相反,合力为0m g 【例2】 如图所示,在粗糙水平面上放一质量为M 、倾角为θ的斜面,质量为m 的 木块在竖直向上的力F 作用下,沿斜面匀速下滑,此过程中斜面保持静止,则地面对斜面( ) A .无摩擦力 B .有水平向左的摩擦力 C .支持力为 ()M m g + D .支持力小于()M m g + 【例3】 如图所示,质量为m ,横截面为直角三角形的物块ABC , ABC α∠=.AB 边靠 在竖直墙面上,F 是垂直于斜面BC 的推力.现物块静止不动,则摩擦力的大小为 . 【例4】 如图所示,质量为m 的物体放在水平放置的钢板C 上,物体与钢板的动摩擦 因数为μ,由于光滑导槽AB 的控制,该物体只能沿水平导槽运动,现使钢板以速度v 向右运动,同时用力F 沿导槽方向拉动物体使其以速度1v 沿槽运动,则F 的大小( ) A .等于mg μ B .大于mg μ C .小于mg μ D .不能确定 【例5】 如图所示,用三根轻绳将质量均为m 的A 、B 两小球以及水平天花板上的固 定点O 之间两两连接.然后用一水平方向的力F 作用于A 球上,此时三根轻绳均处于直线状态,且OB 绳恰好处于竖直方向,两球均处于静止状态.三根轻绳的长度之比为::3:4:5OA AB OB =.则下列说法正确的是( ) A .O B 绳中的拉力小于mg B .OA 绳中的拉力大小为53 mg C .拉力F 大小为45mg D .拉力F 大小为43mg

机器人机械臂运动学分析(仅供借鉴)

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

初中科学受力分析难题

11/25练习 受力分析专题 在水平面上.物徉人』叠放在一起保持静止*其中A受對水平向右的拉力F,=3N的作用,如图1-5(&)所示;若在物体A岀的下面再叠加一令物体U便物休A、B、C保持静止,其申物休B受到水平向右的爛子的拉力r=6N的作用,物体C覺到水平向左的拉力F£= I5N的惟用.如图15(b)所示.G.1=10N,G tl= 20N t Gc = 30N i □)请求岀图l-S(a)中地面对物体B的支持力和摩擦力大小. f 却诸求出图卜旅"屮地面对物体C的支持力和肆擦力大小* 阳1-5 如图1-7所^t G A=20N#G te = 5N,F=120N,^物休A.B处于静止状埶则墙堕対代 物休的支持力是( );墙娥对A物体的摩擦力是f K A+2QN B.為N Q 120N D. U5N 如图1占所示.物体和「喬放在水平桌面上?水平拉力几FN店=WN「分别作用于物怵HHA屮和C仍怩持靜止■以和人分别農示A -U 与C、(?与桌曲的静睜擦力的大小.则( )D A. /i-SN^a-Ot/^SN —5N/=5N/ = O UfLO丿严金/ = 5N D* 爲=Q/i = 10N/i = 5N 來平臬面土有一杯子再杯中盛有适量水.有一个靈为1. 6N的小球 漂浮于水中保持静止?如图1-1竈叮所示*现用一根轻绳将小球吊起, 而小球依然部分浸在水中"呆持静止,如图M3(b)所示。已知杯子自重 2N. 水重5N*绳子的拉力等于0. 6N.求两种清况下桌面对杯子的支持力. 7>>fi N F a-15N m 1-; (b) 图1-13

如图1?15所示?完全相同的甲、乙两个容器中分别装有相同质最的水,甲容器中用力F向F 压一个木块?乙容器中用一根体积不计的细线拴住一个相同的木块?使两个木块浸入水中的葆度相同?则水平面对甲容器的支持力F甲和水平面对乙容器的支持力F乙的大小关系是& F乙(选填“〉或“V”)。 如图1-18所示,站在小车上的人用大小为20N的力拉绳子,使自、—------------- 己和小车一起在水平面上做匀速运动,不考虑绳堕、滑轮重以及轮轴之丄门5 I 间的糜擦?则墙壁对滑轮的拉力大小是__________ N;小车受到地面对它 -------- —51 的摩擦力大小是________ N. 图卜18建筑T?人用如图1-24所示的装置提起四块砖?设每块砖重为G,当砖被提起后处于静止时?B 破左右两面受到的摩擦力是(). A.左右?两而分别受到大小为0. 5G的向上的摩擦力 B左面受到向上的大小为G的摩擦力.右面受到的摩擦力为零 C.左面受到向上的大小为2G的摩擦力?右面受到向下的大小为G的斥 擦力 D?左面受到向上的大小为G的摩擦力,右面受到向下的大小为2G的 斥擦力 (多选)如图1-25所示?质嫌为M的木块B中间有…个竖直的槽, 槽 内夹有一个质秋为加的木块A?用一个竖直向上的力F拉木块A?使木块 A在槽内匀速上升?木块A和槽接触的两个面受到的滑动縻擦力均为/?在 上升时,木块B始终静止。此过程中,地面对木块B的文持力大小为( )。 A. Mg_F B. Mx+”皿一F C. Mg —2f D. + — 如图1-27所示?A、B、C、D四个体积相同?密度不同的小球放在盛有水的相同容器中保持协止?D球沉在容器底部,此时四个容器中的水的质曲相同?则关于囚个容器对水平面的压力大小 F M F2.F3.F<的关系正确的是()。 A. F1=F2 = F3 = F< C. F I VEVF J VE 图1-27 B. F产F L F J VF. D. F I>F:>F3>F4 甲乙 图1-15 图1-24 图1- 25

相关文档