文档库 最新最全的文档下载
当前位置:文档库 › 二项式定理的练习及答案

二项式定理的练习及答案

二项式定理的练习及答案
二项式定理的练习及答案

二项式定理的练习及答案

基础知识训练

(一)选择题

1.6)x

2x (+

展开式中常数项是( )

A.第4项

B.464C 2

C.4

6C D.2

2.(x -1)11

展开式中x 的偶次项系数之和是( ) A.-2048 B.-1023 C.-1024 D.1024 3.7)21(+展开式中有理项的项数是( ) A.4 B.5 C.6 D.7

4.若n

17C 与m

n C 同时有最大值,则m 等于( )

A.4或5

B.5或6

C.3或4

D.5

5.设(2x-3)4

=44332210x a x a x a x a a ++++,则a 0+a 1+a 2+a 3的值为( )

A.1

B.16

C.-15

D.15

6.11

3)x

1x (-

展开式中的中间两项为( ) A.5125121111,C x C x - B.695101111,C x C x - C.513591111,C x C x - D.517513

1111,C x C x -

(二)填空题

7.在7)y 3

1x 2(-展开式中,x 5y 2

的系数是

8.=++++n

n n 2n 21n 0n C 3C 3C 3C 9. 20

3)5

15(+

的展开式中的有理项是展开式的第项 10.(2x-1)5

展开式中各项系数绝对值之和是

11.10

32)x x 3x 31(+++展开式中系数最大的项是

12.0.9915

精确到0.01的近似值是 (三)解答题

13.求(1+x+x 2)(1-x)10展开式中x 4

的系数

14.求(1+x)+(1+x)2+…+(1+x)10展开式中x 3

的系数

15.已知(1-2x)5

展开式中第2项大于第1项而不小于第3,求x 的取值范围

16.若)N n m ()x 1()x 1()x (f n m ∈?+++=展开式中,x 的系数为21,问m 、n 为何值时,x 2

的系数最小?

17.自然数n 为偶数时,求证:

1

n n n 1n n 4n 3n 2n 1n 2

3C C 2C C 2C C 21--?=+++++++

18.求11

80被9除的余数

19.已知n

2

)x 2x (-的展开式中,第五项与第三项的二项式系数之比为14;3,求展开式的常数项

20.在(x 2+3x+2)5

的展开式中,求x 的系数

21.求(2x+1)12

展开式中系数最大的项

参考解答:

1.通项r r 2

36r 6

r

r

6r

6

1r 2x

C )x

2(

x C T --+==,由4r 0r 236=?=-,常数项是4

4652C T =,

选(B )

2.设f(x)=(x-1)11

, 偶次项系数之和是

10242/)2(2

)

1(f )1(f 11-=-=-+,选(C )

3.通项2

r r

7r r 71r 2C )2(C T ==+,当r=0,2,4,6时,均为有理项,故有理项的项数为4

个,选(A )

4.要使n

17C 最大,因为17为奇数,则2117n -=

或8n 2

1

17n =?+=

或n=9,若n=8,要使m 8C 最大,则m=28=4,若n=9,要使m

9C 最大,则219m -=或4m 2

19m =?+=

或m=5,综上知,m=4或m=5,故选(A ) 5.C6.C 7.

3

224; 8.4n

; 9.3,9,15,21 10.(2x-1)5

展开式中各项系数系数绝对值之和实为(2x+1)5

展开式系数之和,故令x=1,则

所求和为35

11.(1+3x+3x 2

+x 3)10

=(1+x)30

,此题中的系数就是二项式系数,系数最大的项是T 16=15

1530x C .

12.0.9915

=(1-0.009)5

=96.0009.0C C 1505≈+-

13.9310

2)x 1)(x 1()

x 1)(x x 1(--=-++,要得到含x 4的项,必须第一个因式中的1与

(1-x)9

展开式中的项449)x (C -作积,第一个因式中的-x 3

与(1-x)9

展开式中的项)x (C 19-作

积,故x 4

的系数是135C C 4

919=+

14.)

x 1(1])x 1(1)[x 1(x 1)x 1()x 1(1010

2

+-+-+=

+++++)( =x x x )1()1(11+-+,原式中x 3实为这分子中的x 4

,则所求系数为7

C

15.由101410

4

1101)2()2()2(2

251505

1

5

-<≤-????????

≤≤---x x x x C x C C x C 16.由条件得m+n=21,x 2

的项为2

2n 22m x C x C +,则.4

399

)221n (C C 22n 2m +-

=+因n ∈N ,故当n=10或11时上式有最小值,也就是m=11和n=10,或m=10和n=11时,x 2

的系数最小

17.原式=1

n 1n n 1n n 5n 3n 1n n n 1n n 2n 1n 0n 2.322)C C C C ()C C C C C (----=+=++++++++++ 18. )(1811818181)181(80101110111110111111Z k k C C C ∈-=-++-=-= ,

∵k ∈Z,∴9k-1∈Z ,∴1181被9除余8

19.依题意2n 4n 2n 4n C 14C 33:14C :C =?=

∴3n(n-1)(n-2)(n-3)/4!=4n(n-1)/2!?n=10

设第r+1项为常数项,又 2

r 510r 10r r 2r

10r

10

1r x C )2()x

2()x (C T --+-=-=

2r 02

r 510=?=-,.180)2(C T 22

1012=-=∴+此所求常数项为180 20.5

552)2x ()1x ()2x 3x (++=++

在(x+1)5

展开式中,常数项为1,含x 的项为x 5C 15=,

在(2+x)5

展开式中,常数项为25

=32,含x 的项为x 80x 2C 415=

∴展开式中含x 的项为 x 240)32(x 5)x 80(1=+?,此展开式中x 的系数为240

21.设T r+1的系数最大,则T r+1的系数不小于T r 与T r+2的系数,即有

???≥≥? ??≥≥+--+----1r 12r 12

1r 12r 12r 111r 12r 12r 12r

131r 12r 12r 12C C 2C 2C 12C 2C 2

C 2C ?4r ,3

14r 31

3=∴≤≤

∴展开式中系数最大项为第5项,T 5=444

12x 7920x C 16=

三.拓展性例题分析

例1在二项式n

x x ??? ?

?

+4

21的展开式中,前三项的系数成等差数列,求展开式中所有有理

项.

分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.

解:二项式的展开式的通项公式为:

4

324

121C 21)(C r

n r r n r

r n r n r x x x T --+=??

? ??=

前三项的.2,1,0=r

得系数为:)1(8

141C ,2121C ,1231

21-=====n n t n t t n n

, 由已知:)1(8

1

12312-+=+=n n n t t t ,

∴8=n 通项公式为

14

3168

1,82,1,02

1

C +-+==r r r r r T r x

T 为有理项,故r 316-是4的倍数,

∴.8,4,0=r

依次得到有理项为22

888944

8

541256

121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有17页

系数和为n 3.

例2(1)求10

3

)1()1(x x +-展开式中5

x 的系数;(2)求6)21

(++

x

x 展开式中的常数项.

分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.

解:(1)103)1()1(x x +-展开式中的5

x 可以看成下列几种方式得到,然后合并同类项:

用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5

x 项,可以得到5

510C x ;用

3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到5

4104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =?;用3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到5

21022103C C 3x x x -=?-,合并同类项得5x 项为:

552

1031041051063)C C 3C C (x x -=-+-.

(2)2

121????

??+=++x x x x 12

51)21(????

?

?+=++x x x x . 由12

1?

??? ??+x x 展开式的通项公式r

r r

r r r x x T --+=??

? ??=61212121C 1)2(C ,可得展开式的常数项为924C 6

12=.

说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.

例3求62)1(x x -+展开式中5x 的系数.

分析:6

2)1(x x -+不是二项式,我们可以通过2

2

)1(1x x x x -+=-+或)(12

x x -+把它看成二项式展开.

解:方法一:[]

6

262)1()1(x x x x -+=-+

-+++-+=44256)1(15)1(6)1(x x x x x

其中含5x 的项为5

5145355566C 15C 6C x x x x =+-.

含5x 项的系数为6.

方法二:[]

6

262)(1)1(x x x x -+=-+

62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=

其中含5

x 的项为5

55566)4(15)3(20x x x x =+-+-. ∴5

x 项的系数为6.

方法3:本题还可通过把6

2)1(x x -+看成6个2

1x x -+相乘,每个因式各取一项相乘

可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到5

56C x .

3个因式中取x ,一个取2x -,两个取1得到)(C C 2

31336x x -??. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -??. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.

例4求证:(1)1212C C 2C -?=+++n n n n n n n ; (2))12(1

1C 11C 31C 21C 1210-+=+++++

+n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证

明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质

n

n n n n n 2C C C C 210=++++ .

解:(1)1

1C )!

()!1()!1()!()!1(!)!(!!C --=+--?=--=-?

=k n k

n n k n k n n k n k n k n k n k k

∴左边1

11101C C C ----+++=n n n n n n n

=?=+++=-----11111012

)C C C (n n n n n n n 右边. (2)

)!

()!1(!

)!(!!11C 11k n k n k n k n k k k n

--=-?+=+ 11C 1

1)!()!1()!1(11+++=-++?+=

k n n k n k n n . ∴左边1

12111C 11C 11C 11++++++++++=

n n n n n n n =-+=++++=+++++)12(1

1)C C (C 11111

2111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质

求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:

例5:求10C 2C 2C 2C 22

108107910810109+++++ 的结果.

仔细观察可以发现该组合数的式与10

)21(+的展开式接近,但要注意:

10

101099102210110010102C 2C 2C 2C C )21(?+?++?+?+=+ 10101091092102C 2C 2C 21021++++?+= )C 2C 2C 210(21101099108210+++++= 从而可以得到:)13(2

1C 2C 2C 21010

101099108210-=

++++ .

例6利用二项式定理证明:98322--+n n 是64的倍数.

分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.

解:∵98322--+n n

98)18(98911--+=--=++n n n n

9818C 8C 8C 81211111--+?+?++?+=+-+++n n

n n n n n n 981)1(88C 8C 8211111--+++?++?+=-+++n n n n n n n 2111118C 8C 8?++?+=-+++n n n n n

64)C 8C 8(112111?++?+=-+-++n n n n n 是64的倍数.

说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.

例7 展开5

2232??? ?

?

-x x .

分析1:用二项式定理展开式.

解法1:5

2232??? ?

?

-x x

2

232

524150

250523)2(23)2(23)2(??

? ??-+??? ??-+??? ??-=x x C x x C x x C

5

2554

2453

22352323)2(23)2(??

? ??-+??? ??-+??? ??-+x C x x C x x C

10

742532243

840513518012032x x x x x x -+-+

-= 分析2:对较繁杂的式子,先化简再用二项式定理展开.

解法2:10

535

232)34(232x x x x -=??? ?

?

- 233254315530510

)3()4()3()4()4([321-+-+=

x C x C x C x

])3()3()4()3()4(5554134532335-+-+-+C x C x C

)243716204320576038401024(3213

69121510

-+-+-=

x x x x x x

10742532243

840513518012032x x x x x x -+-+-=.

说明:记准、记熟二项式n b a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.

例8 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.

解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即

∑=-?+=++=++10

0101010

10

)(])[()(k k k k z y x C z y x z y x .

这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k

y x -+10)

(展开,

不同的乘积k k k z y x C ?+-1010)((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k k k z y x C ?+-1010)((10,,1,0 =k )

. 其中每一个乘积展开后的项数由k

y x -+10)

(决定,

而且各项中x 和y 的指数都不相同,也不会出现同类项. 故原式展开后的总项数为66191011=++++ , ∴应选D .

例9 若n

x x ??

?

??-+21的展开式的常数项为20-,求n .

分析:题中0≠x ,当0>x 时,把三项式n

x x ?

?

?

??-+21转化为

n

n

x x x x 2121??? ??-=??? ??-+;当0

n n

x x x x 21)1(21??? ?

?----=???

??-+.

然后写出通项,令含x 的幂指数为零,进而解出n .

解:当0>x 时n

n x x x x 2121??

? ??

-

=??? ??-+,其通项为 r

n r n r r r

n r n r x C x

x C T 222221)

()1()1()

(--+-=-=, 令022=-r n ,得r n =,

∴展开式的常数项为n

n n C 2)1(-;

当0

n n x x x x 21)1(21??? ?

?----=???

??-+,

同理可得,展开式的常数项为n

n n C 2)1(-. 无论哪一种情况,常数项均为n n n C 2)1(-.

令20)1(2-=-n

n n C ,以 ,3,2,1=n ,逐个代入,得

3=n .

二项式定理高考题(带答案)

年全国卷Ⅲ理】的展开式中的系数为 A. 10 B. 20 C. 40 D. 80 【答案】C 【解析】分析:写出,然后可得结果 详解:由题可得,令,则,所以 故选C. 2.【2018年浙江卷】二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为, % 令得,故所求的常数项为 3.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】 决问题的关键. 4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为() A. 2 B. C. D.

【答案】B 5.【安徽省宿州市2018届三模】的展开式中项的系数为 __________. ' 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解: 的展开式为: ,当 ,时,,当 , 时,,据 此可得:展开式中项的系数为 . 6.【2017课标1,理6】621 (1)(1)x x + +展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】 试题分析:因为666 22 11(1)(1)1(1)(1)x x x x x + +=?++?+,则6(1)x +展开式中含2x 的项为2226115C x x ?=,621(1)x x ?+展开式中含2x 的项为44 262115C x x x ?=,故2x 前系数为 151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.【2017课标3,理4】()()5 2x y x y +-的展开式中x 3y 3的系数为 ¥ A .80- B .40- C .40 D .80 【答案】C

二项式定理 练习题 求展开式系数的常见类型

二项式定理 1.在()103x -的展开式中,6 x 的系数为 . 2.10()x -的展开式中64x y 项的系数是 . 3.92)21(x x -展开式中9x 的系数是 . 4.8)1(x x - 展开式中5x 的系数为 。 5.843)1()2 (x x x x ++-的展开式中整理后的常数项等于 . 6.在65 )1()1(x x ---的展开式中,含3x 的项的系数是 . 7.在x (1+x )6的展开式中,含x 3项的系数为 . 8.()()8 11x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。 10.54)1()1(-+x x 的展开式中,4x 的系数为 . 11.在6 2)1(x x -+的展开式中5x 的系数为 . 12.5)212(++x x 的展开式中整理后的常数项为 . 13.求(x 2+3x -4)4的展开式中x 的系数.

14.(x 2+x +y )5的展开式中,x 5y 2的系数为 . 15.若 32()n x x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 . 16.已知(124 x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数. 17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________. 18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________. 19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.

二项式定理历年高考试题荟萃

圆梦教育中心二项式定理历年高考试题 一、填空题( 本大题共24 题, 共计120 分) 1、(1+2x)5的展开式中x2的系数是。(用数字作答) 2、的展开式中的第5项为常数项,那么正整数的值是. 3、已知,则(的值等于。 4、(1+2x2)(1+)8的展开式中常数项为。(用数字作答) 5、展开式中含的整数次幂的项的系数之和为。(用数字作答) 6、(1+2x2)(x-)8的展开式中常数项为。(用数字作答) 7、的二项展开式中常数项是。(用数字作答). 8、(x2+)6的展开式中常数项是。(用数字作答) < 9、若的二项展开式中的系数为,则。(用数字作答) 10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等于。 11、(x+)9展开式中x3的系数是。(用数字作答) 12、若展开式的各项系数之和为32,则n= 。其展开式中的常数项为。(用数字作答)

13、的展开式中的系数为。(用数字作答) 14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5= 。 15、(1+2x)3(1-x)4展开式中x2的系数为. 16、的展开式中常数项为; 各项系数之和为.(用数字作答) 17、(x)5的二项展开式中x2的系数是____________.(用数字作答) 18、(1+x3)(x+)6展开式中的常数项为_____________. < 19、若x>0,则(2+)(2-)-4(x-)=______________. 20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________. 21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n=. 22、(x+)5的二项展开式中x3的系数为_____________.(用数字作答) 23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________. 24、展开式中x的系数为.

(完整word)高中数学二项式定理练习题

选修2-3 1.3.1 二项式定理 一、选择题 1.二项式(a +b )2n 的展开式的项数是( ) A .2n B .2n +1 C .2n -1 D .2(n +1) 2.(x -y )n 的二项展开式中,第r 项的系数是( ) A .C r n B . C r +1n C .C r -1n D .(-1)r -1C r -1n 3.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610 B .27 C 410 C .-9C 610 D .9C 410 4.(2010·全国Ⅰ理,5)(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 5.在? ?? ??2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3 B .5 C .8 D .10 6.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297 D .207 7.(2009·北京)在? ?? ??x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6 8.(2010·陕西理,4)(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于 ( ) A .-1 B.12 C .1 D .2

9.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是 ( ) A.112<x <15 B.16<x <15 C.112<x <23 D.16<x <25 10.在? ????32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项 二、填空题 11.(1+x +x 2)·(1-x )10的展开式中,x 5的系数为____________. 12.(1+x )2(1-x )5的展开式中x 3的系数为________. 13.若? ?? ??x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 14.(2010·辽宁理,13)(1+x +x 2)(x -1x )6的展开式中的常数项为________. 三、解答题 15.求二项式(a +2b )4的展开式. 16.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数. 17.已知在(3x -123x )n 的展开式中,第6项为常数项.

二项式定理-高考题(含答案)

二项式定理高考真题 一、选择题 1.(2012·四川高考理科·T1)相同7(1)x 的展开式中2x 的系数是( D ) (A )42(B )35(C )28(D )21 2.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B ) (A )80 (B )40 (C )20 (D )10 3.(2012·天津高考理科·T5)在5 212x x 的二项展开式中,x 的系数为( D ) (A)10 (B)-10 (C)40 (D)-40 4.(2011.天津高考理科.T5)在62() 2x x 的二项展开式中,2x 的系数为( C ) (A )15 4(B )15 4(C )3 8(D )3 8 5.(2012·重庆高考理科·T4)8 21x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x 的展开式中3x 的系数为( A ) (A)270 (B)90 (C)90 (D)270 7. (2013·大纲版全国卷高考理科·T7)8411+x y 的展开式中22x y 的系数是( D ) A.56 B.84 C.112 D.168

8.(2011·新课标全国高考理科·T8)51 2a x x x x 的展开式中各项系数的和为2,则该展开式中 常数项为( D )(A )-40 (B )-20 (C )20 (D )40 9. (2011·重庆高考理科·T4)n x)31((其中n N 且6n )的展开式中5x 与6x 的系数相等,则n ( B ) (A)6 (B) 7 (C)8 (D)910.(2011·陕西高考理科·T4)6(42)x x (x R )展开式中的常数项是(C ) (A )20(B )15(C )15 (D )20 二、填空题 11. (2013·天津高考理科·T10)61 x x 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11)181 3x x 的展开式中含15x 的项的系数为 17 . 13.(2011·全国高考理科·T13)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为 0 . 14.(2011·四川高考文科·T13)91)x (的展开式中3x 的系数是 84 (用数字作答). 15.(2011·重庆高考文科·T11)6)21(x 的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x (,则 1110a a = 0 . 17.(2011·广东高考理科·T10)72()x x x 的展开式中,4x 的系数是___84___ (用数字作答) 18.(2011·山东高考理科·T14)若62a x x 的展开式的常数项为60,则常数a 的值为 4 .

最新二项式定理练习题(含答案)

二项式定理 1 单选题 2 (x+1)4的展开式中x的系数为3 A.2 B. 4 C. 6 D.8 4 答案 5 B 6 解析 7 分析:根据题意,(x+1)4的展开式为T r+1=C 4 r x r;分析可得,r=1时,有x 8 的项,将r=1代入可得答案.9 解答:根据题意,(x+1)4的展开式为T r+1=C 4 r x r; 10 当r=1时,有T 2=C 4 1( x)1=4x; 11 故答案为:4. 12 故选B. 13 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 14 2 (x+2)6的展开式中x3的系数是 15 A.20 B.40 C.80 D. 160 16 答案 17 D 18 解析 19 分析:利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中20 x3的系数. 21 解答:设含x3的为第r+1, 22 则Tr+1=C6rx6-r?2r, 23

24 令6-r=3, 25 得r=3, 26 故展开式中x3的系数为C63?23=160. 27 故选D. 28 点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工29 具 30 3在(1+数学公式)4的展开式中,x的系数为 31 A.4 B.6 C.8 D.10 答案 32 33 B 34 解析 35 分析:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;分析可36 得,r=2时,有x的项,将x=2代入可得答案. 37 解答:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r; 当r=2时,有T3=C42(数学公式)2=6x; 38 39 故选B. 40 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 4(1+x)7的展开式中x2的系数是 41 42 A.21 B.28 C.35 D.42 43 答案 A 44 45 解析

完整版二项式定理测试题及答案

二项式定理测试题及答案 n 能使(n+i) 4 成为整数(B ) C.2 D.3 A A ; L L A ;J°,则S 的个位数字是(C ) -a ) 8展开式中常数项为1120,其 中实数a 是常数,则展开式中各项系数的和 x A. 15 个 B. 33 个 C. 17 个 D. 16 个 是(C ) A.28 B.38 C.1 或38 D.1 或 28 5.在(2 3 5)100的展开式中,有理项的个数是( 6.在、x 1 3x 24 的展开式中,x 的幕指数是整数的项共有(C B . 4项 -x)6的展开式中,含 、5 A. 3项 7?在(1 - x)5- (1 A 、一 5 B 、5 C & (1 x)5 (1 x)3的展开式中x 3的系数为(A A . 6 B. -6 C. 9 9.若x==,则(3+2x) 10的展开式中最大的项为(B 2 A.第一项 C . 5项 3 x 的项的系数是(C 、一10 B. 、10 ) D . -9 第三项 C. 第六项 D. 第八项 A. 7 B. 12 C. 14 D . 5 11.设函数 f(x) (1 2x)10 ,则导函数 2 f (x)的展开式x 项的系数为(C ) A. 1440 B .-1440 C .-2880 D .2880 12 .在(x 1 5 -I)5 x '的展开式中,常数项为( B ) (A ) 51 (B ) -51 (C )- ii (D ) ii 13 .若(x n n 1) x L 3.2. ax bx L 1(n N ),且 a:b 3:1,则n 的值为(C ) A. 9 B . 10 C . ii D. 12 14 .若多项式x 2 10 x =a 0 a i (x 1) a 9(x i)9 a i0(x i)i0, 则 a 9 ( ) (A ) 9 (B ) 10 (C ) 9 (D ) 10 10.二项式 n 的最小值为( ) A 解:根据左边 1,易知 a io 10 X 的系数为 1,左边x 9的系数为0,右边x 9的系数为 1 3 )n 的展开式中含有非零常数项,则正整数 3x 3 1.有多少个整数 A.0 B.1 2. 2 4 展开式中不含x 项的系数的和为(B ) A.-1 B.0 C.1 D.2 3?若 S =A 1 4.已知(x (2x 4

二项式定理 高考题(含答案)

二项式定理 高考真题 一、选择题 1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2 x 的系数是( D ) (A )42 (B )35 (C )28 (D )21 2.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B ) (A )80 (B )40 (C )20 (D )10 3.(2012·天津高考理科·T5)在5212x x ??- ?? ?的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10 (C)40 (D)-40 4.(2011.天津高考理科.T5)在6 的二项展开式中,2x 的系数为 ( C ) (A )154- (B )154 (C )38- (D )38 5.(2012·重庆高考理科·T4)821??? ? ?+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)4 35 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A ) (A)270- (B)90- (C)90 (D)270 7. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22 x y 的系数是 ( D )

A.56 B.84 C.112 D.168 8.(2011·新课标全国高考理科·T8)5 12a x x x x ????+- ???????的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20 (D )40 9. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8 (D)9 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C ) (A )20- (B )15- (C )15 (D )20 二、填空题 11.(2013·天津高考理科·T10)6x ?- ? 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11) 18 x ?- ? 的展开式中含15x 的项的系数为17. 13.(2011·全国高考理科·T13))20的二项展开式中,x 的系数与x 9的系数之差为0. 14.(2011·四川高考文科·T13) 91)x +(的展开式中3x 的系数是84(用数字作答). 15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是240. 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则 1110a a +=0. 17.(2011·广东高考理科·T10)72()x x x -的展开式中,4x 的系数是___84___ (用数字作答)

二项式定理(基础+复习+习题+练习)

课题:二项式定理 考纲要求: 1.能用计数原理证明二项式定理 2.会用二项式定理解决与二项展开式有关的简单问题. 教材复习 1.二项式定理及其特例: ()101()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, ()21(1)1n r r n n n x C x C x x +=++ ++ + 2.二项展开式的通项公式:r r n r n r b a C T -+=1210(n r ,,, = 3.常数项、有理项和系数最大的项: 求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性. 4.二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式 系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和. 5.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量 的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图) 6.()1对称性. 与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=).直线2 n r = 是图象的对称轴. ()2增减性与最大值: 当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值 ()3各二项式系数和:∵1(1)1n r r n n n x C x C x x +=++ ++ +, 令1x =,则012 2n r n n n n n n C C C C C =+++ ++ +

二项式定理习题精选精讲

1 1 例说二项式定理的常见题型及解法 二项式定理的问题相对较独立,题型繁多,解法灵活且比较难掌握。二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13 (x x +的展开式; 解:原式=4)13(x x +=24)13(x x + = ])3()3()3()3([14434224314404 2C C C C C x x x x x ++++ =)112548481(12342++++x x x x x =54112848122++++x x x x 小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。 2. “n b a )(-”型的展开式 例2.求4)1 3(x x -的展开式; 分析:解决此题,只需要把4)1 3(x x -改写成4)]1(3[x x -+的形式然后按照二项展开式的格式展开即可。本题主要考察了学生的“问题转化”能力。 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (2793) 1321-++-+-; 解:原式=n n n n n n n n C C C C C )2()31()3(....)3()3()3(33322110-=-=-++-+-+-+ 小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知9)2( x x a -的展开式中3x 的系数为49,常数a 的值为 解:923929991 2)1()2()(----+???-=-=r r r r r r r r r x a C x x a C T 令392 3=-r ,即8=r 依题意,得 49 2)1(894889=??---a C ,解得1-=a 2.确定二项展开式的常数项 例5.103)1(x x -展开式中的常数项是 解:r r r r r r r x C x x C T 65510310101)1()1()(--+?-=-= 令06 55=- r ,即6=r 。 所以常数项是210)1(6106=-C

二项式定理练习题.doc

10.3二项式定理 【考纲要求】 1、能用计数原理证明二项式定理. 2、会用二项式定理解决与二项展开式有关的简单问题. 【基础知识】 1、二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( 二项式的展开式有1n +项,而不是n 项。 2、二项式通项公式:r r n r n r b a C T -+=1 (0,1,2,,r n =???) (1)它表示的是二项式的展开式的第1r +项,而不是第r 项 (2)其中r n C 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的 系数是字母幂前的常数。 (3)注意0,1,2,,r n =??? 3、二项式展开式的二项式系数的性质 (1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。即 m n C =m n n C - (2)增减性和最大值:在二项式的展开式中,二项式系数先增后减,且在中间取得最大值, 如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。 (3)所有二项式系数的和等于2n ,即n n n n n n n n n n C C C C C C 212210=++++++--ΛΛ 奇数项的二项式系数和与偶数项的二项式系数和相等,即 15314202-=+++=+++n n n n n n n C C C C C C ΛΛΛΛ 4.二项展开式的系数0123,,,,n a a a a a ???的性质: 对于2012()n n f x a a x a x a x =++++g g g 0123(1)n a a a a a f ++++???+=, 0123(1)(1)n n a a a a a f -+-+???+-=- 5、证明组合恒等式常用赋值法。 【例题精讲】 例1 若,,......)21(2004200422102004R x x a x a x a a x ∈++++=-求(10a a +)+(20a a +)+……+(20040a a +) 解:对于式子:,,......)21(2004200422102004R x x a x a x a a x ∈++++=- 令x=0,便得到:0a =1

(完整版)二项式定理高考题(带答案)

1.2018年全国卷Ⅲ理】的展开式中的系数为 A. 10 B. 20 C. 40 D. 80 【答案】C 【解析】分析:写出,然后可得结果 详解:由题可得,令,则, 所以 故选C. 2.【2018年浙江卷】二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为 , 令得,故所求的常数项为 3.【2018年理数天津卷】在的展开式中,的系数为____________. 【答案】

决问题的关键. 4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为() A. 2 B. C. D. 【答案】B 5.【安徽省宿州市2018届三模】的展开式中项的系数为__________. 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解:的展开式为:,当,时,,当,时,

,据此可得:展开式中项的系数为 . 6.【2017课标1,理6】621 (1)(1)x x + +展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】 试题分析:因为666 22 11(1)(1)1(1)(1)x x x x x + +=?++?+,则6(1)x +展开式中含2x 的项为2226115C x x ?=,621(1)x x ?+展开式中含2x 的项为44 262115C x x x ?=,故2x 前系数为 151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.【2017课标3,理4】()()5 2x y x y +-的展开式中x 3y 3的系数为 A .80- B .40- C .40 D .80 【答案】C 【解析】 8.【2017浙江,13】已知多项式() 1x +3 ()2x +2=5432112345x a x a x a x a x a +++++,则 4a =________,5a =________.

二项式定理练习题

二项式定理练习题 一、选择题: 1.在() 10 3 x -的展开式中,6 x 的系数为 ( ) A .610 C 27- B .410 C 27 C .6 10C 9- D .4 10C 9 2. 已知a 4b ,0b a =>+, ()n b a +的展开式按a 的降幂排列,其中第n 项与第n+1项相等,那么正整数n 等于 ( ) A .4 B .9 C .10 D .11 3.已知(n a a )1 3 2 + 的展开式的第三项与第二项的系数的比为11∶2,则n 是 ( ) A .10 B .11 C .12 D .13 4.5310被8除的余数是 ( ) A .1 B .2 C .3 D .7 5. (1.05)6的计算结果精确到0.01的近似值是 ( ) A .1.23 B .1.24 C .1.33 D .1.34 6.二项式n 4x 1x 2??? ? ?+ (n ∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项 数是 ( ) A .1 B .2 C .3 D .4 7.设(3x 3 1+x 2 1)n 展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2 项的系 数是 ( ) A .2 1 B .1 C .2 D .3 8.在6 2)1(x x -+的展开式中5 x 的系数为 ( ) A .4 B .5 C .6 D .7 9.n x x )(513 1+展开式中所有奇数项系数之和等于1024,则所有项的系数中最大的值是 ( ) A .330 B .462 C .680 D .790 10.54)1()1(-+x x 的展开式中,4 x 的系数为 ( ) A .-40 B .10 C .40 D .45 11.二项式(1+sinx)n 的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为 2 5 ,则x 在[0,2π]内的值为 ( ) A . 6π或3π B .6π或65π C . 3π或32π D .3 π或65π 12.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列 a n =3n -5的 ( ) A .第2项 B .第11项 C .第20项 D .第24项

二项式定理练习题

二项式定理练习题 1.展开 41(1) x +. 2.展开6. 3.求12 ()x a +的展开式中的倒数第4项 4.求(1)6(23)a b +,(2)6 (32)b a +的展开式中的第3项. (1) (2) 点评:6(23)a b +,6 (32)b a +的展开后结果相同,但展开式中的第r 项不相同 5.(1)求9( 3x 的展开式常数项; (2)求9 (3x +的展开式的中间两项 6.(1)求7 (12)x +的展开式的第4项的系数; (2)求91 ()x x -的展开式中3 x 的系数及二项式系数 7.求42 )43(-+x x 的展开式中x 的系数

8.已知 ()()n m x x x f 4121)(+++= *(,)m n N ∈的展开式中含x 项的系数为36,求 展开式中含2x 项的系数最小值 9.已知 n 的展开式中,前三项系数的绝对值依次成等差数列, (1)证明展开式中没有常数项;(2)求展开式中所有的有理项 10.求6 0.998的近似值,使误差小于0.001.

答案: 1.展开4 1(1)x +. 解一: 411233 4444 11111(1)1()()()()C C C x x x x x +=++++23446411x x x x =++++. 解二:4444413123 444111(1)()(1)()1x x C x C x C x x x x ??+=+=++++?? 2344641 1x x x x =+ +++. 2.展开6 . 解:66 31 (21)x x =- 6152433221 6666631[(2)(2)(2)(2)(2)(2)1]x C x C x C x C x C x x = -+-+-+ 322360121 64192240160x x x x x x =-+-+-+. 3.求12 () x a +的展开式中的倒数第4项 解:12 ()x a +的展开式中共13项,它的倒数第4项是第10项, 91299339 39911212220T C x a C x a x a -+===. 4.求(1)6(23)a b +,(2)6 (32)b a +的展开式中的第3项. 解:(1)24242216(2)(3)2160T C a b a b +==, (2)24242 216(3)(2)4860T C b a b a +==. 点评:6(23)a b +,6 (32)b a +的展开后结果相同,但展开式中的第r 项不相同 5.(1)求9 ( 3x 的展开式常数项; (2)求9 ( 3x + 的展开式的中间两项

完整版排列组合二项式定理测试及答案

1?甲班有四个小组,每组成部分 10人,乙班有3个小组,每组15人,现要从甲、乙两班中选 1 人担任校团委部,不同的选法种数为( ) 6. 若(3、X —)n 展开式中含3x 的项是第8项,则展开式中含 x A .第8项 B .第9项 C .第10项 7. 从4名男生和3名女生中选出4人参加某个座谈会, 若这4人中必须既有男生又有女生, 则不 同的选法共有 ( ) A 140 种 B 34 种 C 35 种 D 120 种 9.已知(x a )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 () x A . 28 B . 38 C . 1 或 38 D . 1 或 28 10 .某城市新修建的一条道路上有 12盏路灯,为了节省用电而又不能影响正常的照明, 可以熄灭 其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有( 每4人,每人每天最多值一班,则开幕式当天不同的排班种数为 13 .不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一 起,则不同的排法种数共有 ____________ . 14 . (x 2)10(x 2 1)的展开式中x 10的系数为 __________ .(用数字作答) 若 c n c ; C ; C ;1=32,则 n= ________ 。 A . 18 B .72 C .36 D 3.展开式的第 7项是 ( ) 28 28 56 A ― B —一6 C 一6 a a a 4.用二项式定理计算 9.985,精确到 1的近似值为( ) D 86 ( ) .144 56 -6 a D . 99005 5. 不同 的五种商品在货架上排成一排, 则不同的排法种数共有( ) A . 12 种 B . 20种 其中甲、乙两种必须排在一起, 丙、丁两种不能排在一起, C . 24 种 D . 48种 1 -的项是( ) 3 A . C 11 种 3 C . C 9 种 3 D . C 8 种 3 4 5 11.设(1 x) (1 x) (1 x) L (1 x)50 a 。 a 1X L 50 a 5°x ,则a 3的值是( A . C 50 B . C 51 C . C 51 D . 2C ;0 12 .北京《财富》全球论坛期间,某高校有 14名志愿者参加接待工作,若每天早、中、晚三班, 12 4 14 C 12 12 4 4 B . C 14 A 12 A 8 CuC^C D . C 14 C 12C 8 A 3 A 80 B 84 C 85 2. 6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 A . 99000 B . 99002 C . 99004

二项式定理高考试题及其答案总

二项式定理历年高考试题荟萃(一) 一、选择题 ( 本大题共 58 题) 1、二项式的展开式中系数为有理数的项共有………() A.6项 B.7项 C.8项 D.9项 2、对于二项式(+x3)n(n∈N),四位同学作出了四种判断:…() ①存在n∈N,展开式中有常数项; ②对任意n∈N,展开式中没有常数项; ③对任意n∈N,展开式中没有x的一次项; ④存在n∈N,展开式中有x的一次项. 上述判断中正确的是 (A)①与③(B)②与③(C)②与④(D)④与① 3、在(+x2)6的展开式中,x3的系数和常数项依次是…………() (A)20,20 (B)15,20(C)20,15 (D)15,15 4、(2x3-)7的展开式中常数项是……………………………………………………… () A.14 B.- 14 C.42 D.-42 5、已知(x-)8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是……………………………………………………………() (A)28 (B)38 (C)1或 38 (D)1或28

6.若(+)n展开式中存在常数项,则n的值可以是…………() A.8 B.9 C.10 D.12 7 .(2x+)4的展开式中x3的系数是……………………………………() A.6 B.12 C.24 D.48 8、(-)6的展开式中的常数项为…………………………………() A.15 B.- 15 C.20 D.-20 9、(2x3-)7的展开式中常数项是…………………………………………() A.14 B.- 14 C.42 D.-42 10、若(+)n展开式中存在常数项,则n的值可以是………………() A.8 B.9 C.10 D.12 11、若展开式中含项的系数与含项的系数之比为-5,则n等 于 A.4 B.6 C.8 D.10 12、的展开式中,含x的正整数次幂的项共有() A.4项 B.3项 C.2项 D.1项

排列组合与二项式定理的综合练习题

排列组合与二项式定理的综合应用 1.()()5121x x -+的展开式中3x 的系数为( ) A .10 B .-30 C .-10 D .-20 2.若()()72801281212x x a a x a x a x +-=++++…,则0127a a a a ++++…的值为( ) A .2- B .3- C .253 D .126 3.()()512x x +-的展开式中2x 的系数为( ) . A .25 B .5 C .-15 D .-20 4.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种 5.从5名学生中选出4名分别参加A ,B ,C ,D 四科竞赛,其中甲不能参加C ,D 两科竞赛,则不同的参赛方案种数为( ) 6.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( ) A.828 9A A B.82810A A C.8287A A D.8286A A 7.小孔家有爷爷、奶奶、姥爷、姥姥、爸爸、妈妈,包括他共7人,一天爸爸从果园里摘了7个大小不同的梨,给家里每人一个.小孔拿了最小的一个,爷爷、奶奶、姥爷、姥姥4位老人之一拿最大的一个,则梨子的不同分法共有( ) A .96种 B .120种 种 D .720种 8.已知身穿红,黄两种颜色衣服的各两人,身穿蓝衣服的有1人,现将五人排成一列,要求穿相同颜色衣服的人不能相邻,则不同的排法有( ) 种 种 种 种 9.3n x ?+??的展开式中,各项系数之和为A ,各项的二项式系数之和为B ,且72A B +=,则展开式中常数项为( ) 10.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取两个数字,一共可以组成没有重复数字的五位偶数的个数为( ) A .2880 B .7200 C . 1440 D .60 11.某中学四名高二学生约定“五一”节到本地区三处旅游景点做公益活动,如果每个景点至少一名同学,且甲乙两名同学不在同一景点,则这四名同学的安排情况有( ) A .10种 B .20种 C .30种 D .40种 12.51 ()(21)ax x x +-的展开式中各项系数的和为2,则该展开式中常数项为( )

二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中, 前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4 324 121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1 C +-+==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)103)1()1(x x +-展开式中的5 x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5 x 项,可以得到5 510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4 的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4 =C 04a 4 +C 14a 3 (-2b )+C 24a 2 (-2b )2 +C 34a (-2b )3 +C 4 4(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x -223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x - 223x )5=C 05(2x )5+C 1 5(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-223x )3 + C 45 (2x )(- 223x )4+C 55(-223x )5 =32x 5-120x 2+x 180 -4135x +78405x -1032243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10 321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3 -243) =32x 5-120x 2+x 180 -4135x +78405x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10 的展开式中,x 6 的系数是 . 解法一:根据二项式定理可知x 6 的系数是C 4 10. 解法二:(x -3)10 的展开式的通项是T r +1=C r 10x 10-r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6 项为第5项,即T 4+1=C 410x 6 (-3)4 =9C 410x 6 . ∴x 6 的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6 的二项式系数,所以应是解法二正确. 如果问题改为求含x 6 的二项式系数,解法一就正确了,也即是C 4 10.

相关文档
相关文档 最新文档