文档库 最新最全的文档下载
当前位置:文档库 › M7475B平面磨床立柱结构ANSYS有限元分析本科毕业设计

M7475B平面磨床立柱结构ANSYS有限元分析本科毕业设计

(此文档为word格式,下载后您可任意编辑修改!)

本科毕业论文

M7475B平面磨床立柱的有

限元分析

目录

前言 (3)

第一章绪论 (4)

1.1 机床有限元分析国内外的研究现状 (4)

1.1.1 国内的研究现状 (5)

1.1.2 国外的研究现状 (6)

1.2 本课题主要研究内容 (6)

1.3 本课题的意义 (6)

第二章 M7475B平面磨床简介及立柱结构受力分析 (7)

2.1 平面磨床结构简介 (7)

2.2 立柱磨头受力概况 (8)

2.2.1 砂轮速度的计算: (8)

2.2.2 轴向磨削力的计算: (8)

2.2.3 切向磨削力和法向磨削力的计算: (9)

2.3 磨床振源频率的确定 (9)

2.4 本章小结 (9)

第三章立柱结构有限元模型的建立 (10)

3.1 PROE与ANSYS的连接 (10)

3.2 立柱结构建模方法 (10)

3.3 立柱有限元模型 (11)

3.4 本章小结 (12)

第四章立柱结构有限元静力学分析 (12)

4.1 有限元方法简介 (12)

4.2 ANSYS软件简介 (12)

4.2.1 ANSYS的组成及主要技术特点: (13)

4.2.2 ANSYS结构分析过程 (13)

4.3 立柱结构的ANSYS结构刚度分析 (13)

4.3.1 定义单元类型 (13)

4.3.2 定义材料属性 (14)

4.3.3 网格划分 (14)

4.3.4 施加约束 (15)

4.3.5 施加载荷 (16)

4.3.6 计算结果 (17)

4.4 本章小结 (21)

第五章模态分析 (22)

5.1 磨床动态特性参数 (22)

5.2 模态分析的基本思想 (23)

5.3 模态分析的基本理论 (23)

5.4 模态分析的一般过程 (23)

5.5 M7475B平面磨床立柱的模态分析 (24)

5.5.1 定义单元类型 (24)

5.5.2 定义材料属性 (24)

5.5.3 网格划分 (25)

5.5.4 施加约束 (25)

5.5.5 分析计算 (25)

5.5.6 观察结果 (25)

5.6 本章小结 (28)

第六章立柱结构优化设计 (29)

6.1 优化设计概况 (29)

6.1.1 优化设计的发展 (29)

6.1.2 优化设计的概念 (29)

6.1.3 优化设计的经济效益 (29)

6.1.4 优化设计发展方向 (30)

6.2 机床结构设计准则 (30)

6.3 结构改进优化 (31)

6.3.1 立柱结构优化方案一 (31)

6.3.2 立柱结构优化方案二 (35)

6.4 本章小节 (38)

第七章结论与展望 (39)

7.1 结论 (39)

7.2 论文不足之处 (40)

7.3 展望 (40)

参考文献 (40)

致谢 (41)

前言

据权威部门的一项统计资料显示,目前我国乡以及乡以上独立核算的机械行业企业金属切削机床拥有量已达300万台,高居世界各国之首。此外,再加上非独立核算的和乡以下企业的拥有量,机床总数当在500万台左右,这是一种雄厚的生产资源。然而,另一方面,我国机床完好率之低也是惊人的。某机械工业集中地区有关部门的调查显示,中、小型机械企业“带病”工作的机床竟有60%。这是造成企业产品质量低、经济效益差的一个重要原因。

磨床加工车间废品率上升,经常使工厂受到严重经济损失,研究分析发现,造成此种后果的重要原因一是磨床完好率差,故障频繁,精度不够,得不到及时的调整与维修,二是在机械工业以及金属切削加工技术不断发展的今天,进行高速磨削提高生产效率以及加工精度已经成为磨床的发展趋势,磨床的一些主要结构部件的前几阶固有频率可能会处于工作频率范围之内,将导致磨床的

共振。“工欲善其事,必先利其器。”改变上述状况,必须改善目前企业金属切削机床基础部件的刚性,提高机床抗震性,只有这样才能从根本解决加工精度和机床寿命问题。因此利用大型有限元分析软件对磨床床身部件进行静力学分析和动力学分析以改善上述情况变得十分必要。

ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,能与多数CAD软件接口,实现数据的共享与交换。利用ANSYS软件能进行复杂的应力应变分析的巨大优势,通过大型三维建模软件ProENGINEER建立立柱模型,导入ANSYS软件进行分析,可以清楚并定量的表现出部件变形的情况,从而为提高部件刚性提供理论依据以及数据支持。振动现象也是机床设计中所面临的问题之一,它能造成加工误差,影响零件的加工精度。模态分析主要用于确定结构或机器部件的振动特性。建立机床基础部件三维模型,利用大型有限元分析软件ANSYS,对机床部件进行模态分析,得出床身部件前几阶固有频率和振型,了解床身部件的各阶振动模态的特点,对于我们研究床身部件的动态特性是十分必要的,有利于机床床身系统的整体设计。提高机床零部件的前几阶固有频率是提高机床刚性、避免共振、降低振幅的有效措施。

M7475B型平面磨床是机械工业中广泛使用的重要金属磨削加工工具,采用砂轮端面进行磨削,磨削面积大,立柱结构受力情况极为复杂,本课题用三维CAD软件ProENGINEER对M7475B型磨床立柱结构进行建模,并将三维模型导入ANSYS有限元分析软件以实现数据的共享和交换,利用其强大的分析能力对M7475B型磨床立柱结构进行应力及应变分析,探讨通过改变立柱结构以增加立柱结构刚性, 并基于ANSYS有限元方法对立柱结构进行模态分析,探讨不同结构对提高立柱前几阶固有频率的影响,通过提高前几阶固有频率提高立柱结构抗振性,对提高磨床加工质量和精度有重要意义。

第一章绪论

1.1 机床有限元分析国内外的研究现状

国际上早在60年代初就开始投入大量的人力和物力开发有限元分析程序,但真正的CAE软件是诞生于70年代初期,而近15年则是CAE软件商品

化的发展阶段,目前流行的CAE分析软件主要有NASTRAN、ADINA 、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。ANSYS软件致力于耦合场的分析计算,能够进行结构、流体、热、电磁四种场的计算,已博得了世界上数千家用户的钟爱。同时,21世纪ANSYS在机械行业的广泛应用已给传统机械工业带来了新的革命,更高的可靠性设计、更好的抗震性设计等均是ANSYS给机械工业带来的惊喜,特别是在机床结构和抗震性设计方面国内外已有大量成果斐然的研究。

1.1.1 国内的研究现状

东南大学机械工程系的倪晓宇、易红等利用有限元法对机床床身进行静、动态分析,并使用渐进结构优化算法对床身结构进行基于基频约束和刚度约束的拓扑优化,为ESO方法在机床大件结构拓扑优化中的应用做了有益的尝试[1];内蒙古工业大学的杨明亚等建立立柱的三维有限元模型,利用大型有限元分析软件ANSYS对立柱部件进行了模态分析,得出了立柱前五阶固有频率和振型[2];浙江大学现代制造工程研究所的杨晓京等基于ANSYS有限元分析软件对XK640 数控铣床的立柱进行结构优化,比较了四种结构形式的立柱的动力特性,确定了在XK640数控铣床中选用内侧加强筋结构立柱,提高了机床设计水平[3];东南大学机械工程系的伍建国等在对M2120A原机床床身动态测试的基础上,建立床身的有限元分析模型,并对床身进行有限元计算,找出原床身设计中的缺陷,从而对各种改进后的机床身再进行有限元分析,通过多方案的比较,得出最优设计方案[4];东北大学机械工程与自动化学院的张耀满等在CHH6125卧式车削加工中心的研制开发过程中,在产品设计阶段对其采用有限元分析方法,对机床的原有结构进行动力学分析计算、对机床原有机构进行适当改进,提高机床的动力学性能,并对机床进行了试验,对分析结果进行验证[5];西安工业大学机电工程学院的朱育权等通过ANSYS软件建立

1CL50机床立柱的几何模型,采用四面体单元对立柱进行网格划分,分析了1CL50立柱的一阶、二阶和三阶振型,得出一阶振动为整机摇晃和横断面内弯曲振动,二阶振型为横断面内扭曲振动加垂直方向弯曲振动,三阶振型为横断面内弯曲振动加垂直面内弯曲振动,分析指出了加工过程中应该避开的激振频率,避免一阶振动应加十字型筋板,避免二阶振动应加对角交叉筋板,避免三

阶振动应加菱形筋板[6]。

1.1.2 国外的研究现状

Mohammed Alfares等研究了磨床动载情况下,对应磨削力的变化情况,以及对工件材料的影响[7]。N.zhang和I.Kirpitchkenko建立了磨削过程的动态模型,找出了磨削力和模型固有频率变化之间的对应关系,给出了磨削力的估算公式[8]。

1.2 本课题主要研究内容

本课题用三维CAD软件ProENGINEER对M7475B型磨床立柱结构进行建模,并将三维模型导入ANSYS有限元分析软件以实现数据的共享和交换,利用其强大的分析能力对M7475B型磨床立柱结构进行应力及应变分析,探讨通过改变立柱结构以增加立柱结构刚性, 并基于ANSYS有限元方法对立柱结构进行模态分析,探讨不同结构对提高立柱前几阶固有频率的影响,通过提高前几阶固有频率提高立柱结构抗振性。

1.3 本课题的意义

本课题利用ANSYS有限元分析软件对M7475B平面磨床立柱结构进行有限元的静力学分析和模态分析。ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,能与多数CAD软件接口,实现数据的共享与交换。利用ANSYS软件能进行复杂的应力应变分析的巨大优势,通过大型三维建模软件ProENGINEER建立立柱模型,导入ANSYS软件进行分析,可以清楚并定量的表现出部件变形的情况,从而为提高部件刚性提供理论依据以及数据支持。振动现象也是机床设计中所面临的问题之一,它能造成加工误差,影响零件的加工精度。模态分析主要用于确定结构或机器部件的振动特性。建立机床基础部件三维模型,利用大型有限元分析软件ANSYS,对机床部件进行模态分析,得出床身部件前几阶固有频率和振型,了解床身部件的各阶振动模态的特点,对于我们研究床身部件的动态特性是十分必要的,有利于机床床身系统的整体设计。通过结构优化设计以提高机床零部件的前几阶

固有频率是提高机床刚性、避免共振、降低振幅的有效措施。

第二章 M7475B平面磨床简介及立柱结构受力分析

2.1 平面磨床结构简介

平面磨床是用磨削方法加工工件的机床,可以进行不同精度的各种表面的加工。同一台磨床可以一次性完成粗、精磨削,减少了工序间的搬运、装夹等辅助时间,具有较高的生产效率。平面磨床一般由床身、工作台、磨头、横向进给机构、升降机构、液压系统、冷却系统、电气系统等组成[9]。按照磨头主轴位置和结构布局的不同,主要分为卧轴矩台平面磨床、卧轴圆台平面磨床、立轴矩台平面磨床和立轴圆台平面磨床四种类型。

M7475B平面磨床属于立轴圆台平面磨床,有圆形电磁工作台和立式磨头,采用砂轮端面磨削。该机床为高效率的平面磨床,主要是用于粗磨毛坯或磨削一般精度的工件,适用于成批生产。磨头的回转、机动进给和快速升降、工作台的回转和移动,都分别采用单个电机驱动。M7475B平面磨床结构如图所示。

图2-1 M7475B 平面磨床结构简图

2.2 立柱磨头受力概况

M7475B 平面磨床M7475B 平面磨床属于立轴圆台平面磨床,采用砂轮端面磨削。它的立柱结构主要受砂轮架的重力和端面磨削时产生的磨削力,其中端面磨削时产生的磨削力分为切向力,法向力,和纵向进给产生的轴向力。在本课题中估算砂轮架的重力G=1500N,磨削力的相关计算如下:

2.2.1 砂轮速度的计算:

———砂轮速度(ms )

———砂轮直径(mm )

———砂轮转速(rmin )

本课题中砂轮直径为450mm ,为970rmin ,代入数据计算得出: =22.86ms

2.2.2 轴向磨削力的计算:

本课题考虑磨床加工铸铁时的受力情况,轴向磨削力的计算公式如下: 219.81[/]z f z s F C n f R v tg πα=???[10]

———去除单位体积的磨屑所需的能,(见表1),kgfmm

——— 砂轮线速度,mms

———磨粒为圆锥形时的锥顶半角, 计算时一般取~

R ———电磁工作台半径,mm

———工作台单位时间所转动的圈数,rs

———工件单位时间垂直进给量, mms

R=375mm ,取最大值,代入公式计算得出=1330N (轴向磨削力)。

2.2.3 切向磨削力和法向磨削力的计算:

根据切向力估算公式,式中为砂轮的切向力,为电机的输入功率(kw),为

电机的传动效率,为砂轮的转速(rs),为砂轮的直径(mm)。所研究磨床的主电

机功率是25kw,砂轮转速16.17 rs,砂轮直径450mm 。将相应的数据代入公式可

得砂轮的切向力=1083N,根据文献[ 22]工程上加工铸铁材料工件时法向力和

切向力之比=0.35,求得法向力=3093N 。磨床立柱受力分析示意图2-2、2-3。

图2-2 磨床立柱受力分析示意图

图2-3 磨床立柱受力分析示意图

2.3 磨床振源频率的确定

磨床在工作过程中受到多种激振频率的影响,其中以主轴电机和机动进给

驱动电机的影响最为明显。M7475B平面磨床所使用的主轴电机转速为970rmin, 机动进给驱动电机的转速为1410rmin,电机转动引起的受迫振动的频率可由

共求出,则主轴电机引起的频率为16.17Hz,机动进给驱动电机引起的频率为23.5Hz。

电机在使用过程中,由于转子绕组不对称,使得定子和转子主磁力波相互

作用的径向分量引起振动,即,由成对磁极产生的电磁拉力引起振动,其频率是

电机转动频率的2倍。据此,考虑磁拉力的影响,主轴电机引起的振动频率为32Hz, 机动进给驱动电机引起的振动频率为47Hz。

2.4 本章小结

本章针对M7475B平面磨床采用立轴圆台端面磨的特点,分别近似模拟出

立柱所受磨削力的示意图,并查阅相关文献计算出磨削力的大小。在这里有一

点需要说明的是,在本课题中法向磨削力的方向近似与立柱结构的对称中心相

平行,而在实际加工情况下法向磨削力的方向是与立柱对称中心偏离一个微小

角度的。这样做是为了简化计算,并且简化对于结果影响不大。

第三章立柱结构有限元模型的建立

3.1 PROE与ANSYS的连接

ANSYS软件提供了与大多数CAD软件进行数据共享和交换的图形接口,ANSYS自带的图形接口能识别IGES、ParaSolid、CATIA、ProE、UG等标准的文件,使用这些接口转换模型的方法很简单,只要在CAD中将建好的模型使用另存为或者导出命令,保存为ANSYS能识别的标准图形文件,通常使用的有IGES和ParaSolid文件,在ANSYS中使用File->Import导入模型,然后进行模型拓扑结构修改。对于CATIA和ProE等CAD软件,ANSYS能直接识别它们的文件,不需要另存其他格式的文件。使用这些图形接口虽然快速方便,但是往往会出现很多问题,甚至会发生不能识别的问题。例如IGES文件是ISO标准中规定的标准图形交换格式之一,IGES作为一种表达产品数据并将其转换成中性文件格式的行业标准,实现文件之间的交换具有很大的优势,但是ANSYS 对IGES的支持不够,在导入IGES文件的时候,无法识别小的几何元素,造成所生成拓扑结构不连续,无法生成实体,导入的模型只是由一些面组成,而且,ANSYS读入IGES所需的时间很长。

ANSYS软件为了扩充与其他CAD软件之间的接口的功能,开发设置了ANSYS 与ProE的连接模块,安装的时候必须选择ANSYS Connection For ProENGINEER 模块(代号82),这个模块的功能就是将ProE里面的模型生成ANSYS的命令流文件,这个命令流文件的扩展名是anf,ANSYS读入anf文件后,即可自动将模型建好,而且这样建立的模型几乎没有误差。

3.2 立柱结构建模方法

利用ProENGINEER三维建模软件建立模型如下:

3.3 立柱有限元模型

由于磨床在工作的过程中,工作状况比较复杂,受多方面因素的影响,所以进行有限元分析时,为简化计算,需要假设认定磨床材料是各向同性材料,密度均匀分布,在工作过程中始终处于弹性阶段,并且假定位移和变形都是微小的

[12]。

磨床立柱结构模型相对复杂,在导入ANSYS 进行分析前需要对模型进行相应的简化,如去除相应圆倒角、凸台、螺钉孔、销孔、圆角以及退刀槽等对分析结果影响不大的细节结构[13],在本课题中根据实际情况去除了大部分的圆倒角,这样可以简化电脑运算时间,并且对有限元分析结果影响甚微。有限元模型的生成如下图:

3.4 本章小结

本课题采用三维CAD软件ProENGINEER对M7475B型磨床立柱结构进行建模,并将三维模型导入ANSYS有限元分析软件以实现数据的共享和交换,生成有限元模型。

第四章立柱结构有限元静力学分析

4.1 有限元方法简介

有限元方法是用于求解工程中各类问题的数值方法。结构强度、刚度分析中的静力、线性或者非线性问题,热传导中稳态、瞬态或者热应力问题,以及流体力学和电磁学中的很多问题都可以用有限元方法解决。有限元方法的基本步骤如下:

(1)将实际求解范围离散化,即将求解域划分成节点和单元。

(2)选择合适的形函数,即选择一个用单元节点解描述整个单元解的连

续函数。

(3)对每个单元建立单元刚度矩阵。

(4)按照一定节点编码顺序,将各个单元刚度矩阵叠加以构造结构整体

刚度矩阵。

(5)写出以节点自由度(DOF)为未知量的结构整体刚度方程,并将边界

条件、初始条件应用到方程中。

(6)求解步骤(5)中得到的方程组,以得到节点上的自由度值。

(7)根据节点的值和形函数,得到其他的物理量。例如,应力、支座反

力、弯矩图、热流量等。

4.2 ANSYS软件简介

ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如ProEngineer, NASTRAN,

Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAD工具之一。4.2.1 ANSYS的组成及主要技术特点:

软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。

4.2.2 ANSYS结构分析过程

有限元分析的一般流程为:

(1)从三维实体建模模块进入有限元分析模块。

(2)在实体上施加约束。

(3)在实体上施加载荷。

(4)计算(包括网格自动划分),解方程和生成应力应变结果。

(5)分析计算结果,单元网格、应力或变形显示。

(6)对关心的区域细化网格、重新计算。

4.3 立柱结构的ANSYS结构刚度分析

4.3.1 定义单元类型

由于磨床立柱模型比较复杂,不宜简化为板、壳单元的有限元模型,需要采用三维实体单元对磨床结构进行网格划分。本课题中采用软件提供的solid92单元进行网格划分。该单元为10 节点四面体结构线性单元,每个节点有沿X 、Y和Z方向的三个平移自由度, 并且单元有可塑性、蠕动、膨胀、应力钢化, 大变形, 和大张力的能力,如图4-1。

4.3.2 定义材料属性

M7475B磨床立柱采用材料HT300,材料详细信息如下表

图4-1 SOLID92 几何模型

4.3.3 网格划分

由于磨床立柱结构比较复杂,建模的时候出现了很多小线段,采用智能网格划分时容易在不重要的局部结构上产生过多的单元,而采用整体控制单元尺寸的自由网格划分方法,单元的数目可明显减少,这样就简化了计算机进行分析计算的时间。因此,进行网格划分时,合理选择整体单元尺寸为80mm,采用自由网格划分,最后得到的平面磨床整体结构的有限元模型如图4-2所示。

图4-2 立柱有限元模型网格划分图

4.3.4 施加约束

因立轴圆台平面磨床磨削工件分粗磨和精磨两种。粗磨时,为提高磨削效率,可将砂轮轴在垂直平面内旋转一个角度,即用倾斜的砂轮端面磨削;精磨时,必须用水平砂轮磨削。为适应砂轮主轴的旋转角度,本机床采用立柱三点调整装置,即在立柱与床身的结合处安装三套螺钉调整装置,每套相隔距离一致。所以本课题中在三个螺钉调整装置孔的圆柱面上施加约束,定义ALL DOF 值为0 ,约束后的结果如图4-3所示。

图4-3 施加约束后立柱有限元模型

4.3.5 施加载荷

立柱主要承受砂轮架重力、磨削力以及重力和磨削力所带给它的弯矩,将重力以及磨削力以均布力的形式施加到立柱上,并且将弯矩简化成力偶矩,选择合适的力臂,经计算得出力偶中力的大小,同时为了避免单个力施加在单个节点上可能引起的应力集中,将力偶简化成均布力施加在多个节点上,如此对立柱进行载荷的施加,结果如图4-4所示。

图4-4 施加载荷后立柱有限元模型

4.3.6 计算结果

进入求解器Main Menu > Solution > Solve >Current LS。求解完成后,进入通用后处理器观察计算结果。床身变形如图4-5、4-6、4-7、4-8所示。

图4-5 X方向位移变形云图

图4-6 Y方向位移变形云图

图4-7 Z方向位移变形云图

图4-8 立柱总位移云图

从位移云图中可以看出,立柱导轨位移最大,且导轨右半部分有明显位移,达到0.01毫米,这与磨床电磁工作台的转向相符合。

图4-9 X方向应力云图

图 4-10 Y方向应力云图

图 4-11 Z方向应力云图

相关文档