文档库 最新最全的文档下载
当前位置:文档库 › 汽车设计讲稿-第四章 万向传动轴设计

汽车设计讲稿-第四章 万向传动轴设计

汽车设计讲稿-第四章 万向传动轴设计
汽车设计讲稿-第四章 万向传动轴设计

第四章万向传动轴设计

§4-1 概述

一、功用:工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动

二、设计要求:

1)保证所连接的两轴的夹角及相对位置在一定范围内变化时能可靠而稳定地传递动力

2)保证所连接的两轴尽可能等速运转。且由于夹角存在而引起的附加载荷、振动、噪声均在允许范围内,在使用车速范围不应产生共振

3) 高,寿命长,结构简单,制造方便,维修容易等

三、应用

1、前置后驱动汽车上(∵悬架变形,变速器输出轴与主减速器输入轴间经常有相对运动)

-可伸缩的十字轴万向传动轴

2、转向驱动桥(∵驱动轮又是转向轮,左右半轴间夹角随行驶需要而变)-等速万向传动轴

3、离合器与变速器,变速器与分动器不直接连接而离开一定距离(为避免因安装不准确和车架

变形在传动机构中引起附加载荷)-十字万向传动轴或挠性万向传动轴。

四、分类:

挠性万向节:靠弹性另件传递动力

按扭转方向是否有明显弹性不等速:瞬时角速度变化,平均角速度相等一十字轴

刚性等速:瞬时角速度相等一球叉式、球笼式

准等速:设计角度下,瞬时角速度相等一双联式、凸块、

三销轴式、球面滚轮

§4-2万向节结构方案分析

一、十字轴万向节

A.构造:典型的十字轴万向节主要由主动叉、从动叉、十字轴、滚针轴承及其轴向定位件和橡胶密封件等组成。

B.优缺:十字轴万向节结构简单,强度高,耐久性好,传动效率高,生产成本低。但所连接的

两轴夹角不宜过大,当夹角由4°增至16°时,十字轴万向节滚针轴承寿命约下降至原来的1/4。

C.最大夹角,不宜过大

D.应用:广泛

二、准等速万向节(近似等速)

1、双联式

A.构造:由两个十字轴万向节组合而成。为了保证两万向节连接的轴工作转速趋于相等,可设有分度机构。偏心十字轴双联式万向节取消了分度机构,也可确保输出轴与输入轴接近等速。

B.优缺:允许两轴间的夹角较大(一般可达50°,偏心十字轴双联式万向节可达60°),轴承密封性好,效率高,工作可靠,制造方便。缺点是结构较复杂,外形尺寸较大,零件数目较多。

C.最大夹角,一般50°,偏心60°

D.应用:军用越野车的转向驱动桥

2、凸块式:

A.构造:主要由两万向节叉1和4及两个不同形状的特殊凸块2和3组成。

B.优缺:工作作可靠,加工简单。但由于工作面全为滑动摩擦,摩擦表面易磨损,传动效率低,对密封和润滑要求高。

C.最大夹角,50°

D.应用:传递转矩较大的越野车转向驱动桥

3、三销轴式:

A.构造:主要两个偏心轴叉,两个三销轴和六个滚针轴承构成

B.优缺:不需加外球壳和密封装置,对万向节与转向节的同心度要求不严,允许两轴夹角较大,但外形尺寸较大,形状复杂,毛坯需精确模锻,万向节两轴受附加弯矩和轴向力。

C. 最大夹角,45°

D.应用:总质量较大的越野车转向驱动桥

4、球面滚轮式

A.构造:万向节轴5端部三个销轴3,其上装球面滚轮4,可在圆管轴向槽2内移动。

B.优缺:加工容易

C. 最大夹角,34°

D.应用:较为广泛

三、等速万向节

1、球叉式:

(1)圆弧槽滚道型

A.构造:两万向节球叉,其上各有4个侧向的圆弧槽滚道,四传力钢球和一定心球。

B.优缺:结构较简单,夹角较大,但单位压力较大,磨损较快,磨损增加后传动等速性破坏,严重时钢球会脱落。

C. 最大夹角,32°-33°

D.应用:总质量不大的越野车转向驱动桥

(2)直槽滚道型

A.构造:两万向节球叉上直槽滚道,直槽与轴的中心线倾斜相同角度,滚道内四传力钢球。

B.优缺:加工较容易,两叉间允许少量轴间滑动。

C. 最大夹角,20°

D.应用:断开式驱动桥,当半轴摆动时,用它可补偿半轴的长度变化而省去花键

2、球笼式万向节

1) Rzeppa 型 (图4-8a):

A.构造:

在球形壳1的内表面和星形套3的球表面上, 各有6条园形轨道(沿园周均布,同心)

6个传力钢球装在其中,由球笼保持在同一平面

轴夹角变化时,分度杆6推动导向盘,再带动球笼4,使6个钢球永远处于轴间夹角的平分面上.

B.优缺: 使6个钢球永远处于轴间夹角的平分面上.

C. 最大夹角:可达35-37°

D.应用较少,以前用于转向驱动桥。

2) Birfield 型 (图4-8b):

A.构造:取消分度杆, 球形壳和星形套的滚道不同心

B.优缺::承载能力和耐冲击能力强,效率高,结构紧凑,安装方便,但制造精度高,成本高

C. 最大夹角:可达42度

D.应用:广泛应用于独立悬架驱动桥,靠近转向轮一侧

3) 伸缩型 (图4-8c):

A.构造:内外滚道为园筒形直槽

B.优:传动时,球形壳和星形套可沿轴向相对移动

可省去伸缩花键,使构造简单,

且轴向移动是通过钢球沿内外滚道滚动实现的,故滑动阻力小,传动效率高

C. 最大夹角: 可达20°

D.应用: 广泛用于独立悬架转向驱动桥,靠近差速器侧,以及断开式驱动桥。 四、挠性万向节

A.构造:靠橡胶弹性元件(盘、快、环形圈)的弹性变形来保证相交两轴间传动不发生干涉。

B.优缺:减少传动系的扭转振动、动载荷和噪声,结构简单,使用中不需润滑,但用于夹角较小的场合

C. 最大夹角: 一般3°-5°

D.应用: 夹角不大和有很小轴向位移的场合,如常用于乘用车三万向节传动中靠近变速器的第一万向节;或载质量较大的商用车中用于发动机与变速器之间、变速器与分动器之间,以消除制造安装误差和车架变形对传动的影响。

§4-3万向传动的运动和受力分析 一、单十字轴万向节传动

1、从动轴角速度2ω与1ω的关系,

当十字轴万向节的主动轴I 与从动轴II 间的夹角为关系为α时,主动轴I 与从动轴II 的角速度21,ωω转角间关系为:

1

2212cos sin 1cos φαα

ωω-=

(4-1) 式中:1?为主动叉转角

2、十字轴万向节传动的不等速性

由于1cos ? 是周期为2π 的周期函数,所以

1

2

ωω 也为同周期的周期函数。当1? 为0、π 时, ω2 达最大值 ω2max ,且为 ω1/cos α ;当1?为 π/2、3π/2时, ω2有最小值 ω2min 且为 ω1cos α 。因此,当主动轴以等角速度转动时,从动轴时快时慢,此即为普通十字轴万向节传动的不等速性。

3、转速不均匀系数k —表示万向节传动的不等速性

ααωωωtg k sin 1

min

2max 2=-=

(4-2)

4、从动轴转矩T 2

如不计万向节中的摩擦损失,主、从轴的功率相等

∴2211ωωT T = (A ) 式中:T 1、T 2为主从动轴转矩

21,ωω为主从动轴转动角速度

将(4-1)式代入上式,可得:α

?αcos cos 11

2212Sin T T -= (4-3)

若T 1不变,从(A )式,12

1

1

2ωωωT T =,不变,当min 22ωω≡最小时,从动轴转矩T 2最大,α

αωωωωcos cos 1111min 211

max 2T

T T T =?= max 22ωω=时,从动轴转矩T 2最小,αα

ωωωcos cos )(cos 111

1

max

21

1

min 2T T a T T ==代入 ∴α

αcos 1

cos 12≤

T T (B ) 即当T 1和α一定时,从动轴上的转矩T 2为一周期函数,且在其最大,最小值间每转变化两周。(∵最大最小值每转变化两周) 5、单万向节的转速特性

比较(A )、(B ),且如输入轴为等速,1ω=定值,则

α

ωωαωcos cos 1

21≤

≤ (C ) 从动轴为不等速旋转。 6、附加弯曲力偶矩的分析

具有夹角 α 的十字轴万向节,仅在主动轴驱动转矩和从动轴反转矩的作用下是不能平衡的。从万向节叉与十字轴之间的约束关系分析可知,主动叉对十字轴的作用力偶矩,除主动轴驱动转矩T 1之外,还有作用在主动叉平面的弯曲力偶矩 。同理,从动叉对十字轴也作用有从动轴反转矩T 2和作用在从动叉平面的弯曲力偶矩 。在这四个力矩作用下,使十字轴万向节得以平衡。

二、双万向节传动 1、布置方法

为使处于同一平面的输入、输出轴等速旋转,在汽车传动中常采用双万向节传动:

?1)把(同传动轴相连的)两万向节叉布置在同一平面内

?2)使(同传动轴相连的)两万向节交叉夹角,(轴平行、轴相交)可使输入、出等速。

2、附加力矩的作用

1)当输入轴与输出轴平行时(图4-11a ),直接连接传动轴的两万向节叉所受的附加弯矩,使传动轴发生如图4-6b 中双点划线所示的弹性弯曲,从而引起传动轴的弯曲振动。 2)当输入轴与输出轴相交时(图4-11c ),传动轴两端万向节叉上所受的附加弯矩方向相同,不能彼此平衡,传动轴发生如图4-6d 中双点划线所示的弹性弯曲。

§4-4 万向节设计计算 一、计算载荷:

(一)确定计算载荷方法有三种,因两种布置而不同:(1)传动轴用于变速器与驱动桥之间; (2)传动轴用于转向驱动桥间,又有区别: 1、按max e T ,1i 确定

(1)传动轴用于变速器的与驱动桥间

n

i i k T k T f e d se η

1max 1=

(4-1-1)

式中:d k ——动载系数,对于液力自动变速器,d k =1,手动操纵的机械变速器的高性能赛车,d k =3

f i =0(一般货、矿用车、越野) d k =1 f i >0 d k =2或经验

??

??

?=<-≥时当时

当16195

.0)195.016(1001

16195.00max max

max e a e a e a T g

m T g m T g

m i f

max e T —发动机最大转矩

k —液力变矩器变矩系数,12

)

1(0+-=

k k ,K 0为最大变矩系数 1i —变速器一档传动比

f i —分动器传动比,见表4—2 η—从发动机到万向节之间的传动效率

n —计算驱动桥数,见表4—2 (2)传动轴用于转向驱动桥中

n

i i ki T k i T T f e d se se 2201max 012

η== (4-1-2)

式中:0i -主减速器传动比 2、按驱动轮打滑来确定

(1)传动轴位于变速器与驱动桥间

m

m r ss i i r m G T η?0221'=

(4-1-3)

式中:G 2—满载状态下一个驱动桥上的静载荷

2

m '—汽车最大加速度时的后轴负荷转移系数, 轿2m '=1.2-1.4, 货2m '=1.1-1.2 ?—轮胎与路面间的附着系数, 一般, ?=0.85, 越野车 ?=1 r r —车轮滚动半径

m i —主减速器从动齿轮到车轮间的传动比,无轮边减速则m i =1

m η—主减速器主动齿轮到车轮间的传动效率

(2)传动轴用于转向驱动桥中 m

m r SS i r m G T η?2112'=

(4-1-4)

式中:G 1—满载状态下转向驱动桥上的静载荷 m ,

1—汽车最大加速度时的前轴负荷转移系数,乘0.80-0.85,商0.75-0.90 3、按日常平均使用转矩确定

(1)从动轴位于变速器和驱动桥间

n

i i r F T m m r

t sf η01=

(4-1-5)

式中:F t —日常汽车行驶的平均牵引力,其他符号意义同前 (2)用于转向驱动桥中

n

i r F T m m r

t sf η22=

(4-1-6)

(二)计算载荷使用: 1、静强度计算:

T s =min[T se1,T ss1]或T s =min[T se2,T ss2], 安全系数取2.5-3.0 2、疲劳寿命计算 T s 取T sf1或T sf2 二、十字轴万向节设计

损坏型式主要是十字轴轴颈断裂和滚针轴承的磨损. 1、轴颈有足够的抗弯强度:

各滚针对十字轴轴颈的合力为F

α

cos 21

r T F =

(4-13)

式中:T 1—静强度计算转矩

r —合力F 作用线到十字轴中心距离 α—主、从动叉轴的最大夹角 1)轴颈根部的弯曲应力

)

(32)

(64

2

4

24114

24

11d d S

F d d d d FS W

S F w -=

-=

=

ππ

σ (4-14)

[]2

350~250mm N

w w =≤σσ

式中:d 1—十字轴轴颈直径

d 2—十字轴油道孔直径

s —合力F 作用线到轴根颈部的距离 2)切应力

[]MPa d d F A F 12080)

(42221-=≤-==

τπτ (4-15) 2、滚针轴承接触应力:

b

n j L F d d ????

??+=0111272σ iZ F F n 6.4=

[]2

3200~3000mm

N j

3、对滚针要求:

直径d ≮1.6mm,-以免压碎

d 差别在0.003mm 以内-以免载荷分配不均

轴承径向间隙在0.009~0.095mm,-过大承载滚针数减少,过小受热或脏物卡住 周向总间隙0.08-0.30,-承载能力高,防应力集中 4、材料 1)十字轴

20CrMnTi,20Cr,20MnVB,12CrNi3A 轴颈表面渗碳淬火,

表面硬度58-64HRC, 轴颈端面硬度≮55HRC ,心部硬度33-48 HRC 2)万向节

35、40、45中碳钢或40CrNiMoA, 调质 18-33 HRC 3)滚针轴承碗:GCr15

§4-4传动轴结构分析与设计:

长度与夹角,足够的强度和足够高的临界转速 1、长度与夹角及变化:由总布置确定

长度:保证在传动轴长度处于最大值的,花键套与轴有足够的配合长度; 而在长度处于最小时

不顶死。

夹角: 影响万向节十字轴和滚针轴承寿命、万向传动效率和十字轴旋转的均匀性

一个滚针所受的最大载荷

滚针工作长度

滚针直径

每列中滚针数 滚针列数

2、临界转速k n

旋转的传动轴因质量偏心,产生离心惯性力,该力是引起传动轴弯曲振动的干扰力。此力频率与传动轴转速相同。一旦传动轴转速等于其弯曲振动固有频率时,则发生共振。使振幅↑,直到折断,这个转速称为临界转速k n ,

由机械振动理论可知,对应弯曲振动的一阶固有频率的传动轴临界转速为:

c

c c

k L d D n 2

2

8

10

2.1+?= (r/min ) (4-26)

式中:c L —传动轴的支承长度(两万向节中心间距离)

c c

d D ,—传动轴管外、内径,mm ,提问:实心轴和空心轴哪个好?

设计时,取安全系数K=

max n n k

=1.2~2.0,max n 为传动轴最高转速,K 取1.2用于精确动平

衡,高精度的伸缩花键及万向节间隙较小时。 3、实心与空心

由(4-26),实心时k c n d ,0=比空心低,且费材料,∴广泛采用空心轴,(注意无缝管好于焊接管,∵制造时不准)

另外,为↑k n 以及总布置方便,将传动轴断开成二、三根,万向节用三、四个,而在中间传动轴上加支承。

应用:实心-等速万向节相连的转向驱动桥半轴,断开式驱动桥的摆动半轴 空心-万向传动轴 4、强度计算:

1)轴管扭转应力:

a e c C C n e MP d D T D D d D T

W T 300][)(162

/)(324

41441=≤-=-==

τππτ 式中:T 1-传动轴计算扭矩

5、传动轴的不平衡:→弯曲振动

原因: 十字轴轴向窜动—装配时严格控制 花键间隙—提高精度 轴两端定心精度—提高精度

高速旋转时轴弹性变形—设计缩短长度 点焊平衡片热影响—冷却后再检验

万向传动轴设计说明书

汽车设计课程设计说明书 设计题目:上海大众-桑塔纳志俊万向传动 轴设计 2014年11月28日

目录 1前言 2设计说明书 2.1原始数据 2.2设计要求 3万向传动轴设计 3.1万向节结构方案的分析与选择3.1.1十字轴式万向节 3.1.2准等速万向节 3.2万向节传动的运动和受力分析3.2.1单十字轴万向节传动 3.2.2双十字轴万向节传动 3.2.3多十字轴万向节传动 4 万向节的设计与计算 4.1 万向传动轴的计算载荷 4.2传动轴载荷计算

4.3计算过程 5 万向传动轴的结构分析与设计计算 5.1 传动轴设计 6 法兰盘设计

前言 万向传动轴在汽车上应用比较广泛。发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。传动轴是由轴管、万向节、伸缩花键等组成。伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。

2 设计说明书 2.1 原始数据 最大总质量:1210kg 发动机的最大输出扭矩:Tmax=140N·m(n=3800r/min); 轴距:2656mm; 前轮胎选取:195/60 R14 、后轮胎规格:195/60 R14 长*宽*高(mm):4687*1700*1450 前轮距(mm);1414 后轮距(mm):1422 最大马力(pa):95 2.2 设计要求 1.查阅资料、调查研究、制定设计原则 2.根据给定的设计参数(发动机最大力矩和使用工况)及总布置图,选择万向传动轴的结构型式及主要特性参数,设计出一套完整的万向传动轴,设计过程中要进行必要的计算与校核。 3.万向传动轴设计和主要技术参数的确定 (1)万向节设计计算 (2)传动轴设计计算 (3)完成空载和满载情况下,传动轴长度与传动夹角变化的校核 4.绘制万向传动轴装配图及主要零部件的零件图 3 万向传动轴设计 3.1 万向节结构方案的分析与选择 3.1.1 十字轴式万向节 普通的十字轴式万向节主要由主动叉、从动叉、十字轴、滚针轴承及其轴向定位件和橡胶密封件等组成。

重型载货汽车万向传动轴设计方案说明书

汽车设计课程设计说明书 题目:重型载货汽车万向传动轴设计 姓名:xx 学号:200924xxxx 同组者:xxxxxx 专业班级:09车辆工程2班 指导教师:xxxxxxxx

商用汽车万向传动轴设计 摘要 万向传动轴在汽车上应用比较广泛。发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。传动轴是由轴管、万向节、伸缩花键等组成。伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。 目录 一、概述 (04)

二、货车原始数据及设计要求 (05) 三、万向节结构方案的分析与选择 (06) 四、万向传动的运动和受力分析 (08) 五、万向节的设计计算 (11) 六、传动轴结构分析与设计计算 (17) 七、参考文献 (20) 一、概述 汽车上的万向传动轴一般是由万向节、轴管及其伸缩花键等组成。主要是用于在工作过程中相对位置不断变化的两根轴间传递转矩和旋转运动。 在动机前置后轮驱动的汽车上,由于工作时悬架变形,驱动桥主减速器输入轴与变速器输出轴间经常有相对运动,普遍采用万向节传动<图1—1a、b)。当驱动桥与变速器之间相距较远,使得传动轴的长度超过1.5m时,为提高传动轴的临界速度以及总布置上的考虑,常将传动轴断开成两段或三段,万向节用三个或四个。此时,必须在中间传动轴上加设中间支承。

万向传动轴设计说明书

目录 (一)万向传动轴设计 1.1 概述 (02) 1.1 结构方案选择 (03) 1.2 计算传动轴载荷 (04) 1.3 十字轴万向节设计 (05) 1.4 传动轴强度校核 (07) 1.5 传动轴转速校核及安全系数 (07) 1.6 参考文献 (09)

概述 万向传动轴一般是由万向节、传动轴和中间支承组成。主要用于在工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。 万向传动轴设计应满足如下基本要求: 1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地 传递动力。 2.保证所连接两轴尽可能等速运转。 3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围 内。 4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等。 变速器或分动器输出轴与驱动桥输入轴之间普遍采用十字轴万向传动轴。在转向驱动桥中,多采用等速万向传动轴。当后驱动桥为独立的弹性,采用万向传动轴。

1.传动轴与十字轴万向节设计要求 1.1 结构方案选择 十字轴万向节结构简单,强度高,耐久性好,传动效率高,生产成本低,但所连接的两轴夹角不宜太大。当夹角增加时,万向节中的滚针轴承寿命将下降。 普通的十字轴式万向节主要由主动叉,从动叉,十字轴,滚针轴承及轴向定位件和橡胶封件等组成。 1. 组成:由主动叉、从动叉、十字轴、滚针轴承、轴向定位件和橡胶密封件组成 2. 特点:结构简单、强度高、耐久性好、传动效率高、成本低,但夹角不宜过大。 3.轴向定位方式: 盖板式卡环式瓦盖固定式塑料环定位式 4. 润滑与密封:双刃口复合油封多刃口油封

1.2 计算传动轴载荷 由于发动机前置后驱,根据表4-1,位置采用:用于转向驱动桥中 ①按发动机最大转矩和一档传动比来确定 T se1=k d T emax ki1i f i0η/n T ss1= G1 m’1υr r/ 2i mηm 发动机最大转矩T emax=186Nm 驱动桥数n=1, 发动机到万向传动轴之间的传动效率η=0.89, 液力变矩器变矩系数k={(k0 -1)/2}+1=1, 满载状态下一个转向驱动桥上的静载荷G1=50%m a g=0.5*1747*9.8=8530.9N,满载状态下一个驱动桥上的静载荷G2=65%m a g=0.65*1747*9.8=11128.39N, 发动机最大加速度的前轴转移系数m’1=0.8 发动机最大加速度的后轴转移系数m’2=1.3, 轮胎与路面间的附着系数υ=0.85, 车轮滚动半径r r=0.35, i=3.6 变速器一挡传动比 1 i=1 分动器传动比 f 主减速器从动齿轮到车轮之间传动比i m=0.55, 主减速器主动齿轮到车轮之间传动效率ηm=η发动机η离合器=0.98x0.96=0.94 因为0.195 m a g/T emax>16,f j=0,所以猛接离合器所产生的动载系数k d=1,主减速

汽车万向传动设计

摘要 本毕业设计的任务是对解放CA1140型货车进行万向传动装置的设计、研究。在指导老师的细心指导下,通过对汽车万向传动装置的了解,进一步进行万向传动装置的设计。通过实际的市场调查和客观的实际观察,全面了解万向传动装置的结构,充分了解到万向传动装置的工作原理与意义,及其在汽车行驶中的重要作用。在汽车的正常工作中,是一个必不缺少的部件,也是一个不可替代的关键部件。对于万向传动装置的研究,有很大的发展空间,具有相当大的研究意义。在充分与指导老师讨论、研究后,故选此课题。在进行设计任务时,分析了万向传动装置类型的,根据题目所要求的原始数据要求,确定了所选用万向传动轴的种类。在初定各个部件的相关尺寸后,根据要求进行了计算和校核,确定了所设计部件的尺寸和参数,并选择了零部件的材料。 关键字:万向节,传动轴,强度,计算,校核 ABSTRACT This graduation task is on the Jiefang CA1140 type trucks for universal transmission design. In the instructor's careful guidance, through the automotive universal drive unit, further universal design of the drive shaft. Through actual market research and objective observations, a comprehensive understanding of the structure of universal drive shaft to fully understand the universal drive unit works and significance, and its vehicle. In the car's work, is a not missing parts, is a key part. For the study of universal drive shaft, have a high potential for growth, with considerable significance. In fully and instructor to discuss, study, this issue. The design task, analyzed the universal transmission device type, under the title the required raw data requirements, decide to choose the kind of universal drive shaft. In various parts of the associated YTC sizes depending on the requirements for the calculation and check, determine the design part of dimensions and parameters, and selected parts of the material. Keywords:Universal joint, Transmission shaft, Strength,Calculation, Check 目录 摘要………………………………………………………………………………………I Abstract……………………………………………………………………………………II 第1章绪论 (1) 1.1 选题的目的和意义 (1) 1.2 国内外研究现状和发展趋势 (2) 第 2 章设计方案选择 (4) 2.1 万向传动装置基本组成的选择 (4) 2.2 万向节类型的选择 (4) 2.3 十字轴式万向节结构方案分析 (5) 2.4 十字轴万向节总成尺寸的确定与强度校核 (5) 2.5 中间支承结构分析与设计 (6) 2.6 本章小结 (6) 第3章万向传动轴总成的设计 (7) 3.1 万向传动轴总体概述及传动布置型式的选择 (7) 3.2 传动轴断面尺寸的确定与强度校核 (8) 3.2.1传动轴的运动分析 (8) 3.2.2传动轴的临界转速 (11)

轻型商用车传动轴及万向节毕业设计

摘要 汽车的万向传动轴是由传动轴、万向节两个主要部件联接而成,在长轴距的车辆中还要加装中间支承。万向传动轴主要用于工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。在本世纪初万向节与传动轴的发明与使用,在汽车工业的发展中起到了极其重要的作用。随着汽车工业的发展,现代汽车对万向节与传动轴的效率、强度、耐久性和噪声等性能方面的设计及计算校核要求也越来越严格。本毕业设计将依据现有生产企业在生产车型(CA1041)的万向传动装置作为设计原型。在给定整车主要技术参数以及发动机、变速器等主要总成安装位置确定的条件下,对整车结构进行了分析,确定了传动轴布置方案,采用两轴三万向节带中间支承的布置形式。在确定了传动方案后,对传动轴、万向节总成、中间支承总成进行设计,使该总成能够在正常使用的情况及规定的使用寿命内不发生失效。 关键字:传动轴;万向节;中间支承;设计;校核

ABSTRACT The universal drive shaft of automotive is composed of transmission shaft and cardin joint. The main function of the universal drive shaft is to transmitting torque and rotation movement between two shafts whose relative position is variation in the working process. At the beginning of this century the transmission shaft and cardin joint play an important role in the development of automobile industry. As the development of automobile industry, the automobile demand that the design and verification of transmission shaft and cardin join stricter in the efficiency, intension, durability and noise performance. This graduation design chooses existing production business enterprise of basis is producing the car type(CA1041) of ten thousand to spread to move to equip the conduct and actions design prototype. Under the conditions of the main technical parameters of the given vehicle, installation location of engine, transmission and other major assembly are determined , the structure of the vehicle is analysised, the transmission shaft layout program is determined. Two shaft-three cardin joints is adapted.After determining the transmission options, the right drive shaft and universal joint assembly, intermediate bearing assembly is designed, so that the assembly can be used in normal situations and the life within no failure. Keywords:Transmission shaft;Cardin joint;Middle supporting;Design ;Verification

汽车万向传动轴设计

分类号:U463 单位代码:10452 本科专业职业生涯设计规划人生方向实现人生梦想 汽车万向传动轴设计 姓名 学号 年级 2007级 专业车辆工程 系(院)工学院 指导教师 2011年 4 月 1 日

目录 第一部分 (4) 规划人生方向实现人生梦想 (4) 前言 (4) 1 自我分析 (4) 1.1个性特征分析 (4) 1.1.1 性格特征分析 (5) 1.1.2 兴趣爱好分析 (5) 1.2 个人能力分析 (5) 1.2.1 能力优势 (5) 1.2.2 能力弱势 (5) 1.3 价值观分析 (5) 1.3.1 人生价值观分析 (6) 1.3.2 职业价值观分析 (6) 2 环境分析 (6) 2.1 家庭环境分析 (6) 2.2 学校环境分析 (6) 2.3 社会环境分析 (7) 2.4 临沂环境分析 (7) 3 毕业打算及具体计划 (7) 3.1 做一公务人员 (7) 3.2 考研 (7) 3.3 自主创业 (7)

4 具体各阶段规划 (8) 4.1 2010年—2013年(短期目标) (8) 4.2 2014年—2019年(中期目标) (8) 4.3 2019年—退休 (9) 5 最后总结 (9) 第二部分 (9) 汽车万向传动轴设计 (9) 中文摘要 (9) ABSTRAT (10) 1概论 (11) 2华利微型客车TJ6350汽车原始数据及设计要求 (12) 3 万向传动轴的结构特点及基本要求 (13) 4 万向传动轴结构方案的分析 (15) 4.1 基本组成的选择 (15) 4.2 万向传动轴的计算载荷 (17) 5 万向传动的运动和受力分析 (18) 5.1 单十字万向节传动 (19) 5.1.1运动分析 (19) 5.1.2 附加弯曲力偶矩的分析 (20) 5.2 双十字轴万向节传动 (21) 6 万向传动轴的选择 (23) 6.1 传动轴管的选择 (23) 6.2 伸缩花键的选择 (23)

轿车传动系总体方案设计及万向传动轴的设计

汽车设计课程设计 题目轿车传动系统总体方案及万向传动轴的设计 院(系)机械与汽车工程学院 专业车辆工程(新能源) 年级2011级 学生姓名 学号 指导教师邓利军 二○一四年六月

摘要 汽车传动系统的基本功用是将发动机发出的动力传给驱动车轮。组成现代汽车普遍采用的是活塞式内燃机,与之相配用的传动系统大多数是采用机械式或液力机械式的。普通双轴货车或部分轿车的发动机纵向布置在汽车的前部,并且以后轮为驱动轮,其传动系统的组成和布置发动机发出的动力依次经过离合器、变速器(或自动变速器)和由万向节与传动轴组成的万向传动装置,以及安装在驱动桥中的主减速器、差速器和半轴,最后传到驱动车轮。传动系统的首要任务是与发动机协同工作,以保证汽车能在不同使用条件下正常行驶,并具有良好的动力性和燃油经济性。 关键词:离合器、变速器、万向节传动轴、驱动桥、主减速器、差速器、半轴、驱动车轮

Abstract The basic issue of Automotive driveline is to driving force from the engine to drive wheels. The modern Motor commonly used is the piston-type internal combustion engine and usually use mechanical drive system or hydraulic mechanical drive system to match with it. The engine of General biaxial goods or part of the vertical layout are in the front of the car, and use the rear wheel for driving wheel, the composition of the drive system and arrangement of the engine power to issue the order after clutch、gearbox (or automatic transmission) and the drive shaft gear which make up of the universal section and the composition, and the main reducer which installed on the drive axle 、 differential and axle, and finally is the drive wheels.The primary tasks of transmission is to work together with the engine for ensure that the use of motor vehicles to normal in different traffic conditions, and has good power and fuel economy. Key words: Clutch, transmission, drive shaft universal joints, drive axle, main reducer, differential, axle, drive wheels

汽车设计简答计算备考复习

第二章 离合器设计 1.某厂新设计一载重量为 4t 的在乡间道路行驶的货用汽车,其发动机为 6100Q 水冷柴油机,发动机最大扭矩T emax =340N ·m/1700~1800 转 / 分,最高转速为3500转 / 分。试初步确定离合器的结构型式及主要尺寸。(取 μ = ) 解: ①该汽车为载重车,使用条件可能比较恶劣,又是柴油机,起动时工作比较粗暴,转矩不平稳,因此选后备系数β=; ②采用单片离合器,摩擦片材料用粉末冶金铜基材料,摩擦因数f=,摩擦片上单位工作压力p 0=; ③发动机最大转矩T emax =340 N ·m ,取直径系数K D =16,按经验公式计算摩擦片外径D : 05.29534016max ===T K e D D mm ,取D=300mm ; 摩擦片内径d==180mm ; 最大转矩时摩擦片最大圆周速度s m s mm Dn v /65/235560/350015014.360/max <=??==π,符合圆周速度要求。 ④摩擦片厚度取b=; ⑤压紧弹簧采用推式膜片弹簧,静摩擦力矩m N T T e c ?=?==5443406.1max β, ⑥按加载点半径要求:(D+d)/4

传动轴和万向节设计2

目录 (一)传动轴与十字轴万向节设计 1.1结构方案选择 (03) 1.2计算传动轴载荷 (03) 1.3传动轴强度校核 (04) 1.4十字轴万向节设计 (04) 1.5传动轴转速校核及安全系数 (06) 1.6参考文献 (08) (二)半承载式城市客车总体设计 2客车主要数据 (08) 2.1尺寸参数 (08) 2.2质量参数 (09) 2.3发动机技术参数 (09) 2.4底盘参数 (10) 2.5传动系的传动比 (10)

3.1发动机使用外特性 (11) 3.2车轮滚动半径 (11) 3.3滚动阻力系数f (11) 3.4空气阻力系数和空气阻力 (11) 3.5机械效率 (11) 3.6计算动力因数 (12) 3.7确定最高车速 (15) 3.8确定最大爬坡度 (15) 3.9确定加速时间 (16) 4燃油经济性计算 (16) 5制动性能计算 (17) ……………………………………… .17 5.1最大减速度j m ax 5.2制动距离S (17) (17) 5.3上坡路上的驻坡坡度i m ax 1 (18) 5.4下坡路上的驻坡坡度i 2 m ax 6稳定性计算 (18) 6.1纵向倾覆坡度 (18)

第一部分 1.传动轴与十字轴万向节设计要求 1.1 结构方案选择 十字轴万向节结构简单,强度高,耐久性好,传动效率高,生产成本低,但所连接的两轴夹角不宜太大。当夹角增加时,万向节中的滚针轴承寿命将下降。

普通的十字轴式万向节主要由主动叉,从动叉,十字轴,滚针轴承及轴向定位件和橡胶封件等组成。 1.2 计算传动轴载荷 由于发动机前置后驱,根据表4-1,位置采用:用于变速器与驱动桥之间 ①按发动机最大转矩和一档传动比来确定 T se1=k d T emax ki1i fη/n T ss1= G2 m’2φr r/ i0i mηm 根据富利卡2.0数据, 发动机最大转矩T emax=156Nm 驱动桥数n=1, 发动机到万向传动轴之间的传动效率η=0.85, 液力变矩器变矩系数k={(k0 -1)/2}+1=1.615, 满载状态下一个驱动桥上的静载荷G2=65%m a g=0.65*1970*9.8=12548.9N, 发动机最大加速度的后轴转移系数m’2=1.3, 轮胎与路面间的附着系数φ=0.85, 车轮滚动半径r r=0.35, 主减速器从动齿轮到车轮之间传动比i m=1, 主减速器主动齿轮到车轮之间传动效率ηm=η发动机η离合器=0.9*0.85=0.765, 因为0.195 m a g/T emax>16,f j=0,所以猛接离合器所产生的动载系数k d=1,主减速比i0=4.5

汽车万向传动轴设计

第一章万向传动轴的结构特点及基本要求 万向传动轴一般是由万向节、传动轴和中间支承组成。主要用于在工作过程中相对位置不节组成。伸缩套能自动调节变速器与驱动桥之间距离的变化。万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。 传动轴总成主要由传动轴及其两端焊接的花键轴和万向节叉组成。传动轴中一般设有由滑动叉和花键轴组成的滑动花键,以实现传动长度的变化。传动轴的长度和夹角及它们的变化范围由汽车总布置设计决定。设计时应保证在传动轴长度处在最大值时,花键套与轴有足够的配合长度;而在长度处在最小时不顶死。传动轴夹角的大小直接影响到万向节十字轴和滚针轴承的寿命、万向传动的效率和十字轴旋转的不均匀性。在长度一定时,传动轴断面尺寸的选择应保证传动轴有足够的强度和足够高的临界转速。 图 1-1 变速器与驱动桥之间的万向传动装置 基本要求: 1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。 2.保证所连接两轴尽可能等速运转。

3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。 4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等 第二章 万向传动轴的应用 在现代汽车的总体布置中,发动机、离合器和变速箱连成一体固装在车架上,而驱动桥则通过弹性悬架与车架连接。由此可见,变速器输出轴轴线与驱动桥的输入轴轴线不在同一平面上。当汽车行驶时,车轮的跳动会造成驱动桥与变速器的相对位置(距离、夹角)不断变化,故变速器的输出轴与驱动桥的输入轴不可能刚性连接,必须安装有万向传动装置。 图2-1 万向传动装置在汽车传动系统中的应用与布置 万向传动轴在汽车上的应用比较广泛。发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动器输入轴轴线之间的相对位置经常变化,因普遍采用可伸缩的十字轴万向传动轴;某些汽车根据总布置要求需将离合器与变速器、变速器与分动器之间拉开一段距离,考虑到它们之间很难保证轴与轴同心及车架的变形,所以常采用十字轴万向 传动轴或挠性万向传动轴;对于转向驱动桥,左、右驱动轮需要随汽车行驶

汽车万向传动轴设计技术毕业设计说明书

目录 1.1 汽车万向传动轴的发展与现状 (2) 1.2 万向传动轴设计技术综述 (2) 2 万向传动轴结构方案确定 (4) 2.1 设计已知参数 (4) 2.2 万向传动轴设计思路 (6) 2.3 结构方案的确定 (6) 3 万向传动轴运动分析 (9) 4 万向传动轴设计 (10) 4.1 传动载荷计算 (10) 4.2 十字轴万向节设计 (12) 4.3滚针轴承设计 (13) 4.4传动轴初步设计 (14) 4.5 花键轴设计 (15) 4.6 万向节凸缘叉连接螺栓设计 (16) 4.7 万向节凸缘叉叉处断面校核 (17) 5基于UG的万向传动轴三维模型构建 (18) 5.1万向节凸缘叉作图方法及三维图 (18) 5.2万向节十字轴总成作图方法及三维图 (21) 5.3 内花键轴管与万向节叉总成作图方法及三维图 (25) 5.4 花键、轴管与万向节叉总成作图方法及三维图 (2624) 5.5万向传动轴总装装配方法及三维图 (27) 6 万向传动装置总成的技术要求、材料及使用保养 (29) 6.1普通万向传动轴总成的主要技术要求 (29) 6.2万向传动轴的使用材料 (29) 6.3 传动轴的使用与保养 (30) 7 结论 (31) 总结体会 (32) 谢辞 (33) 附录1外文文献翻译 (34) 附录2模拟申请万向传动轴专利书 (48) 【参考文献】 (52)

1引言 1.1 汽车万向传动轴的发展与现状 万向传动装置的出现要追溯到1352年,用于教堂时钟中的万向节传动轴。1663年英国物理学家虎克制造了一个铰接传动装置,后来被人们叫做虎克万向节,也就是十字轴式万向节,但这种万向节在单个传递动力时有不等速性。1683年双联式虎克万向节诞生,消除了单个虎克万向节传递的不等速性,并于1901年用于汽车转向轮。上世纪初,虎克万向节和传动轴已在机械工程和汽车工业中起到了极其重要的作用。1908年第一个球式万向节诞生,1926年凸块式等速万向节出现,开始用于独立悬架的前轮驱动轿车和四轮驱动的军用车的前轮转向节。1949年由双联式虎克万向节演变而来的三销式万向节开始被使用在低速的商用车辆上。 直到现在,根据在扭转方向是是否有明显的弹性,万向节可分为刚性万向节和挠性万向节。刚性万向节是靠零件的铰链式传递动力,又分成不等速万向节(常用的为十字轴式)、准等速万向节(双联式、二销轴式等)和等速万向节(球叉式、球笼式等);挠性万向节是靠弹性零件传递动力的,具有缓冲减振作用。万向传动装置已经可以满足飞速发展的汽车科技[]1。 1.2 万向传动轴设计技术综述 汽车万向传动装置一般由万向节和传动轴以及中间支撑等组成,它主要用于工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。以内燃机在作为动力的机械传动汽车中,万向传动装置是其传动系中必不可少的部分。万向传动装置设计的合理与否直接影响传动系的传动性能。选用与布置不当会给传动系增添不必要的和设计未能估算在内的附加动负荷,可能导致传动系不能正常运转和早期损坏。只有合理的设计,才能保证汽车在各种工况和路面条件下可靠地传递动力。 在汽车高速行驶的时候,万向传动装置也在伴随着高速旋转,并且源源不断的将动力从变速器的输出端输送到主减速器上。因此,万向传动装置的设计就显得十分重要,设计必须保证所连接的两轴的夹角及相对位置在一定范围内变化时,能可靠而稳定地传

传动轴设计计算

编号: 传动轴设计计算书 编制:日期: 校对:日期: 审核:日期: 批准:日期:

一.计算目的 我们初步选定了传动轴,轴径选取Φ27(详见《传动轴设计方案书》),动力端选用球面滚轮万向节,车轮端选用球笼万向节。左、右前轮分别由1根等速万向节传动轴驱动。通过计算,校核选型是否合适。 二.计算方法 本车传动轴设计不是传统载货车上从变速器到后驱动桥之间长轴传动设计,而是半轴传动设计。而且传动轴材料采用高级优质合金钢,且热处理工艺性好,使传动轴的静强度和疲劳强度大为提高,因此计算中许用应力按照半轴设计采用含铬合金钢,如40Cr、42CrMo、40MnB,其扭转屈服极限可达到784 N/mm2左右,轴端花键挤压应力可达到196 N/mm2。 传动轴校核计算流程:

1.1 轴管直径的校核 校核: 两端自由支撑、壁厚均匀的等截面传动轴的临界转速 22 2 8 1.2x10 n e l d D+ =(r/min) 式中L传动轴长,取两万向节之中心距:mm D为传动轴轴管外直径:mm d为传动轴轴管直径:mm 各参数取值如下:D=φ27mm,d=0mm 取安全系数K=n e/n max,其中n max为最高车速时的传动轴转速,取安全系数K=n e/n max=1.2~2.0。 实际上传动轴的最大转速n max=n c/(i g×i0),r/min 其中:n c-发动机的额定最大转速,r/min; i g-变速器传动比; i0-主减速器传动比。

1.2 轴管的扭转应力的校核 校核扭转应力: τ= ][164 4τπ≤) -(d D DT J (N/mm 2) ][τ……许用应力,取][τ=539N/mm 2[高合金钢(40Cr 、40MnB 等)、中频淬火抗拉 应力≥980 N/mm 2,工程应用中扭转应力为抗拉应力的0.5~0.6,取该系数为0.55,由此可取扭转应力为539 N/mm 2,参考GB 3077-88] 式中: T j ……传动系计算转矩,N ·mm ,2/k i i T T d g0g1x ema j η= N ·m T emax -发动机最大转矩N ·mm ; i g1-变速器一档传动比或倒档传动比; i g0-主减速器传动比 k d -动载系数 η-传动效率 1.3 传动轴花键齿侧挤压应力的校核 传动轴花键齿侧挤压应力的校核 ][)2 )(4(2121j j ZL D D D D T σσ≤-+= (N/mm 2 ) 式中:T j -计算转矩,N ·mm ; D 1,D 2-花键的外径和径,mm ; Z ………花键齿数 L ………花键有效长度

五十铃货车传动轴设计

五十铃货车传动轴设计 第一章五十铃货车原始数据及设计要求 发动机的输出扭矩:最大扭矩318.5N·m/2000r/min;轴距:3360mm;变速器传动比: 五挡0.787 ,一挡6.378,轮距:前轮1760毫米,后轮1610毫米,载 重量5000千克 设计要求: 只设计直轴部分,进行受力分析,弯、扭,强度校核,画图 第二章万向传动轴的结构特点及基本要求 万向传动轴一般是由万向节、传动轴和中间支承组成。主要用于在工作过程中相对位置不节组成。伸缩套能自动调节变速器与驱动桥之间距离的变化。万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。一般万向节由十字轴、十字轴承和凸缘叉等组成。 传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。重型载货汽车根据驱动形式的不同选择不同型式的传动轴。一般来讲4×2驱动形式的汽车仅有一根主传动轴。6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。 传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。一般传动轴在出厂前都要进行动平衡试验,并在平衡机上进行了调整。因此,一组传动轴是配套出 厂的,在使用中就应特别注意。 图 2-1? 万向传动装置的工作原理及功用

图 2-2? 变速器与驱动桥之间的万向传动装置 基本要求: 1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。 2.保证所连接两轴尽可能等速运转。 3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。 4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等 第三章五十铃万向传动轴结构分析及选型 由于五十铃货车轴距不算太长,且载重量5吨属中型货车,所以不选中间支承,只选用一根主传动轴,货车发动机一般为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据货车的总体布置要求,将离合器与变速器、变速器与分动器之间拉开一段距离,考虑到它们之间很难保证轴与轴同心及车架的变形,所以采用十字轴万向传动轴,为了避免运动干涉,在传动轴中设有由滑动叉和花键轴组成的伸缩节,以实现传动轴长度的变化。空心传动轴具有较小的质量,能传递较大的转矩,比实心传动轴具有更高的临界转速, 所以此传动轴管采用空心传动轴。 传动轴的长度和夹角及它们的变化范围,由汽车总布置设计决定。设计时应保证在传动轴长度处在最大值时,花键套与花键轴有足够的配合长度;而在长度处于最小时,两者不顶死。传动轴夹角大小会影响万向节十字轴和滚针轴承的寿命、万向传动效率和十字轴的不均匀性。变化范围为3。 传动轴经常处于高速旋转状态下,所以轴的材料查机械零件手册选取40CrNi,适用于很重要的轴,具有较高的扭转强度。 3.1传动轴管选择 传动轴管由低碳钢板制壁厚均匀、壁薄(1.5~3.0mm)、管径较大、易质量平衡、扭转强度高、弯曲刚度高、适用高速旋转的电焊钢管制成。 3.2 伸缩花键选择 选择矩形花键,用于补偿由于汽车行驶时传动轴两端万向节之间的长度变化。为减小阻力及磨损,对花键齿磷化处理或喷涂尼龙,外层设有防尘罩,间隙小一些,以免引起传动轴的震动。花键齿与键槽按对应标记装配,以保持传动轴总成的动平衡。动平衡的不平衡度由电焊在轴管外的平衡片补偿。装车时传动轴的伸缩花

传动轴结构分析与设计

传动轴结构分析与设计 传动轴总成主要由传动轴及其两端焊接的花键轴和万向节叉组成。传动轴中一般设有由滑动叉和花键轴组成的滑动花键,以实现传动长度的变化。为了减小滑动花键的轴向滑动阻力和磨损,有时对花键齿进行磷化处理或喷涂尼龙层;有的则在花键槽中放入滚针、滚柱或滚珠等滚动元件,以滚动摩擦代替滑动摩擦,提高传动效率。但这种结构较复杂,成本较高。有时对于有严重冲击载荷的传动,还采用具有弹性的传动轴。传动轴上的花键应有润滑及防尘措施,花键齿与键槽间隙不宜过大,且应按对应标记装配,以免装错破坏传动轴总成的动平衡。 传动轴的长度和夹角及它们的变化范围由汽车总布置设计决定。设计时应保证在传动轴长度处在最大值时,花键套与轴有足够的配合长度;而在长度处在最小时不顶死。传动轴夹角的大小直接影响到万向节十字轴和滚针轴承的寿命、万向传动的效率和十字轴旋转的不均匀性。 在长度一定时,传动轴断面尺寸的选择应保证传动轴有足够的强度和足够高的临界转速。所谓临界转速,就是当传动轴的工作转速接近于其弯曲固有振动频率时,即出现共振现象,以致振幅急剧增加而引起传动轴折断时的转速。传动轴的临界转速为 22 2 8 10 2.1 C c C k L d D n + ? = (4—13) 式中,n k为传动轴的临界转速(r/min);L C为传动轴长度(mm),即两万向节中心之间的距离;d c和D c分别为传动轴轴管的内、外径(mm)。 在设计传动轴时,取安全系数K=n k/n max=1.2~2.0,K=1.2用于精确动平衡、高精度的伸缩花键及万向节间隙比较小时,n max为传动轴的最高转速(r/min)。 由式(4—13)可知,在D c和L c相同时,实心轴比空心轴的临界转速低,且费材料。另外,当传动轴长度超过1.5m时,为了提高n k以及总布置上的考虑,常将传动轴断开成两根或三根,万向节用三个或四个,而在中间传动轴上加设中间支承。 传动轴轴管断面尺寸除满足临界转速的要求外,还应保证有足够的扭转强度。轴管的扭转切应力τc应满足

传动轴的原理

十字轴式万向传动轴的原理及其结构 十字轴式万向传动轴是应用于两相交轴或两平行轴之间的动力或运动的传递装置。由于 它结柯简单、运行可靠、使用维护方便而被广泛应用于各类机械传动中。如:交通运输,建 筑工程.冶金矿山、轧钢以及军工器械等。其传避的扭矩小至几N ·m ,大到几百kN ·m ,它 的结构也从单接头,双接头发展到多根联接的万向传动链。 图1是常见的双接头万向传动轴属于刚性非等速率传椭十字轴式万向传动轴。 使用于不同场台的传动轴,其结构型式和技术性能要求也有所不同。准确、台理地选用 和维护传动轴,对保证机槭稳定、可靠地运行以及延长其使用寿命十分重要。 一、传动轴的运动特性 一套完整的传动轴是由不同数量的万向节以不同的联接方式组合而成。 1、单接头万向节的运动特性 图2是单接头万向传动轴的原理图。它由两个分别与主动轴和从动轴相连接的叉头与一 个轴承组成,两轴成一定的角度β相交。Β称为输入或输出轴的轴间折角。 由图2可以看到,当主动轴旋转一周时,从动轴也旋转一周,因而它们的旋转周数始终 相等,即传动比始终等于1。但是,当我们观察其瞬时传动情况时会发现,由于轴间折角的 存在,它的传动比是变化的,即当主动轴以角速度ω1匀速转动时,从动轴由于叉子所处的 位置不同而以ω2转动,并且随着叉子角位移φ1的变化而变化: ()[]1 2122sin cos 1/cos ωβ?βω?-= 角速度的差异必然出现二轴转角的差异 ()211cos ?β?tg tg -= 图3为单接头万向轴的运动特性描述,从图中我们可以得出如下结论: 图1 双接头万向传动轴

(1)由于轴f可折角的存在(β≠0,其瞬时的传动比发生变化(i≠1),并以输人轴转角的π为周期交替变化,表明输入、输出轴之间为等周数而非等速率传动。 (2)轴间折角越大,瞬时传动比变化也越大,当轴间折角趋于9O°时,传动比趋于零,表明机构将会卡死, 不能传动。 (3)角位移差的存在,表明输入、输出轴之间出现异相,从而产生传动误差,降低了两轴间的传动精度。 (4)从动轴角速度的变化,必产生角加速度,由此系统的附加惯性矩引起冲击和振动,从而影响传动效率,降低机械及传莉轴的使用寿命。 (5)结构上的对称性,可以实现逆向传动。 2、双接头万向节和双联接万向节的运动特性 图4所示是按下列条件组合两个单接头万向节而形成的双接头十字轴式万向传动轴的结构。其组合条件是轴同折角必须相等β1=β2;中间联接轴两端叉头的轴承孔中心必须处在同一平面内;主,从动轴和中间联接轴的轴线必须处在同一平面内。 由图4我们可以看到.双接头万向轴与单接头万向轴在运动特性上的区别: (1)传动过程中两个万向节的不等速性互补,正好实现主、从动轴之间的等速率传动,即ω1=ω2; (2)中间联接轴仍然具有不等角速度转动的特点。因而,上述的组合条件称为十字轴式万向传动轴的等速条件。图5是按等速条件组成的双联中心球节十字轴式万向传动轴。 图2 单接头万向节的原理

相关文档