文档库 最新最全的文档下载
当前位置:文档库 › 发电机负序涡流场和温度场三维有限元分析

发电机负序涡流场和温度场三维有限元分析

发电机负序涡流场和温度场三维有限元分析
发电机负序涡流场和温度场三维有限元分析

省电力公司发电机保护整定计算课件

第一节概述 发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,同时发电机本身也是一个十分贵重的电器元件,因此,应该针对各种不同的故障和不正常运行状态,装设性能完善的继电保护装置。 1故障类型及不正常运行状态: 1.1 故障类型 1)定子绕组相间短路:危害最大; 2)定子绕组一相的匝间短路:可能发展为单相接地短路和相间短路; 3)定子绕组单相接地:较常见,可造成铁芯烧伤或局部融化; 4)转子绕组一点接地或两点接地:一点接地时危害不严重;两点接地时, 因破坏了转子磁通的平衡,可能引起发电机的强烈震动或将转子绕组烧损; 5)转子励磁回路励磁电流急剧下降或消失,即发电机低励或失磁:从电 力系统吸收无功功率,从而引起系统电压下降,如果系统中无功功率储备不足,将使电力系统中邻近失磁发电机的某些电压低于允许值,破坏了负荷与各电源间的稳定运行,甚至可使系统因电压崩溃而瓦解。 6)发电机与系统失步:会出现发电机的机械量和电气量与系统之间的振 荡,这种持续的振荡对发电机组和电力系统产生有破坏力的影响;7)发电机过励磁故障:并非每次都造成设备明显破坏,但多次反复过励 磁,将因过热而使绝缘老化,降低设备的使用寿命。 1.2 不正常运行状态 1)由于外部短路引起的定子绕组过电流:温度升高,绝缘老化;

2)由于负荷等超过发电机额定容量而引起的三相对称过负荷,温度升 高,绝缘老化; 3)由于外部不对称短路或不对称负荷而引起的发电机负序过电流和过 负荷:在转子中感应出100hz的倍频电流,可使转子局部灼伤或使护环受热松脱,从而导致发电机重大事故。此外还会引起发电机100Hz的振动; 4)由于突然甩负荷引起的定子绕组过电压:调速系统惯性较大,在突 然甩负荷时,可能出现过电压,造成发电机绕组绝缘击穿; 5)由于励磁回路故障或强励时间过长而引起的转子绕组过负荷; 6)由于汽轮机主气门突然关闭而引起的发电机逆功率:当机炉保护动作或调速控制回路故障以及某些人为因素造成发电机转为电动机运行时,发电机将从系统吸收有功功率,即逆功率。危害:汽轮机尾部叶片有可能过热而造成事故。 2 汽轮发电机保护类型 1)发电机差动保护:定子绕组及其引出线的相间短路保护; 2)匝间保护:定子绕组一相匝间短路或开焊故障的保护; 3)单相接地保护:对发电机定子绕组单相接地短路的保护; 4)发电机的失磁保护:反应转子励磁回路励磁电流急剧下降或消失; 5)过电流保护:反应外部短路引起的过电流,同时兼作纵差动保护的后备保护; 6)阻抗保护:反应外部短路,同时兼作纵差动保护的后备保护; 7)转子表层负序电流保护:反应不对称短路或三相负荷不对称时发电机定子绕组中出现的负序电流;

配置发电机相间短路的后备保护

配置发电机相间短路的后备保护 2010-02-14 21:18:36 作者:loveg来源:电机维修网浏览次数:35 网友评论 0 条(1)发电机内部故障,而纵联差动保护或其他主要保护拒动时。 (1)发电机内部故障,而纵联差动保护或其他主要保护拒动时。 (2)发电机、发电机-变压器组的母线故障,而该母线没有母线差动保护或保护拒动时。 (3)当连接在母线上的电气元件(如变压器、线路)故障而相应的保护或断路器拒动时。发电机的后备保护方式有:低电压启动的过电流保护、复合电压启动的过电流保护、负序电流以及单元件低压过电流保护和阻抗保护。 1)低电压启动的过电流保护。发电机低压启动的过流保护的电流继电器,接在发电机中性点侧三相星形连接的电流互感器上,电压继电器接在发电机出口端电压互感器的相间电压上,在发电机投入前发生故障时,保护也能动作。低电压元件的作用在于区别是过负荷还是由于故障引起的过电流。 2)复合电压启动的过电流保护。复合电压启动是指负序电压和单元件相间电压共同启动过电流保护。在变压器高压侧母线不对称短路时,电压元件的灵敏度与变压器绕组的接线方式无关,有较高的灵敏度。 3)负序电流和单元件低压过流保护。发电机负序电流保护采用两段式定时限负序电流保护,由于不能反应三相对称短路,故加设单元件低压过流保护作为三相短路的保护;对于发电机-变压器组,宜在变压器两侧均设低压元件。两段式定

时限负序保护的灵敏段作为发电机不对称过负荷保护,经延时作用于信号。定时限负序电流保护作为发电机不对称短路的后备保护,它和单元件电压过流共用时间元件。 4)阻抗保护。发电机-变压器组阻抗保护一般接在发电机端部,阻抗元件一般为全阻抗继电器。但阻抗元件易受系统振荡及发电机失磁等的影响。阻抗元件的阻抗值整定,应与线路距离保护的定值配合,动作时间与所配合的距离保护段时间相配合。阻抗保护应有可靠的失压闭锁装置。由于动作时间较长,不设振荡闭锁装置。

断相时的负序电流

1.负序电流的定义:正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了。 2.我国有关规程对发电机正常运行负序电流的规定:汽轮发电机的长期允许负序电流为6% ~ 8%发电机额定电流;水轮发电机的长期允许负序电流为12%发电机额定电流。3.该定值规定了发电机在正常运行时所能承受的负序电流数值,对于发电机额定电流为是10189A的话,在发电机正常运行时负序电流就不能超过10189*8%=815A,此值为负序电流的限值,而不是实际发电机正常运行时的负序电流值。 4.根据国标《继电保护和安全自动装置技术规程》(GB/T 14285-2006) 4.2.6.3 50MW及以上的发电机,宜装设负序过电流保护和单元件低压起动过电流保护。4.2.9对不对称负荷、非全相运行以及外部不对称短路引起的负序电流,应按下列规定装设发电机转子表层过负荷保护: 4.2.9.1 50MW及以上A值(转子表面承受负序电流能力的常数)大于等于10的发电机,应装设定时限负序过负荷保护。保护与4.2.6.3条的负序过电流保护组合在一起。保护的动作电流按躲过发电机长期允许的负序电流值和躲过最大负荷下负序电流滤过器的不平衡电流值整定,带时限动作于信号。 4.2.9.2 100MW及以上A值小于10的发电机,应装设由定时限和反时限两部分组成的转子表层过负荷保护。 定时限部分:动作电流按发电机长期允许的负序电流值和躲过最大负荷下负序电流滤过器的不平衡电流值整定,带时限动作于信号。 反时限部分:动作特性按发电机承受负序电流的能力确定,动作于停机。保护应能反应电流变化时发电机转子的热积累过程。不考虑在灵敏系数和时限方面与其它相间短路保护相配合。 5.根据国标《电力装置的继电保护和自动装置设计规范》(GB/T 50062-2008) (此规范适用于50MW及以下的发电机保护) 3.0.9 对不对称负荷、非全相运行以及不对称短路引起的转子表层过负荷,且容量为50MW、A值大于10的发电机,应装设定时限负序过负荷保护。保护装置的动作电流应按发电机长期允许的负序电流和躲过最大负荷下负序电流滤过器的不平衡电流值整定,并应延时动作于信号。

发电机说明书..

RBC800G 系列数字式发电机保护装置 一 装置简介 1.1装置概述 RBC800G 系列数字式发电机保护装置采用高性能芯片支持的通用硬件平台,维护简便;全以太网通讯方式,数据传输快速、可靠;完全中文汉化显示技术,操作简捷。 基于防水、防尘、抗振动设计,可在各种现场条件下运行。 适用于容量为50MW 及以下的火力和水力发电机保护。 1.2装置主要特点 ? 摩托罗拉32位单片机技术,使产品的稳定性和运算速度得到保证 ? 保护采用14位的A/D 转换器、可选配的专用测量模块其A/D 转换精度更是高达24位,各项测量指标轻松达到 ? 配置以大容量的RAM 和Flash Memory ,可记录8至50个录波报告,记录的事件数不少于1000条 ? 可独立整定32套保护定值,定值切换安全方便 ? 高精度的时钟芯片,并配置有GPS 硬件对时电路,便于全系统时钟同步 ? 配备高速以太网络通信接口,并集成了IEC870-5-103标准通信规约 ? 尽心的电气设计,整机无可调节器件 ? 高等级、品质保证的元器件选用 ? 优异的抗干扰性能,组屏或安装于开关柜时不需其它抗干扰模件 ? 完善的自诊断功能 ? 防水、防尘、抗振动的机箱设计 ? 免调试概念设计 1.3功能配置 表1 本系列产品的型号及功能配置表 功能 RBC801G RBC802G 差动速断 √ 比率制动式差动 √ CT 断线闭锁差动 √ CT 断线告警 √ 定子过电压保护 定子接地保护 过负荷告警 √ 反时限过流保护 √ 横差保护 √ 失磁保护 √ 转子一点接地保护 √ 转子二点接地保护 √ 复合电压过流保护 √ 反时限负序过流保护 √ PT 断线告警 √ 发电机断水(开关量) √ 发电机热工(开关量) √ 发电机励磁事故(开关量) √ 主汽门关闭(开关量) √ 其它备用非电量开入 √ √ 遥控功能压板 √ √ GPS 对时 √ √ 远方管理 √ √ 二 技术参数 2.1 额定参数 2.1.1额定直流电压: 220V 或110V (订货注明) 2.1.2 额定交流数据: a) 相电压 3/100 V b) 线电压 100 V c) 交流电流 5A 或1A (订货注明)

发电机负序电流保护

发电机负序电流保护 大容量的发电机,额定电流比较大,低电压启动的过电流保护,往往不能满足远后备灵敏度的要求。此外当电力系统发生不对称短路、断线、或负载不平衡等情况,发电机定子绕组中将产生负序电流,并将在转子铁芯、励磁绕组及阻尼绕组等部件上感应出倍频电压、电流,引起转子附加发热,危害发电机的安全运行 假设负序电流使转子发热是个绝热过程,则不使转子过热所允许的负序电流与持续时间的关系为 式中——在时间t内负序电流的均方根值(以发电机额定电流为基准的负序电流标幺值); ——流经发电机的负序电流; t——负序电流持续时间; A——发电机允许过热常数,其值与发电机型式和冷却方式有关。 1.定时限负序电流保护 (1) 原理接线对表面冷却的汽轮发电机和水轮发电机,大都采用两段式定时限负序过电流保护,其原理接线如图8—12所示。 图8—12 发电机负序电流及单项式低电压启动的过电流保护的原理接线图 (2) 负序电流的整定计算

1)启动电流的整定计算 动作于信号的保护部分(继电器3)按躲开发电机长期允许的负序电流和最大负荷时负序滤过器的不平衡电流整定,一般情况下取 动作于跳闸的保护部分(继电器4),保护的启动电流按下面两个条件整定。按转子发热条件整定,启动电流值为 式中A——发电机允许过热的时间常数。对非强迫式冷却的发电机,1s负序电流热稳定常数 对绕组内冷却的汽轮发电机,容量为200MW时,;对水轮发电机. T——值班人员有可能采取措施消除负序电流的时间,一般取120s,如值班人员在此时间内来不及消除产生负序电流的运行方式,则保护动作于跳闸。 对于表面冷却的发电机组,,代入上式后可得发电机的负序动作电 流. 动作于跳闸的负序动作电流还需与相邻元件的负序电流后备保护在灵敏度上相配合 式中——配合系数,取1.1; ——在计算运行方式下,发生外部故障时流过相邻元件(一般只考虑升压变压器的情况)的负序短路电流刚好与其负序电流保护的启动电流相等时,流经被保护发电机的负序短路电流(考虑有否分支系数)。 敏度校验 式中——被校验保护范围末端发生金属性不对称短路时,流过保护的最小负序电流。

瞬态热温度场分析

ANSYS工程应用教程——热与电磁学篇47页-瞬态热温度场分析例1:有一长方形金属板,其几何形状及边界条件如图4—7所示。其中,板的长度为15cm,宽度为5cm,板的中央为一半径为1cm的同孔。板的初始温度为500℃,将其突然置于温度为20℃且对流换热系数为100W/m‘℃的流体介质中,试计算:1.第1s及第50s这两个时刻金属板内的温度分布情况。 2.金属板上四个质点的温度值在前50s内的变化情况。 3.整个金属板在前50s内的温度变化过程。 该金属板的基本材质属性如下: 密度=5000Kx/m’ 比热容=200J/Kg K 热传导率=5W/m K Finish $/ clear $/title,transient slab problem !进入前处理 /prep7 Et,1,plane55 Mp,dens,1,5000 Mp,kxx,1,5 Mp,c,1,200 Save !创建几何模型 Rectng,0,0.15,0,0.05 Pcirc,0.01,,0,360 Agen,,2,,,0.075,0.025,,,,1 Asba,1,2 Save !划分网格 Esize,0.0025 Amesh,3 Save !进入加载求解 /solu Antype,trans !设定分析类型为瞬态分析 Ic,all,temp,500 !为所有节点设置初始温度500度 Save Lplot Sfl,1,conv,100,, 20 !设定金属板外边界1-4的对流载荷

Sfl,2,conv,100,,20 Sfl,3,conv,100,,20 Sfl,4,conv,100,,20 /psf,conv,hcoe,2 Time,50 !设定瞬态分析时间/制定载荷步的结束时间 Kbc,1 !设定为阶越的载荷(载荷步是恒定的,如是随时间线性变化应用ramped——0)Autots,on !打开自动时间步长(求解过程中自动调整时间步长) Deltim,1,0.1,2.5 !设定时间步长为1(最小0.1最大2.5),载荷子步数nsubst Timint,on !打开时间积分,off为稳态热分析 Outres,all,all !输出每个子步的所有结果到*.rth文件中(outpr将输出到*.Out文件中) Solve !进入后处理 /post1 Set,,,1,,1,, !载荷步m=1,子步,比例因子,0-读实数部分/1读虚数部分,时间点,, Plnsol,temp,,0, !该画面显示了在第1秒钟时金属板的温度分布状况 Set,,,1,,50 Plnsol,temp,,0 !该画面显示了在第50秒钟时金属板的温度分布状况 ! /post26 Nsol,2,82,temp,,left-up !变量2,节点82(左上点),项目,,名字 Plvar,2 !显示变量2 ! /post1 !查看金属板在前50秒内的温度变化过程 Set,last Plnsol,temp, Animate,10,0.5,,1,0,0,0 !捕捉的张数(默5),时间的推迟(默0.1),动画循环次数,自动缩放比!例(默0),用于动画的结果数据(默认0——目前载荷步),最小数据点,最大数据点 Save /eof !退出正在读取的文件 瞬态热温度场分析例2:一个半径为10mm,温度为90℃的钢球突然放入盛满了水的、完全绝热的边长为100mm的水箱中,水温度为20℃,如图7—5所示;。求解0.5小时之后铁球与水的的温度场分布。(忽略水的流动,铁球置于水箱正小央) 材料性能参数: 密度:水=l OOOkg/m^3,铁=7800 kg/m^3 导热系数:水=0.6W/(m.℃),铁=70W/(m·℃) 比热容:水=4185J/(kg·℃),铁=448J/J/(kg·℃) 分析:该问题属于瞬态热力学问题。根据问题的对称性面的四分之一建立有限元计算模型,如图7—6所示。

电机负序保护

电机负序保护 电动机负序电流的整定是按照额定状况下整定的, 在正常运行时,一次回路缺相负序电流为额定电流的0.9-1.1倍,CT二次回路断线时负序电流为额定电流的0.577倍,因此一般取负序电流 I2dz=0.8Ie 电动机负序电流的整定是按照额定状况下整定的, 在正常运行时,一次回路缺相负序电流为额定电流的0.9-1.1倍,CT二次回路断线时负序电流为额定电流的0.577倍,因此一般取负序电流 I2dz=0.8Ie 负序保护,主要通过测量电动机的负序电流来实现。电源电压的不平衡将会在电动机绕组中产生负序电流,该电流的值取决于电动机的负序阻抗对正序阻抗的比值,此比值大致是正常满负荷电流对启动电流之比,例如,一台启动电流为6倍额定电流的电动机,电源电压有5%的负序,将引起大约30%的负序电流。由于负序电流在转子中感应涡流,引起电动机过热,为了保护转子不受不平衡电流损害,过热(过负荷)保护在它的动作方程中加入了负序电流热效应系数K2,对于严重的不平衡,诸如断线或反相,必须提供快速保护--单独的不平衡保护。 电动机启动时由于CT饱和等因素容易造成波形失真,从而造成负序保护误动作,本装置的负序动作电流和时限的整定值在电动机启动前后可分别整定。为了保护电动机断相或反相,启动结束后的典型的负序动作电流整定值I2ZD=Is是合适的(Is为电动机额定工作电流),启动过程中的负序动作电流整定值可根据启动试验测量的最大负序电流来确定。 负序动作电流整定值I2ZD的整定范围启动时为0.50~40.0A,启动结束后为0.2~20.0A,级差均为0.01A ,当I2>I2ZD 时启动负序保护。 负序保护动作时间按电流/时间反时限动作特性,用负序保护时间常数T2(整定范围为0.80~4.00秒,级差0.04秒)来表示,启动时和运行时分别整定。负序保护动作时间t2和负序保护时间常数T2的关系可用下面的公式表示: t2 = T2×I2ZD/ I2 秒 在整定比较灵敏(典型为I2 =(0.2~0.4)Is)时,采用动作时间较长的整定值。 注意:当保护应用于FC回路时,保护功能选择中的‘FC方式’必须选择为‘ON’,此时负序保护的最小动作时间为0.3S。 当保护动作时装置跳闸出口动作,同时‘保护’指示灯点亮,液晶显示器背光点亮并闪烁显示‘负序保护动作’字样。 本保护在保护CT断线及‘自检故障’发生时被闭锁。 为了保护电动机断相或反相,典型的负序动作电流整定值I2ZD=Is是合适的(Is为电动机额定工作电流),希望作为灵敏的不平衡保护时,可取I2ZD=(0.2~0.4)Is。电动机启动时由于CT饱和等因素容易造成波形失真,从而造成负序保护误动作,可根据启动试验测量的最大负序电流整定启动时负序动作电流。 运行时负序保护时间常数T2的整定应躲过电动机外部两相短路时母线进线开关的切除时间,一般取T2=0.8S,在整定得比较灵敏(典型为I2ZD=(0.2~0.4) Is)时,采用时间常数较长的曲线如T2=1.6S。启动时负序保护时间参数T2按照启动时保护不误动原则整定。

Ansys有限元分析温度场模拟指导书

实验名称:温度场有限元分析 一、实验目的 1. 掌握Ansys分析温度场方法 2. 掌握温度场几何模型 二、问题描述 井式炉炉壁材料由三层组成,最外一层为膨胀珍珠岩,中间为硅藻土砖构成,最里层为轻质耐火黏土砖,井式炉可简化为圆筒,筒内为高温炉气,筒外为室温空气,求内外壁温度及温度分布。井式炉炉壁体材料的各项参数见表1。 表1 井式炉炉壁材料的各项参数 三、分析过程 1. 启动ANSYS,定义标题。单击Utility Menu→File→Change Title菜单,定义分析标题为“Steady-state thermal analysis of submarine” 2.定义单位制。在命令流窗口中输入“/UNITS, SI”,并按Enter 键

3. 定义二维热单元。单击Main Menu→Preprocessor→Element Type→Add/Edit/Delete 菜单,选择Quad 4node 55定义二维热单元PLANE55 4.定义材料参数。单击Main Menu→Preprocessor→Material Props→Material Models菜单

5. 在右侧列表框中依次单击Thermal→Conductivity→Isotropic,在KXX文本框中输入膨胀珍珠岩的导热系数0.04,单击OK。 6. 重复步骤4和5分别定义硅藻土砖和轻质耐火黏土砖的导热系数为0.159和0.08,点击Material新建Material Model菜单。 7.建立模型。单击Main Menu→Preprocessor→Modeling→Create→Areas→Circle→By Dimensions菜单。在RAD1文本框中输入0.86,在RAD2文本框中输入0.86-0.065,在THERA1文本框中输入-3,在THERA2文本框中输入3,单击APPL Y按钮。

电磁场有限元分析

水轮发电机单通风沟三维简化模型温升计算 一、问题分析 近年来,随着水轮发电机单机容量的不断增加,在发电机进行能量转换过程中产生的损耗不断增大,使其运行的温升问题日趋严峻。根据上述情况,运用有限元分析方法,建立发电机单通风沟三维简化模型进行发电机温升计算。 二、电机单通风沟有限元分析 1.1 水轮发电机单通风沟三维简化模型建立 根据实际水轮发电机结构和通风沟特点,并考虑可接受误差,进行适当简化,以便于简化有限元分析计算得到以下模型,如图1所示。 图1 发电机单通风沟简化物理模型 由图1所示:水轮发电机单风沟简化物理模型三维求解域在轴向上包含发电机一个通风沟以及通风沟两侧各半个轴向铁心段;幅向上包含发电机定子三个槽、转子两个槽。 根据有限元分析特点,对发电机单通风沟简化物理模型进行网格剖分,得到发电机单通风沟简化物理模型剖分图如图2所示。

图2 电机单通风沟简化物理模型网格剖分 由于物理模型较小,可以适当加密剖分进而提高计算精度,故采用楔形和六面体的混合网格进行剖分,总网格数共48万,节点数为30万。利用有限体积法,将流体场和温度场进行强耦合求解,从而 得到发电机的详细温升分布情况。 1.2 边界条件 在图1中,求解域内的面 S为径向通风沟的进风口,沿径向与面 1 S对应的面2S为径向通风沟的出风口。由此,根据所研究发电机的实1 际运行工况,可以给定如下发电机单风沟物理模型的边界条件:1)冷却空气的初始基值绝对温度为0K; 2)径向通风沟入口 S风速为5.1m/s的速度入口边界,通风沟出 1 口 S为自由流动边界; 2 3)求解域其它外边界均为绝热面,发电机内部流体与固体的接 触面均为无滑移边界面。

温度场分析

1温度场分析的意义 2离合器温度场分析的前提条件 进行膜片弹簧离合器温度场分析时要考虑到很多因素的影响,在这些因素 中有些是主要的因素,有些是次要的因素。根据目前的研究条件和国内外对此研究的进展状况,针对本研究主要进行如下方面的假设啪儿驯。 (1)在离合器接合过程中,压盘摩擦片间不断地流入和流出,因此其温度在 不断的变化,则摩擦片压盘的材料热性能参数要受到温度的影响。由于实验仪器的限制,不能够测量这些参数的变化,故在这里假设压盘和摩擦片的材料热性能参数不随温度变化。 (2)任何有温度的物体都要向外辐射能量,离合器也不例外。由于离合器接 合分离的时间很短,且压盘和摩擦片的温度不是很高,考虑到辐射计算的复杂性,暂不考虑离合器的辐射散热。 (3)实际工作中,离合器由于温度过高,或者散热不好,材料的物理化学性 质就会发生变化,比如塑性变形、析氢等现象。这些现象在温度场求解中是很难实现的,因此在该分析中将此现象忽略掉。 (4)摩擦热的产生,总是会有各种现象可能会带走部分的摩擦热,如磨损会 带走摩擦热。为了分析问题方便,认为摩擦热流完全被压盘和摩擦片吸收。(5)根据产生热量来源的滑摩功计算公式可判断出压盘摩擦片的温度场是 沿径向和轴向变化的二维温度场。 3用Pro/E软件建立离合器压盘模型 通过Pro/E软件对离合器压盘进行全面的三维建模,见图4-1。Pro/E建模主要通过线框的拉伸和剪切。所建立压盘三维模型数据如下:压盘外径为180mm,内径为120mm,材料为灰铸铁HT200铸成。 4有限元温度场分析前提条件 (1)结构离散化 结构离散化就是将结构分成有限个小的单元,单元与单元、单元与边界之间通过节点连接。结构的离散化是有限元法分析多的第一步,关系到计算精度与计算效率,是有限元法的基础步骤,包含以下的内容: 1)单元类型选择。离散化首先要选定单元类型,这个包括单元形状、单元节点与节点自由度等三个方面的内容。 2)单元划分。划分单元时应注意一下几点:①网格划分越细,节点越多,计算结果越精确。网格加密到一定程度后计算精度的提高就不明显,对应力应变变化平缓的区域不必要细分网格。②单元形态应该尽可能接近相应的正多边形或者正多面体,如三角形单元三边应尽量接近,且不出现钝角;矩阵单元长度不宜

ANSYS大型变压温度场的有限元分析

ANSYS大型变压温度场的有限元分析 杨涛 华北科技学院机电工程系材控B112班 摘要:变压器是一种静止的电能转换装置,它利用电磁感应原理,根据需要可以将一种交流电压和电流等级转变成同频率的另一种电压和电流等级。它对电能的经济传输、灵活分配和安全使用具有重要的意义;同时,它在电气的测试、控制和特殊用电设备上也有广泛的应用。如何开发合适的温度场计算技术,准确地计算变压器在各种运行状态下内部线圈、结构件及铁芯等部位的温度,控制内部热点温度不超过其内部绝缘材料的许用温度,从而保证变压器的热寿命,提高变压器的安全可靠性,是企业急需解决的问题。准确计算出变压器的平均温升和最热点温升,并合理地控制其分布,以满足标准要求,是保证变压器安全、稳定和高校运行的关键。 关键字:温度场;变压器;铁芯;有限元;ANSYS 1引言 变压器是电力网中的主要设备,其总容量达到发电设备总容量的5~6倍。电力变压器的技术性能、经济指标直接影响着电力系统的安全性、可靠性和经济性。随着科学技术的发展、生产技术的进步以及新型电工材料的开发应用,变压器的各项性能指标不断刷新,单机容量越来越大,变压器中的漏磁场也随之增大,引起了人们的关注。在额定运行情况下,漏磁场的增强引起的变压器附加损耗的增加将直接影响变压器的运行效率和产品的竞争力。严重的是,由于漏磁场在一定范围内的金属结构件中产生的涡流损耗不均匀,有可能造成这些结构件的局部过热现象。变压器的容量越大,漏磁场就越强,从而使稳态漏磁场引起的各种附加损耗增加,如设计不当它将造成变压器的局部过热,使变压器的热性能变坏,最终导致绝缘材料的热老化与击穿。 在电力系统发生短路时,暂态短路电流产生的漏磁场还可能产生巨大的机械力,对其绝缘和机械结构造成致命威胁。为了避免此种事故发生,必须对漏磁场进行全面的分析。为此,对变压器运行的效率、寿命和可靠性提出了越来越高的要求。 变压器在220℃温度下, 保持长期稳定性,在350℃温度下, 可承受短期运行,在很广的温度和湿度范围内, 保持性能稳定,在250℃温度下, 不会熔融,流动和助燃,在750℃温度下, 不会释放有毒或腐蚀性气体。为了减少过高温度对变压器绝缘材料的影响,使变压器实现预期的使用寿命,保证变压器安全可靠的运行,变压器各部分都有各自所规定的温度极限,现主要对变压器的铁芯和绕组进行有限元分析。 2变压器 2.1变压器的基本原理 由于变压器是利用电磁感应原理工作的,因此它主要由铁心和套在铁心上的两个(或两个以上)互相绝缘的线圈所组成,线圈之间有磁的耦合,但没有电的联系(如图1所示)。

最新发电机负序过流保护

发电机负序过流保护

2.2 发电机负序电流保护 保护元件:Generator Unbalace 发电机中性点CT 25000/5 发电机不平衡元件保护设备不会由于过多的负序电流引起转子的 损坏。该元件有一个反时限段通常用来跳闸, 一个定时限段通常用来 报警。 2.2.1负序定时限过流保护(GEN UNBAL STG2 PICKUP ) 1、动作电流按发电机长期允许的负序电流∞2I 下能可靠返回的条件整 定,即 2 1.0510%11.7%(0.09)0.9 rel N N r K I PICKUP I I PU K ∞?=== 式中:rel K —可靠系数,取1.05; r K —返回系数,取0.95。 取PICKUP =11.7%(0.09PU) 2、动作时限 躲过发变组最长后备保护动作时间,取DELAY =5S ,发信号。 2.2.2 负序反时限过流保护 反时限动作特性曲线由下面的公式定义: 动作方程: ()22nom I I K T = 其中Inom 是发电机的额定电流,K 是负序容量常数, 通常由发电机生 产厂家提供。 根据发电机厂家资料,发电机长期允许负序电流标么值为10%,转子 表层承受短时负序电流能力的常数(T I 2)为10,即K-VALUE =10.0。 1、发电机正常运行电流(GEN UNBAL INOM ) pu CT I I pri gn pu nom 770.025000 19245)(===

2、负序电流启动值(GEN UNBAL STG1 PICKUP ) 负序反时限动作特性的下限电流,通常由保护所能提供的最大延时 决定,一般取1000S ,即下限电流尽可能靠近长期允许的负序电流。 根据UR 继电器的动作方程,并考虑负序定时限保护的动作值,保护 下限动作电流起始值与负序定时限保护的动作值配合 %3.12%7.1105.1min .=?=op I (0.095PU) 从而可以求得G60的下限动作时间。 S I K T op op 661123.0102 2min .max .=== 取STG1 TMAX =630S 3、最小动作时间(GEN UNBAL STG1 TMIN ) ● 最小动作时间应与发电机变压器主保护动作时间配合,取STG1 TMIN =0.5S 。 ● 返回时间提供了负序电流的热记忆时间,取出厂设定值STG1 KRST =240S 。 ● 计算高压母线两相短路动作时间: A X X X I T d k 4.2598320 3101000305.00249.020308.012031010021332'') 2(2=???+?+=???++= 实际动作时间s t 48.5)192454.25983(102== 与线路保护能很好配合。 2.2.3 定值清单 GENERATOR UNBALANCE GENERATOR UNBAL FUNCTION : Enabled GEN UNBAL SOURCE : SRC2 GEN UNBAL INOM : 0.77PU

瞬态温度场灵敏度分析的精细积分法

瞬态温度场灵敏度分析的精细积分法1) 陈飚松顾元宪张洪武 (大连理工大学工程力学系工业装备结构分析嗣辜重点实验室,大连1l∞24) 捧蔓本文采用糟细积分方法求解线性、非线性辫态温度场灵敏度方程。给出了精细积分法求 解线性、非线性温度场的计算公式。推导了瞬态温度场灵敏度分析的精细积分法的具体列式。 指出对于线性目置,精细积分法求解灵敏度方程同样具有稳定、高糟度的良好教值特性,而且 能避免常规差分法的数值振荡现象。对于非线性问露,提出了相应的求解办法。 关t词灵敏度。瞬态温度场.精细积分 引言 温度场灵敏度分析卜羽是结构的温度场和热应力优化设计的关键信息,在工程中有重要的应用价值。已发表的文献在求解灵敏度方程时,都采用了常规的时间差分方法(又称争差分法),但差分法在求解灵敏度方程时,出现了数值振荡现象,严重影响了灵敏度分析的精度。因此有必要采用新的求解技术。钟万勰教授Ⅲ提出的精细积分法为求解瞬态系统提供了崭新的的方法。本文采用精细积分法求解瞬卷温度场的灵敏度方程。 l焉态温度场的精细积分 1.1线住温度墙 温度场的有限元方程为 腑+盯=置?, (1)式中脚为热容阵、置为热传导阵、r温度向量、置等效右端项。作变换 于=册1+Ⅳ一1置口=一^f一1置,口~=}M_1置广1:—置一1^f(2)因此在具体实施该算法时,不需要编写计算厅1程序;只需调用对置进行LDLT分解的函数,然后执行回代求解.若且在时间区间内是线性变化的.则式(2)精细积分列式为 瓦“=』l五一置4k一刷譬-1置l+i。k一删置-1焉+置IfJ(3)一=∞【p(日f).置=J%+胄I(r一“l置o=置0tl置I=【础I“)一础I)),f(4)1.2非线性温度场 非线性热传导方程为 埘p矿+置仃p=且(5)以上符号意义与前相同,但矩阵与温度有关。采用精细积分求解非线性方程,可作如下变换 (州r)一朋o+肘。妒+僻(r)一置o+置o)r=丑(6) 肘。于+孟}or=且一∽p)一村。妒一伍p)一直-o妒(7)精细积分的标准格式为 于=胛+—断‘量(8) 日=肼i1置o,ji=且一似p)一膳。妒一陋留)一置。妒(9)其中坞,毛为初始时刻的熟容阵和热传导阵,问题归结为求解式(8),其积分公式为 I)胃家自靛科学基金瓷助项目(19872017.598蛄410)和国家重点基础研究专嘎轾费资助(G19蜘32帅5) 485

发电机负序过负荷及过电流分析和保护措施

发电机负序过负荷及过电流分析和保护措施 摘要:电力系统中发生不对称短路或者三相负荷不对称时,而后发电机定子绕组中将出现负序电流。负序电流产生负序旋转磁场,并且以两倍的同步速度切割转子,在转子的表面产生了感应电流,使得转子的表层热度过大,进而烧伤或者损坏转子。文章对两种发电机即负序过负荷和过电流的产生以及动作方程做出分析,并且在此基础上提出相应的保护措施,对汽轮发电机和水轮发电机的转子保护有十分重要的意义。 关键词:负序过负荷;负序过电流;汽轮发电机;水轮发电机负序过负荷和过电流主要造成的烧伤在于转子,因此,装设发电机负序过电流保护的主要目的在于保护发电机转子。某些情况下还可以作为发电机变压器内部或者系统不对称短路故障的后备保护。对于大型汽轮发电机,其承受的负序电流能力,主要取决其转子发热的条件。发热是一个积累的过程,因此,汽轮发电机的负序过电流保护应具有反时限动作特性。水轮发电机在负序电流的作用下,过热的程度比汽轮发电机小很多,约为汽轮发电机的1/10。但是,水轮机直径很大,焊接条件比较多,其承受负序电流能力应由100 Hz的振动的条件限制。因此,水轮发电机负序过电流保护可以没有反时限特性。 1 发电机负序过负荷及过电流分析 该部分将介绍发电机保护的构成,和负序过负荷及过电流的动作特性。 1.1 保护的构成 保护分为负序过负荷和负序过电流两部分组成。过负荷是作用于信号的,而过电流是作用于切机的。 中小型发电机和水轮发电机通常采用的是定时限负序过电流保护。然而大型汽轮发电机负序过电流保护是具有反时限特性的。该动作的特性通常是由三部分构成的。即反时限部分的上限以及下限定时限的部分。反时限部分的作用在于防止由于过热造成的损伤发电机转子,上限和下限定时限左右在于作为发变组内部短路和相邻元件后备的保护。 保护的接入电流,应为发电机中性点TA二次三相电流。 大型汽轮发电机负序过负荷及过电流保护的逻辑图如图1所示,其中A,B,C,D,分别为发电机TA二次三相电流;I2op为负序过负荷元件;I2op1为负序过电流下限定时限元件;I2oph为负序过负荷元件;I2t为负序过电流反时限元件。 1.2 动作方程 ①负序过负荷元件I2≥I2op。 ②过电流元件满足以下条件:I=IopI≥Iopt= 1.3 动作特性 负序过负荷保护的动作特性为定时限特性。负序过电流保护的动作特性如图2所示。其中,I2oph为上限动作负序电流;I2op1为下限动作负序电流;tup为上限动作时间,ts为下限动作时间。 2 保护措施 本部分将对定时限过负荷保护,反时限过电流保护,以及提高保护的动作可靠性措施做出介绍。 定子绕组通入三相交流电时,在定子铁心内产生旋转磁场。如果磁场旋转的方向是顺时针的方向,开始通电时,磁场方向上为N极,下为S极,转子处于

桐柏发电机负序过电流保护整定原则

桐柏发电机负序过电流保护整定原则: 1 . 产生发电机负序电流原因及数值分析 (1) 系统内非本厂500kV线路远区外不对称故障(断线, 不对称短路等)一般数值较小,时间可能较长,也可能不长, 发电机负序过电流保护即使起动,但绝对不能出口动作,因此发电机负序过电流保护应躲过非本厂500kV线路远区外不对称故障. (2) 与发电机主变压器相联的500kV线路不对称故障(断线, 不对称短路等)及单相重合闸动作等, 发电机可能出现较大负序电流,如出口不对称短路时,最大负序电流I2.max=1.55I g.n, 最小负序电流I2.min=0.78I g.n,当一台机满载运行500kV线路单相重合闸动作时I2.min=0.66I g.n, (3) 出现负序电流持续时间分析, 1) 与发电机主变压器相联的500kV线路不对称短路,负序电流较大,线路主保护正确动作时,持续时间不超过0.5s,如考虑单相接地保护动作及重合闸过程, 出现负序电流持续时间,正常不超过1.2 s.此时发电机负序过电流保护不应出口动作(发电机负序过电流保护可能起动,所以整定起动电流未躲过线路出口故障时,其最小动作时间应>1.2 s). 2) 500kV线路不对称短路,如主保护拒动作,由500kV线路II段接地距离保护动作,持续时间为2s,当III段接地距离保护动作,持续时间为2.8s,发电机负序过电流保护应考虑缩小故障区,首先应考虑由负序过电流保护一段动作,跳桥开关,这样在桥的一侧仍有较大负序电流,另一侧只有很小的负序电流,此时故障线路侧,由线路后备保护动作,或由发电机负序过电流保护动作,切断故障500kV线路断路器,和跳闸停机,其结果是相同的,所以只要500kV 断开桥开关后, 发电机负序过电流保护和500kV线路后备保护,可不必考虑选择性. 2. 对于单元机组, 发电机负序过电流保护动作出口时,跳停单元机组,如果500kV线路不对短路故障,线主路保护和线路III段后备保护均拒动时,则同一厂发电机负序过电流保护动作出口,必跳全部机组. 3. 桐柏厂500kV为桥接线, 两台发电机主变压器共用一台线路断路器,发电机负序过电流保护有 (1) 小定值报警发信号段. (2) 负序过电流定时限一段(低定值段). (3) 负序过电流定时限二段(高定值段). (4) 负序过电流反时限段. 2. 桐柏厂发电机负序过电流保护ELIN公司原整定值与跳闸方式存在问题 (1) 负序过电流定时限一段(低定值段).整定值11%,2s,跳500kV桥开关(不跳闸停机),未切断故障,目的仅是为了缩小故障范围,由后阶段保护选择切除故障. (2) 小负序电流,由负序过电流反时限段动作切除故障.起动值为9%,τ=2880s,跳发电机开关,灭磁,电气停机1,跳SFC,开放失灵. (3) 较大负序电流,由负序过电流定时限二段(高定值段). 整定值13.5%,1s, 跳桥开关,线路开关1, 跳发电机开关,灭磁,电气停机1,跳SFC,开放失灵, 跳相邻发电机开关, 相邻发电机灭磁, 相邻发电机电气停机1, 开放失灵,起动失灵闭锁重合闸(全停跳闸). (4) 由以上原整定值分析知, 负序过电流定时限一段(低定值段).整定值11%,2s,滞后于较大负序电流由负序过电流定时限二段(高定值段)整定值13.5%,1s动作,所以未达到先跳桥开关, 缩小故障范围,由后阶段保护选择切除故障的目的(即一段还未出口动作,已经全停),这明显不合理. 3. 桐柏厂发电机负序过电流保护整定值与跳闸方式改进思路 (1) 出现不正常小负序电流,首先由小定值报警发信号段动作. (2) 负序过电流定时限一段(低定值段)以较短时间.动作后跳500kV桥开关, 缩小故障范

基于有限元的电磁场仿真与数值计算

鼠笼异步电动机磁场的有限元分析 摘要 鼠笼异步电动机具有结构简单、价格低廉、运行可靠、效率较高、维修方便等一系列的优点,在国民经济中得到广泛的应用。工业、农业、交通运输、国防工程以及日常生活中都大量使用鼠笼异步电动机。随着大功率电子技术的发展,异步电动机变频调速得到越来越广泛的应用,使得鼠笼异步电动机在一些高性能传动领域也得到使用。 鼠笼异步电动机可靠性高,但由于种种原因,其故障仍时有发生。由于电动机结构设计不合理,制造时存在缺陷,是造成故障的原因之一。对电机内部的电磁场进行正确的磁路分析,是电机设计不可或缺的步骤。利用有限元法对电机内部磁场进行数值分析,可以保证磁路分析的准确性。本文利用Ansys Maxwell软件,建立了鼠笼式异步电机的物理模型,并结合数学模型和边界条件,完成了对鼠笼式异步电动机的磁场仿真,得到了物理模型剖分图,磁力线和磁通分布图,为电机的进一步设计研究提供了依据。 关键词:Ansys Maxwell;鼠笼式异步电机;有限元分析

一、前言 当电机运行时,在它的内部空间,包括铜与铁所占的空间区域,存在着电磁场,这个电磁场是由定、转子电流所产生的。电机中电磁场在不同媒介中的分布、变化及与电流的交链情况,决定了电机的运行状态与性能。因此,研究电机中的电磁场对分析和设计电机具有重要的意义。 在对应用于交流传动的异步电机进行电磁场的分析计算时,传统的计算方法因建立在磁场简化和实验修正的经验参数的基础之上,其计算精度就往往不能满足要求。如果从电磁场的理论着手,研究场的分布,再根据课题的要求进行计算,就有可能得到满意的结果。电机电磁场的计算方法大致可以分为解析法、图解法、模拟法和数值计算法。数值解法是将所求电磁场的区域剖分成有限多的网格或单元,通过数学上的处理,建立以网格或单元上各节点的求解函数值为未知量的代数方程组。由于电子计算机的应用日益普遍,所以电机电磁场的数值解法得到了很大发展,它的适用范围超过了所有其它的解法,并能达到足够的精度。对于电机电磁场问题,常用的数值解法有差分法和有限元法两种。用有限元法时单元的剖分灵活性大,适用性强,解的精度高。因此我们采用有限元法对电机电磁场进行数值计算。 Maxwell2D 是一个功能强大、结果精确、易于使用的二维电磁场有限元分析软件。在这里,我们利用Ansys的Maxwell2D 有限元分析工具对一个三相四极电机进行有限元分析,构建鼠笼式异步电机电动机的物理模型,并结合电机的数学模型、边界条件进行磁场分析。

水轮发电机组保护

1 发电机差动保护 发电机差动保护作为发电机定子绕组及出线的相间短路故障的主保护。保护采用比率制动原理。为防止TA断线差动误动,任一相电流互感器断线,均应能闭锁差动,TA断线功能应设臵开关,使其能投能退。发电机差动瞬时动作于全停。 2 发电机变压器组差动保护 发变组差动作为发变组及其引出线范围内短路故障的主保护。保护采用二次谐波电流制动原理。为防止TA断线差动误动,任一相电流互感器断线,均应能闭锁差动,TA断线功能应设臵开关,使其能投能退。保护瞬时动作于全停。 3 发电机横差保护 发电机横差保护作为发电机定子绕组匝间短路故障的主保护,保护动作于全停。本保护只有一组CT,两屏需共用此CT电流。判据1(无制动特性):Iop(横差电流) Iget动作电流整定值 4 发电机失磁保护 作为发电机励磁电流异常下降或完全消失的失磁故障保护。该保护由阻抗元件、U L-P元件、U L<元件及机端电压等元件通过一定的逻辑关系构成,。失磁保护电流、电压取自发电机机端。保护t1动作于信号,t2、t3动作于解列或程序跳闸。 5 发电机过电压保护 发电机过电压保护作为发电机定子绕组的异常过电压保护并由主变高压侧断路器辅助接点(常开)闭锁,并网前投入,并网后退出。发电机过电压经延时动作于全停。 6 发电机基波定子接地保护 发电机定子接地保护作为发电机定子绕组单相接地故障的保护。保护由反应定子中性点基波零序电压判据(保护95%)构成,基波零序电压定子接地保护带时限动作于信号和程序跳闸。 7 转子一点、两点接地保护 采用乒乓式原理构成,一点接地保护延时动作于信号;一点接地后启动两点接地,两点接地保护延时动作于全停。 8 逆功率保护 作为系统向发电机倒送有功,发电机变电动机运行异常工况的保护。由灵敏

相关文档