文档库 最新最全的文档下载
当前位置:文档库 › 指针与内存管理

指针与内存管理

指针与内存管理
指针与内存管理

指针与内存管理

静态/全局内存

静态声明的变量分配在这里,全局变量也使用这部分内存,这些变量在程序开始运行时分配,直到程序终止才消失,所有函数都能访问全局变量,静态变量的作用域局限在定义他们的函数内部。

自动内存

这些变量在函数内声明,并且在函数被调用时才创建,它们的作用域局限于函数内部,而且生命周期限制在函数的执行时间内。

动态内存

内存分配在堆上,可以根据需要释放,而且直到释放才消失,指针引用分配的内存,作用域局限于引用内存的指针。

指针变量

包含内存中别的变量、对象或函数的地址。指针本身并没有包含所引用数据的类型信息,只包含地址。

示例1:同为打印指针数组第二个元素第二个字母,但数组方式表达更简洁。

char *names[ ]={“Miller”,”Jones”,”Anderson”};

p rintf(“%c\n”,*(*(name s+1)+2));//这里需把names看作二级指针,即names存放的是字符串数组的首地址,而*names内容为指针数组第一个元素的首地址。

p rintf(“%c\n”,name s[1][2]);

使用指针可能出现的问题:

1.访问数组和其他数据结构时越界

2.自动变量消失后被引用

3.堆上的内存释放后被引用

4.内存分配之前解引指针

注:1.若指向未初始化的指针,指针内容可能并不是一个合法的地址,就算是合法地址,也可能没包含合法的数据,程序没有权限访问不合法地址。

2.不初始化也可以使用指针,但尽快初始化指针是好习惯

如何区分常量指针和指针常量:

答案是倒过来读(理解),如const int * p;int *const p;//倒过来读很好区分

注:1.整型不能赋值给指针,但可以赋值为0,如:int *p=0,原因是0被重载了。

虚拟内存和指针

2.程序使用的是虚拟内存,操作系统会在需要时把虚拟地址映射到物理内存地址。

3.Const int * const *p为双重指针,即指向“指向常量的常量指针”

左值:

指的是赋值操作符左边的操作数,所有的左值都必须可以修改,因为它们会被赋值。

Null的概念:

NULL的定义:#define NULL ((void*)0)

Void指针:

通用指针,用来存放任何数据类型的指针,但只能用作数据指针,不能用作函数指针。注:1.void指针具有与char指针相同的形式和内存对齐方式

2.void指针和别的指针永远不会相等,不过两个赋值为NULL的void指针相等。

3.sizeof可以用在void*上,不能用在void上

全局和静态指针:

指针被声明为全局或静态,就会在程序启动时被初始化为NULL。存放在堆中。

指针的算术运算:

1.指针加法:给指针加上一个整数,实际上加的数是这个整数和指针数据类型对应字节数

的乘积

示例2:int vector[ ]={28,41,7};

Int *pi=vector;//若pi=100

Printf(“%d\n”,*pi);输出28

Pi+=1;//pi=104

Printf(“%d\n”,*pi);//输出41

注:a.对于short类型的指针,加1时实际上地址值加2,char型则加1

b.指针减法和加法运算一样

c.两指针可以相减,也可以进行比较,但通常没什么用,可以用来判断数组中元素的顺序。

Malloc动态内存分配:

示例3:int *pi=(int*)malloc(sizeof(int));*pi=5;printf(“%d\n”,*pi);free(pi);

注:malloc和free必须成对使用,指针释放过后就不应该再去访问,通常将释放后的指针赋值为NULL

若分配的内存没有释放则会造成内存泄漏

静态、全局指针和malloc:

初始化静态或全局变量时不能调用函数,如下面这句就会报错。

Static int *pi=malloc(sizeof(int));

对于静态变量,可以通过在后面用一个单独的语句给变量分配内存来避免这个问题。如:Static int* pi;

Pi=malloc(sizeof(int));

但是全局变量不能用单独的赋值语句,因为全局变量是在函数和可执行代码外部声明的,而赋值语句这类代码必须出现在函数中。

注:在编译器看来,作为初始化操作符的=和作为赋值操作符的=不一样。

使用calloc函数:

Calloc会在分配内存的同时清空内存。

Int *pi=calloc(5,sizeof(int));//第一个参数为数量,第二个参数为类型占用字节数

迷途指针:

如果内存已经释放,而指针还在引用原始内存。这样的指针就叫做迷途指针。

注:visual studio会在释放内存后用0xCC、0xCD或者0xDD复写数据。在不抛出异常的情况下,如果在预期之外的地方看到这些值,可以认为程序可能在访问已经释放的内存。程序栈:

是支持函数执行的内存区域,通常和堆共存,也就是说它们同享同一块内存区域,程序栈通常占据这块区域的下部,而堆则占用上部。程序栈存放栈帧,栈帧存放函数参数和局部变量,堆管理动态内存。调用函数时,会创建函数的栈帧并将其推到程序栈上,函数返回时,其栈帧从程序栈弹出。系统在创建栈帧时,将参数以跟声明相反的顺序推到帧上,最后推入局部变量。函数中的块语句被当作“微函数”,会在合适的时机(执行时)被推入栈和从栈中弹出。通过指针传递和返回数据:

传递指针可以让多个函数访问指针所引用的对象,而不用把对象声明为全局可访问。用指针传递数据的一个主要原因是函数可以修改数据。通过传递一个指向常量的指针可以使用指针传递数据并禁止其被修改。而当数据是需要被修改的指针时,就传递指针的指针(两级指针)。注:用值传递数据时,不能改变实参的值,因为修改形参不会影响实参。

返回指针可能存在的问题:

1.返回未初始化的指针

2.返回指向无效地址的指针

3.返回局部变量的指针

4.返回指针但没有释放内存(使用malloc在函数内部分配内存并返回地址,调用者负责

释放返回的内存。)

传递指针的指针:

将指针传递给函数时,传递的是值。如果想要修改原指针而不是指针的副本,就需要传递指针的指针。同传递值一样,只传递一个指针是不能改变其值的,相当于改变了形参。

示例4:void allocArray(int **arr,int size,int value)

{*arr=(int*)malloc(size*sizeof(int));

If(*arr!=NULL)

{for(int i=0;i

{*(*arr+1)=value;}}}

Int *vector=NULL;

allocArray(&vector,5,45);

函数指针:

指持有函数地址的指针,这为我们以编译时未确定的顺序执行函数提供了一种选择,而不需要使用条件语句。

声明示例:void (*fo)(int);

调用时直接将函数名传递给函数指针。

传递函数指针示例:

示例5:int add(int num1,int num2)

{return num1+num2;}

Int substract(int num1,int num2)

{return num1-num2;}

Typedef int (*fptrOperation)(int,int);

Int compute(fptrOperation operation,int num1,int num2) {return operation(num1,num2)}

Printf(“%d\n”,compute(add,5,6));

Printf(“%d\n”,compute(substract,5,6);

返回函数指针:

返回函数指针需要把函数的返回类型声明为函数指针。示例6:fptrOperation select(char opcode)

{switch(opcode)

{case ‘+’:return add;

Case ‘-‘:return substract;}

}

Int evaluate(char opcode,int num1,int num2) {fptrOperation operation=select(opcode);

Return operation(num1,num2);

}

Printf(“%d\n”,evaluate(‘+’,5,6));

Printf(“%d\n,evaluate(‘-‘,5,6));

指针和数组:

数组和指针表示法紧密关联,在合适的上下文可以互换。尽管数组名字有时候可以当作指针来使用,但数组的名字不是指针。数组表示法和指针可以一起使用,但两者明显不同,也不一定能互换,比如说,尽管数组使用自身的名字可以返回数组地址,但是名字本身不能作为赋值操作的目标。

注:1.数组是能用索引访问的同质元素连续集合,连续是指数组中的元素在内存中是相邻的,中间不存在空隙。

2.可以将二维数组当作数组的数组,即,如果只用一个下标访问数组,得到的是对应行的

指针。使用sizeof得到的是整行的长度。

3.将数组名作为地址赋值给指针,是把数组第一个元素的地址赋值给指针,即,指针指向

数组的第一个元素而不是数组本身。

4.Sizeof对数组和同一数组的指针操作是不同的,前者返回整个数组的大小,后者返回指

针本身的大小。

5.指针是一个左值,能修改,而数组名字不能被修改。

6.如果从堆上(malloc)分配内存,并把地址赋给一个指针,那就可以对指针使用数组下

标,并把这块内存当作一个数组。不过用完记得释放。

指针数组和数组指针:

Int *arr[5];和int (*arr)[5];是不同的,前者为指针数组,数组的每一个元素都为一个指针,存放的是地址值。后者为数组指针,arr为一个指向二维数组的指针,该二维数组的元素都是整数,且每行有5个元素,可以类比于函数指针,需要将二维数组的地址传给arr。

示例7:int matrix[2][5]={{1,2,3,4,5},{6,7,8,9,10}};

Int(*ptrmatrix)[5]=matrix;

注:这里matrix代表的是二维数组的首地址,matrix[0]也代表首地址,但matrix+1和matrix[0]+1代表的地址不同。前者表示加了20,后者表示加了4.

传递多维数组:

给函数传递多维数组时,要决定在函数原型声明中使用数组表示法还是指针表示法,还要考虑如何传递数组的形态,这里的形态指数组的维数及每一维的大小。

示例8:void display2DArray(int arr[][5],int rows){ };

或者void display2DArray(int (*arr)[5],int rows){ };

调用时,display2DArray(matrix,2);

注:函数不会为这个数组分配内存,因为传递的是地址。

动态分配二维数组:

像上面的matrix,其声明方式决定了其所分配的内存是连续的,但使用malloc这样的函数创建二维数组时,分配的内存可能不连续。

示例9:int rows=2;

Int cols=5;

Int **matrix=(int**)malloc(rows *sizeof(int *));

For(int i=0;i

{matrix[i]=(int*)malloc(cols*sizeof(int));

}

示例9这种方式分配的内存就不连续。

示例10:int rows=2;

Int cols=5;

Int **matrix=(int**)malloc(rows *sizeof(int *));

Matrix[0]=(int*)malloc(rows*cols*sizeof(int));

For(int i=1;i

{matrix[i]=matrix[0]+cols*I;}

示例10这种方式分配的就是连续的内存。

指针与字符串

字符串是以ASCII字符NUL(\0)结尾的字符序列,通常存储在数组或从堆上分配的内存中。字符串有两种类型,一种是由char数据类型组成的单字节字符串,一种是由wchar_t 数据类型组成的宽字符串(16位或32位,主要用于支持非拉丁字符集),处理函数分别包含在string.h和wchar.h头文件中。

注:1.字符串长度指的是字符串中除了NUL字符之外的字符数,而分配内存时也要为NUL 字符分配。

2.为了防止字符串被修改,可将其声明为常量指针,即const char *p=“sound”。

指针与结构体

结构体的定义使用struct关键字,通常结构体名的前面加上下划线。,访问结构体成员用点(·)操作符,当使用结构体指针时,使用箭头(→)操作符,当然也可以先将指针解引(*)后使用点操作符。结构体的声明通常使用typedef关键字,如下:

typedef struct _person{

char* fisrtName;

char* lastName;

char* title;

unsigned int age;

}Person;

为结构体分配内存

为结构体分配内存时,分配的内存大小至少是各个字段的长度和,不过实际长度通常会大于这个和,因为结构体各字段之间可能会有填充,某些数据类型需要对齐到特定边界就会产生填充。比如说,短整数通常对齐到能被2整除的地址上,而整数对齐到能被4整除的地址上。

详解字节对齐:

编译器默认会对结构体进行字节对齐处理,目的是加快计算机取数速度。三准则:

1.结构体变量的首地址能够被其最宽基本类型(内置数据类型,如

char,int,short,double,float)成员的大小所整除。

2.结构体每个成员相对于结构体首地址偏移量(offset)都是成员大小的整数倍,如有需

要编译器会在成员之间填充字节(internal padding)。

3.结构体总大小为结构体最宽基本类型成员大小的整数倍,如有需要编译器会在最末一个

成员之后加上填充字节(trailing padding)。

注:1.结构体某个成员相对于结构体首地址的偏移量可以通过offsetof()宏来获得,如offsetof(_person,firstName);

2.由于结构体成员可以是复合类型,如另一个结构体,所以在寻找最宽基本类型成员时,应当包含复合数据类型的子成员,而不是看成一个整体。但在确定复合类型的偏移量是则是看作一个整体。

示例11:struct _S1{

int i;

char c;}

struct _S2{

char c1;

_S1 s;

char c2;}

则sizeof(_S2)=4+(4+4)+4=16.//以4的整数倍对齐

再如:

struct _S3{

int i;

char c;

short s;}

则sizeof(_S3)=4+2+2=8;//由规则1和规则2可得出

3.可以通过#pragma pack(n)指令调整结构体对齐方式,其中n为字节对齐数(取1,2,4,8,16)

示例12:

#pragma pack(push)//将当前pack值压栈保存

#pragma pack(2)

struct _S1{

int i;

char c;}

struct _S2{

char c1;

_S1 s;

#pragma pack(pop)//恢复之前的pack值

此时sizeof(_S2)=2+(2+4)+2=10。

4.空的结构体大小为1。

5.结构体包含静态成员变量时,结构体大小不包括该静态变量。

结构体位域的概念

位域的主要目的是压缩存储规则如下:

1.如果相邻位域字段的类型相同,且其位宽之和小于数据类型的sizeof大小,则后面的字

段紧邻前一个字段存储,直到不能容纳为止。

2.如果相邻位域字段的类型相同,但其位宽之和大于数据类型的sizeof大小,则后面的字

段将从新的存储单元开始,其偏移量为其类型大小的整数倍。

3.如果相邻的位域字段类型不同,则不压缩

4.如过位域指端之间穿插非位域字段,则不进行压缩。

5.整个结构体的总的宽度为最宽基本数据类型的整数倍

如:示例13

struct _t{

char t1:3;

char t2:4;

short s;

char t4:3}

则sizeof(_t)=1+1+2+2=6

指针误用

1.不恰当的指针声明,如int * ptr1,ptr2;实际上只有ptr1为指针,正确的声明方式应为int*

ptr1,*ptr2。不过可以可以采用下面的类型定义方式:

typedef int* pint;

pint ptr1,ptr2;

注:这里要区分#define和typedef,前者为宏定义,在编译预处理时进行简单的替换,而后者不是简单的替换,而是采用如同定义变量的方法那样来声明一种类型。因此:#define PINT int *

PINT ptr1,ptr2;//同样只有ptr1为指针

另外,对于const PINT p;和const pint p;前者为指针常量(指向的内容不可变),后则为常量指针(指针本身不可多次赋值)。因为pint作为数据类型把p锁定了。

2.使用指针前为初始化,即野指针。

3.使用malloc这类函数时,一定要检查返回值,否则可能导致程序非正常终止。

示例14:

float *vector =(float*)malloc(20*sizeof(float));

if(vector==NULL){

}else{

}

4.一旦不再需要内存中的敏感苏剧,马上覆写是个好主意(使用memset)。

5.为了避免重复释放指针,在释放过后总是将其置为NULL。

转换指针

类型转换是一种基本操作,跟指针结合使用很有用,原因包括:

1.访问有特殊目的的地址

一般发生在嵌入式系统上,可以把某特殊地址赋值给一个指针,再把某个字符赋值给这个地址。如:

#define VIDEO_BASE 0xB8000

int *video=(int*)VIDEO_BASE;

*video=’A’;

2.分配一个地址来表示端口

端口即是硬件概念,也是软件概念。服务器用软件端口指明它们要接收发给这台机器的某类消息,硬件端口就是物理端口,程序通过读写硬件端口可以处理信息和命令。

示例15:

#define PORT 0xB0000000

unsigned int volatile * const port =(unsigned int *)PORT;

注:a.这里的volatile关键字修饰符可以译为“直接存取原始内存地址”,表示可以在程序以外改变变量,比如说,外部设备可能会向端口写入数据,且可以独立于计算机的处理器执行这个写操作,也有可能在多线程程序中共享同一变量的其它线程中发生改变的情形。出于优化的目的,编译器有时候会临时使用缓存或者寄存器来持有内存的值,如果外部操作修改了这个内存的值,改动不能反映到缓存或者寄存器中。用volatile可以阻止运行时系统使用寄存器暂存端口值,每次访问端口都需要系统读写端口,而不是从寄存器中读取一个可能已经过期的值。但是不应该把所有变量都声明为volatile,这样会组织编译器进行所有类型的优化。示例16:

int square(volatile int *ptr)

{

return *ptr * *ptr;

}

上段代码的本意是计算ptr指向内容的平方,但由于ptr被volatile修饰,可能计算过程中发生改变,得到的就不是平方值了。

又如

volatile char a;

a=0;

while(!a){

//do some things;

}

doother();

如果没有volatile doother()不会被执行

b.一个变量可以同时为const和volatile,它是volatile因为它可能被意想不到地改变。它是const因为程序不应该试图去修改它。

一般说来,volatile用在如下的几个地方:

①中断服务程序中修改的供其它程序检测的变量需要加volatile;

②多任务环境下各任务间共享的标志应该加volatile;

③存储器映射的硬件寄存器通常也要加volatile说明,因为每次对它的读写都可能有不同

意义;

另外,以上这几种情况经常还要同时考虑数据的完整性(相互关联的几个标志读了一半被打断了重写),在1中可以通过关中断来实现,2 中可以禁止任务调度,3中则只能依靠硬件的良好设计了。

3.判断机器的字节序

可以用类型转换操作来判断架构的字节序。

示例17:

int num=0x12345678;

char* pc=(char*)#

for(int i=0;i<4;i++)

{printf(“%p:%02x\n”,pc,(unsigned char)*pc++);}

根据输出就可以判断是小字节序(低字节存放在低地址中)还是大字节序。

别名、强别名与restrict关键字

当编译器为指针生成代码时,除非特别指定,它必须假设可能会存在别名。使用别名会对编译器生成代码有所限制,如果两指针引用同一位置,那么任何一个都可能修改这个位置。当编译器生成读写这个位置的代码时,它就不能通过把值存入寄存器来优化性能(意味着对于指针来说,没有必要使用volatile关键字)。对于每次引用,它只能执行机器级别的加载和保存操作。强别名是另一种别名,它不允许一种类型的指针成为另一种类型的指针的别名。使用restrict关键字可以在声明指针时告诉编译器这个指针没有别名,这样就允许编译器产生更高效的代码。如果用了别名,那么执行时会导致未定义形位。

注:强别名规则对符号或修饰符不起作用。

示例18:

int num;

const int *ptr1=#

int *ptr2=#

int volatile ptr3=#

这里最后一句加volatile是因为ptr1和ptr2都可以改变num的值,为了保证每次ptr3都能

从内存中读取数据。

操作系统内存管理复习过程

操作系统内存管理

操作系统内存管理 1. 内存管理方法 内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和 DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内

存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。 2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。 内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。

分区式存储管理常采用的一项技术就是内存紧缩(compaction)。 2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎

2014-2015(1)操作系统实验

实验项目名称:进程的同步(实验一) 1、实验目的 (1) 掌握进程和线程基本概念和属性; (2) 掌握用PV操作解决并发进程的同步问题; (3) 掌握用于同步的信号量初值的设置; (4) 掌握如何处理共享资源的直接制约关系。 2、实验内容 (1) 设计一个模拟若干售票网点的售票程序。界面可以参考图1。还应设计多个后台售票线程并发运行。 图1售票 (2) 模拟:桌上有一只盘子,每次只能放入一个水果。爸爸专向盘子中放苹果,妈妈专向盘子中放桔子,一个女儿专等吃盘子里的苹果,一个儿子专等吃盘子里的桔子。只要盘子空则爸爸或妈妈都可以向盘子放一个水果,仅当盘子中有自己需要的水果时,儿子或女儿可以从盘子中取出水果。放-取水果的几种情况如图2(a)~(f)所示,可以参照进行设计。 (a)盘子空时取水果 (b)父亲放入苹果

(c) 儿子取水果 (d) 女儿取水果 (e)儿子取走桔子 (f)盘子满时放水果 图2 放-取水果 (3) 自选其它能反映进程互斥问题的应用。 实验项目名称:处理机调度(实验二) 1、实验目的 (1) 掌握几种处理机调度算法的基本思想和特点; (2) 理解并发与并行的区别; (3) 比较几种算法的特点。 2、实验内容 编写程序模拟处理机调度,参照图3。 (1) 时间片轮转 (2) 动态优先权调度 (3) 高响应比优先调度

图3 模拟处理机调度 实验项目名称:银行家算法(实验三) 1、实验目的 银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 2、实验内容 (1) 设计进程对各类资源最大申请表示及初值确定。 (2) 设定系统提供资源初始状况。 (3) 设定每次某个进程对各类资源的申请表示。 (4) 编制程序,依据银行家算法,决定其申请是否得到满足。 具体设计可参照图4(a)~(c) 进行。

两种常见的内存管理方法:堆和内存池

两种常见的内存管理方法:堆和内存池 本文导读 在程序运行过程中,可能产生一些数据,例如,串口接收的数据,ADC采集的数据。若需将数据存储在内存中,以便进一步运算、处理,则应为其分配合适的内存空间,数据处理完毕后,再释放相应的内存空间。为了便于内存的分配和释放,AWorks提供了两种内存管理工具:堆和内存池。 本文为《面向AWorks框架和接口的编程(上)》第三部分软件篇——第9章内存管理——第1~2小节:堆管理器和内存池。 本章导读 在计算机系统中,数据一般存放在内存中,只有当数据需要参与运算时,才从内存中取出,交由CPU运算,运算结束再将结果存回内存中。这就需要系统为各类数据分配合适的内存空间。 一些数据需要的内存大小在编译前可以确定。主要有两类:一类是全局变量或静态变量,这部分数据在程序的整个生命周期均有效,在编译时就为这些数据分配了固定的内存空间,后续直接使用即可,无需额外的管理;一类是局部变量,这部分数据仅在当前作用域中有效(如函数中),它们需要的内存自动从栈中分配,也无需额外的管理,但需要注意的是,由于这一部分数据的内存从栈中分配,因此,需要确保应用程序有足够的栈空间,尽量避免定义内存占用较大的局部变量(比如:一个占用数K内存的数组),以避免栈溢出,栈溢出可能破坏系统关键数据,极有可能造成系统崩溃。 一些数据需要的内存大小需要在程序运行过程中根据实际情况确定,并不能在编译前确定。例如,可能临时需要1K内存空间用于存储远端通过串口发过来的数据。这就要求系统具有对内存空间进行动态管理的能力,在用户需要一段内存空间时,向系统申请,系统选择一段合适的内存空间分配给用户,用户使用完毕后,再释放回系统,以便系统将该段内存空间回收再利用。在AWorks中,提供了两种常见的内存管理方法:堆和内存池。9.1 堆管理器

linux内存管理子系统 笔记

4-4 linux内存管理子系统 4-4-1 linux内存管理(参考课件) 物理地址:cpu地址总线上寻址物理内存的地址信号,是地址变换的最终结果 逻辑地址:程序代码经过编译后,出现在汇编程序中的地址(程序设计时使用的地址) 线性地址:又名虚拟地址,32位cpu架构下4G地址空间 CPU要将一个逻辑地址转换为物理地址,需要两步: 1、首先CPU利用段式内存管理单元,将逻辑地址转换成线性地址; 2、再利用页式内存管理单元,把线性地址最终转换为物理地址 相关公式: 逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器)(通用的) 16位CPU:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 线性地址=段寄存器的值×16+逻辑地址的偏移部分 物理地址=线性地址(没有页式管理) 32位CPU:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 线性地址=段寄存器的值+逻辑地址的偏移部分 物理地址<——>线性地址(mapping转换) ARM32位:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 逻辑地址=段内偏移量(段基地址为0) 线性地址=逻辑地址=段内偏移量(32位不用乘以32) 物理地址<——>线性地址(mapping转换) ************************!!以下都是x86模式下!!********************************* 一、段式管理 1.1、16位CPU:(没有页式管理) 1.1.1、段式管理的由来: 16位CPU内部有20位地址总线,可寻址2的20次方即1M的内存空间,但16位CPU 只有16位的寄存器,因此只能访问2的16次方即64K。因此就采用了内存分段的管理模式,在CPU内部加入了段寄存器,这样1M被分成若干个逻辑段,每个逻辑段的要求如下: 1、逻辑段的起始地址(段地址)必须是16的整数倍,即最后4个二进制位须全是0 (因此不必保存)。 2、逻辑段的最大容量为64K。 1.1.2、物理地址的形成方式: 段地址:将段寄存器中的数值左移4位补4个0(乘以16),得到实际的段地址。 段偏移:在段偏移寄存器中。 1)逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 2)由逻辑地址得到物理地址的公式为:(因为没有页式管理,所以这一步就得到了物理地址)物理地址PA=段寄存器的值×16+逻辑地址的偏移部分(注意!!)(段与段可能会重叠)

操作系统实验内存分配

西安邮电大学 (计算机学院) 课内实验报告 实验名称:内存管理 专业名称:软件工程 班级: 学生姓名: 学号(8位): 指导教师: 实验日期:

实验五:进程 1.实验目的 通过深入理解区管理的三种算法,定义相应的数据结构,编写具体代码。充分模拟三种算法的实现过程,并通过对比,分析三种算法的优劣。 (1)掌握内存分配FF,BF,WF策略及实现的思路; (2)掌握内存回收过程及实现思路; (3)参考给出的代码思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。 2.实验要求: 1)掌握内存分配FF,BF,WF策略及实现的思路; 2)掌握内存回收过程及实现思路; 3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。 3.实验过程: 创建进程:

删除其中几个进程:(默认以ff首次适应算法方式排列) Bf最佳适应算法排列方式:

wf最差匹配算法排列方式: 4.实验心得: 这次实验实验时间比较长,而且实验指导书中对内存的管理讲的很详细,老师上课的时候也有讲的很详细,但是代码比较长,刚开始的时候也是不太懂,但是后面经过和同学一起商讨,明白几种算法的含义: ①首次适应算法。在采用空闲分区链作为数据结构时,该算法要求空闲分区链表以地址递增的次序链接。在进行内存分配时,从链首开始顺序查找,直至找到一个能满足进程大小要求的空闲分区为止。然后,再按照进程请求内存的大小,从该分区中划出一块内存空间分配给请求进程,余下的空闲分区仍留在空闲链中。 ②循环首次适应算法。该算法是由首次适应算法演变而形成的,在为进程分配内存空间时,从上次找到的空闲分区的下一个空闲分区开始查找,直至找到第一个能满足要求的空闲分区,并从中划出一块与请求的大小相等的内存空间分配给进程。 ③最佳适应算法将空闲分区链表按分区大小由小到大排序,在链表中查找第一个满足要求的分区。 ④最差匹配算法将空闲分区链表按分区大小由大到小排序,在链表中找到第一个满足要求的空闲分区。 实验中没有用到循环首次适应算法,但是对其他三种的描述还是很详细,总的来说,从实验中还是学到了很多。 5.程序源代码: #include #include #include

操作系统实验之内存管理实验报告

学生学号 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称 计算机操作系统 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 2016 — 2017 学年第一学期

实验三 内存管理 一、设计目的、功能与要求 1、实验目的 掌握内存管理的相关内容,对内存的分配和回收有深入的理解。 2、实现功能 模拟实现内存管理机制 3、具体要求 任选一种计算机高级语言编程实现 选择一种内存管理方案:动态分区式、请求页式、段式、段页式等 能够输入给定的内存大小,进程的个数,每个进程所需内存空间的大小等 能够选择分配、回收操作 内购显示进程在内存的储存地址、大小等 显示每次完成内存分配或回收后内存空间的使用情况 二、问题描述 所谓分区,是把内存分为一些大小相等或不等的分区,除操作系统占用一个分区外,其余分区用来存放进程的程序和数据。本次实验中才用动态分区法,也就是在作业的处理过程中划分内存的区域,根据需要确定大小。 动态分区的分配算法:首先从可用表/自由链中找到一个足以容纳该作业的可用空白区,如果这个空白区比需求大,则将它分为两个部分,一部分成为已分配区,剩下部分仍为空白区。最后修改可用表或自由链,并回送一个所分配区的序号或该分区的起始地址。 最先适应法:按分区的起始地址的递增次序,从头查找,找到符合要求的第一个分区。

最佳适应法:按照分区大小的递增次序,查找,找到符合要求的第一个分区。 最坏适应法:按分区大小的递减次序,从头查找,找到符合要求的第一个分区。 三、数据结构及功能设计 1、数据结构 定义空闲分区结构体,用来保存内存中空闲分区的情况。其中size属性表示空闲分区的大小,start_addr表示空闲分区首地址,next指针指向下一个空闲分区。 //空闲分区 typedef struct Free_Block { int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block; 定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情况。其中pid作为该被分配分区的编号,用于在释放该内存空间时便于查找。size表示分区的大小,start_addr表示分区的起始地址,process_name存放进程名称,next指针指向下一个分区。 //已分配分区的结构体 typedef struct Allocate_Block { int pid; int size; int start_addr; char process_name[PROCESS_NAME_LEN]; struct Allocate_Block *next; } Allocate_Block; 2、模块说明 2.1 初始化模块 对内存空间进行初始化,初始情况内存空间为空,但是要设置内存的最大容量,该内存空间的首地址,以便之后新建进程的过程中使用。当空闲分区初始化

Solaris 8内存管理机制研究

Solaris 8内存管理机制研究 吴海燕 戚丽 冯珂 摘 要:寻找性能瓶颈是性能分析中的一项重要任务,内存瓶颈的表现并不像CPU或磁盘那样直接,本文通过对Solaris 8内存管理机制的研究,给出了寻找Solaris 8系统内存瓶颈的方法。 关键词:Solaris 8,内存管理,性能优化 一、问题的提出 清华大学计算机与信息管理中心数据中心现有服务器近百台,其中包括了SUN Fire 15000、SUN Enterprise 5500、SUN Enterprise 5000等大型SUN服务器,Solaris 8是主流操作系统。为了对服务器的资源(如CPU、内存、磁盘、网络)的使用情况进行长期监控,建立性能优化(performance tuning)的基准值,我们开发了一套脚本程序定时采集系统运行参数。在长期的监控中,我们发现Solaris 8系统的空闲内存(freemem)呈现一个有趣的变化规律,如图1所示: 图1 空闲内存(freemem)变化图 图1是某Solaris 8系统(在下文中我们称之为15k-a)自2003年2月份以来的freemem 变化情况,横坐标是时间,纵坐标是freemem的数量,以8K字节为单位。15k-a配置是10路Super SPARCIII CPU,10GB物理内存。从上图可以看到在正常运行时,freemem应该是比较稳定的,15k-a主要是运行数据库,数据库在运行时会占用2G内存作为SGA区使用,因此在通常的负载下,freemem保持在6~7G之间是比较正常的。稳定一段时间后,

15k-a的freemem会持续走低,直到最低值,约为18893×8KMB,然后系统开始回收内存,我们就会看到freemem数量急剧上升。freemem的陡降都发生在凌晨1:00之后,检查系统作业发现每天1:00都会有一个数据库备份脚本开始运行:首先是用“exp”命令给数据库做逻辑备份,然后用“cp”命令把备份出来的文件拷贝到后备存储上。这两个命令都是正常退出,没有任何报错。开始时我们曾怀疑是有内存泄漏,当某一天freemem大幅攀升时,此怀疑被解除了,因为如果有内存泄漏,系统是无法将内存回收回来的。 对于一个物理内存为10GB的系统来说,如果空闲内存(freemem)真的减少到不到二百兆,那将存在着严重的问题。但奇怪的是系统的CPU使用率一直很低,所有进程的反应也很快,系统没有任何资源匮乏的迹象。如何解释这些问题呢,为此我们对Solaris 2.x 的内存管理机制进行了研究。 二、Solaris的内存管理机制 Solaris 8的内存管理为虚拟内存管理。[1]简单地说,虚拟内存就是进程看到比它实际使用的物理内存多得多的内存空间,对于64位的Solaris 8操作系统,进程可以通过8K 大小的段寻址访问2的64次方字节的内存空间,这种8K的段被称为页(page)。传统的UNIX通过进程(pagedaemon)完成虚拟地址和物理地址间的转换,在Solaris中这些是通过一个硬件-MMU(Memory Management Unit)-来实现的。在多处理器系统中,每个CPU 都有自己的MMU。Solaris 8的虚拟存储体系由系统寄存器、CPU CACHE、主存(RAM,物理内存)、外存(磁盘、磁带等)构成。 有两个基本的虚拟内存系统管理模型[2]:交换(swapping)和按需换页(demand paged)模型。交换模型的内存管理粒度是用户进程,当内存不足时,最不活跃的进程被交换出内存(swapping out)。按需换页模型的内存管理粒度是页(page),当内存匮乏时,只有最不经常使用的页被换出。Solaris 8结合使用了这两种内存管理模型,在通常情况下使用按需换页模型,当内存严重不足时,使用交换模型来进行内存释放。 与传统UNIX系统相比,Solaris虚拟内存系统的功能要丰富得多,它负责管理所有与I/O和内存相关的对象,包括内核、用户应用程序、共享库和文件系统。传统的UNIX系统V(System V)使用一个单独的缓冲区来加速文件系统的I/O, Solaris 8则使用虚拟内存系统来管理文件系统的缓存,系统的所有空闲内存都可以被用来做为文件I/O缓存,因为RAM的访问速度比磁盘快得多,所以这样做带来的性能提高是可观的。这也意味着在存在大量文件系统I/O的系统上,空闲内存的数量几乎是0。 了解系统内存被分配到了什么地方,系统在什么情况下进行内存整理是系统管理的重

windows操作系统内存管理方式综述

一页式管理 1 页式管理的基本原理将各进程的虚拟空间划分成若干个长度相等的页(page),页式管理把内存空间按页的大小划分成片或者页面(page frame),然后把页式虚拟地址与内存地址建立一一对应页表,并用相应的硬件地址变换机构,来解决离散地址变换问题。页式管理采用请求调页或预调页技术实现了内外存存储器的统一管理。 它分为 1 静态页式管理。静态分页管理的第一步是为要求内存的作业或进程分配足够的页面。系统通过存储页面表、请求表以及页表来完成内存的分配工作。静态页式管理解决了分区管理时的碎片问题。但是,由于静态页式管理要求进程或作业在执行前全部装入内存,如果可用页面数小于用户要求时,该作业或进程只好等待。而且作业和进程的大小仍受内存可用页面数的限制。 2 动态页式管理。动态页式管理是在静态页式管理的基础上发展起来的。它分为请求页式管理和预调入页式管理。 优点:没有外碎片,每个内碎片不超过页大小。一个程序不必连续存放。便于改变程序占用空间的大小(主要指随着程序运行而动态生成的数据增多,要求地址空间相应增长,通常由系统调用完成而不是操作系统自动完成)。 缺点:程序全部装入内存。 要求有相应的硬件支持。例如地址变换机构,缺页中断的产生和选择淘汰页面等都要求有相应的硬件支持。这增加了机器成本。增加了系统开销,例如缺页中断处理机,请求调页的算法如选择不当,有可能产生抖动现象。虽然消除了碎片,但每个作业或进程的最后一页内总有一部分空间得不到利用果页面较大,则这一部分的损失仍然较大。 二段式管理的基本思想 把程序按内容或过程(函数)关系分成段,每段有自己的名字。一个用户作业或进程所包含的段对应一个二维线形虚拟空间,也就是一个二维虚拟存储器。段式管理程序以段为单位分配内存,然后通过地址影射机构把段式虚拟地址转换为实际内存物理地址。 程序通过分段(segmentation)划分为多个模块,如代码段、数据段、共享段。其优点是:可以分别编写和编译。可以针对不同类型的段采取不同的保护。可以按段为单位来进行共享,包括通过动态链接进行代码共享。 三段页式管理的实现原理 1 虚地址的构成 一个进程中所包含的具有独立逻辑功能的程序或数据仍被划分为段,并有各自的段号s。这反映相继承了段式管理的特征。其次,对于段s中的程序或数据,则按照一定的大小将其划分为不同的页。和页式系统一样,最后不足一页的部分仍占一页。这反映了段页式管理中的页式特征。从而,段页式管理时的进程的虚拟地址空间中的虚拟地址由三部分组成:即段号s,页号P和页内相对地址d。虚拟空间的最小单位是页而不是段,从而内存可用区也就被划分成为着干个大小相等的页面,且每段所拥有的程序和数据在内存中可以分开存放。分段的大小也不再受内存可用区的限制。 2 段表和页表

第四章 操作系统存储管理(练习题)

第四章存储管理 1. C存储管理支持多道程序设计,算法简单,但存储碎片多。 A. 段式 B. 页式 C. 固定分区 D. 段页式 2.虚拟存储技术是 B 。 A. 补充内存物理空间的技术 B. 补充相对地址空间的技术 C. 扩充外存空间的技术 D. 扩充输入输出缓冲区的技术 3.虚拟内存的容量只受 D 的限制。 A. 物理内存的大小 B. 磁盘空间的大小 C. 数据存放的实际地址 D. 计算机地址位数 4.动态页式管理中的 C 是:当内存中没有空闲页时,如何将已占据的页释放。 A. 调入策略 B. 地址变换 C. 替换策略 D. 调度算法 5.多重分区管理要求对每一个作业都分配 B 的内存单元。 A. 地址连续 B. 若干地址不连续 C. 若干连续的帧 D. 若干不连续的帧 6.段页式管理每取一数据,要访问 C 次内存。 A. 1 B. 2 C. 3 D. 4 7.分段管理提供 B 维的地址结构。 A. 1 B. 2 C. 3 D. 4 8.系统抖动是指 B。 A. 使用计算机时,屏幕闪烁的现象 B. 刚被调出内存的页又立刻被调入所形成的频繁调入调出的现象 C. 系统盘不干净,操作系统不稳定的现象 D. 由于内存分配不当,造成内存不够的现象 9.在 A中,不可能产生系统抖动现象。 A. 静态分区管理 B. 请求分页式管理 C. 段式存储管理 D. 段页式存储管理 10.在分段管理中 A 。 A. 以段为单元分配,每段是一个连续存储区 B. 段与段之间必定不连续 C. 段与段之间必定连续 D. 每段是等长的 11.请求分页式管理常用的替换策略之一有 A 。 A. LRU B. BF C. SCBF D. FPF 12.可由CPU调用执行的程序所对应的地址空间为 D 。 A. 名称空间 B. 虚拟地址空间 C. 相对地址空间 D. 物理地址空间 13. C 存储管理方式提供二维地址结构。 A. 固定分区 B. 分页

JVM原理以及JVM内存管理机制

一、 JVM简介 JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。JVM工作原理和特点主要是指操作系统装入JVM是通过jdk中Java.exe来完成, 首先来说一下JVM工作原理中的jdk这个东西, .JVM 在整个jdk中处于最底层,负责于操作系统的交互,用来屏蔽操作系统环境,提供一个完整的Java运行环境,因此也就虚拟计算机. 操作系统装入JVM是通过jdk中Java.exe来完成。 通过下面4步来完成JVM环境. 1.创建JVM装载环境和配置 2.装载JVM.dll 3.初始化JVM.dll并挂界到JNIENV(JNI调用接口)实例 4.调用JNIEnv实例装载并处理class类。 对于JVM自身的物理结构,我们可以从下图了解:

JVM的一个重要的特征就是它的自动内存管理机制,在执行一段Java代码的时候,会把它所管理的内存划分 成几个不同的数据区域,其中包括: 1. 程序计数器,众所周知,JVM的多线程是通过线程轮流切换并 分配CPU执行时间的方式来实现的,那么每一个线程在切换 后都必须记住它所执行的字节码的行号,以便线程在得到CPU 时间时进行恢复,这个计数器用于记录正在执行的字节码指令的地址,这里要强调的是“字节码”,如果执行的是Native方法,那么这个计数器应该为null; 2.

3. Java计算栈,可以说整个Java程序的执行就是一个出栈入栈 的过程,JVM会为每一个线程创建一个计算栈,用于记录线程中方法的调用和变量的创建,由于在计算栈里分配的内存出栈后立即被抛弃,因此在计算栈里不存在垃圾回收,如果线程请求的栈深度大于JVM允许的深度,会抛出StackOverflowError 异常,在内存耗尽时会抛出OutOfMemoryError异常; 4. Native方法栈,JVM在调用操作系统本地方法的时候会使用到 这个栈; 5. Java堆,由于每个线程分配到的计算栈容量有限,对于可能会 占据大量内存的对象,则会被分配到Java堆中,在栈中包含了指向该对象内存的地址;对于一个Java程序来说,只有一个Java堆,也就是说,所有线程共享一个堆中的对象;由于Java堆不受线程的控制,如果在一个方法结束之后立即回收这个方法使用到的对象,并不能保证其他线程是否正在使用该对象;因此堆中对象的回收由JVM的垃圾收集器统一管理,和某一个线程无关;在HotSpot虚拟机中Java堆被划分为三代:o新生代,正常情况下新创建的对象会被分配到新生代,但如果对象占据的内存足够大以致超过了新生代的容量限 制,也可能被分配到老年代;新生代对象的一个特点是最 新、且生命周期不长,被回收的可能性高;

操作系统课程设计内存管理

内存管理模拟 实验目标: 本实验的目的是从不同侧面了解Windows 2000/XP 对用户进程的虚拟内存空间的管理、分配方法。同时需要了解跟踪程序的编写方法(与被跟踪程序保持同步,使用Windows提供的信号量)。对Windows分配虚拟内存、改变内存状态,以及对物理内存(physical memory)和页面文件(pagefile)状态查询的API 函数的功能、参数限制、使用规则要进一步了解。 默认情况下,32 位Windows 2000/XP 上每个用户进程可以占有2GB 的私有地址空间,操作系统占有剩下的2GB。Windows 2000/XP 在X86 体系结构上利用二级页表结构来实现虚拟地址向物理地址的变换。一个32 位虚拟地址被解释为三个独立的分量——页目录索引、页表索引和字节索引——它们用于找出描述页面映射结构的索引。页面大小及页表项的宽度决定了页目录和页表索引的宽度。 实验要求: 使用Windows 2000/XP 的API 函数,编写一个包含两个线程的进程,一个线程用于模拟内存分配活动,一个线程用于跟踪第一个线程的内存行为,而且要求两个线程之间通过信号量实现同步。模拟内存活动的线程可以从一个文件中读出要进行的内存操作,每个内存操作包括如下内容: 时间:操作等待时间。 块数:分配内存的粒度。 操作:包括保留(reserve)一个区域、提交(commit)一个区域、释放(release)一个区域、回收(decommit)一个区域和加锁(lock)与解锁(unlock)一个区域,可以将这些操作编号存放于文件。保留是指保留进程的虚拟地址空间,而不分配物理 存储空间。提交在内存中分配物理存储空间。回收是指释放物理内存空间,但在虚拟地址空间仍然保留,它与提交相对应,即可以回收已经提交的内存块。释放是指将物理存储和虚拟地址空间全部释放,它与保留(reserve)相对应,即可以释放已经保留的内存块。 大小:块的大小。 访问权限:共五种,分别为PAGE_READONLY,PAGE_READWRITE ,PAGE_EXECUTE,PAGE_EXECUTE_READ 和PAGE EXETUTE_READWRITE。可以将这些权限编号存放于文件中跟踪线程将页面大小、已使用的地址范围、物理内存总量,以及虚拟内存总量等信息显示出来。

操作系统第五版答案第7章内存管理

第7章内存管理 复习题: 7.1.内存管理需要满足哪些需求? 答:重定位、保护、共享、逻辑组织和物理组织。 7.2.为什么需要重定位进程的能力? 答:通常情况下,并不能事先知道在某个程序执行期间会有哪个程序驻留在主存中。 此外还希望通过提供一个巨大的就绪进程池,能够把活动进程换入和换出主存,以便使处理器的利用率最大化。在这两种情况下,进程在主存中的确切位置是不可预知的。 7.3.为什么不可能在编译时实施内存保护? 答:由于程序在主存中的位置是不可预测的,因而在编译时不可能检查绝对地址来确保保护。并且,大多数程序设计语言允许在运行时进行地址的动态计算(例如,通过计算数组下标或数据结构中的指针)。因此,必须在运行时检查进程产生的所有存储器访问,以便确保它们只访问了分配给该进程的存储空间。 7.4.允许两个或多个进程访问进程的某一特定区域的原因是什么? 答:如果许多进程正在执行同一程序,则允许每个进程访问该程序的同一个副本要比让每个进程有自己单独的副本更有优势。同样,合作完成同一任务的进程可能需要共享访问同一个数据结构。 7.5.在固定分区方案中,使用大小不等的分区有什么好处? 答:通过使用大小不等的固定分区:1.可以在提供很多分区的同时提供一到两个非常大的分区。大的分区允许将很大的进程全部载入主存中。2.由于小的进程可以被放入小的分区中,从而减少了内部碎片。 7.6.内部碎片和外部碎片有什么区别? 答:内部碎片是指由于被装入的数据块小于分区大小而导致的分区内部所浪费的空间。外部碎片是与动态分区相关的一种现象,它是指在所有分区外的存储空间会变成越来越多的碎片的。 7.7.逻辑地址、相对地址和物理地址间有什么区别? 答:逻辑地址是指与当前数据在内存中的物理分配地址无关的访问地址,在执行对内存的访问之前必须把它转化成物理地址。相对地址是逻辑地址的一个特例,是相对于某些已知点(通常是程序的开始处)的存储单元。物理地址或绝对地址是数据在主存中的实际位置。 7.8.页和帧之间有什么区别? 答:在分页系统中,进程和磁盘上存储的数据被分成大小固定相等的小块,叫做页。 而主存被分成了同样大小的小块,叫做帧。一页恰好可以被装入一帧中。 7.9.页和段之间有什么区别? 答:分段是细分用户程序的另一种可选方案。采用分段技术,程序和相关的数据被划分成一组段。尽管有一个最大段长度,但并不需要所有的程序的所有段的长度都相等。习题: 7.1. 2.3节中列出了内存管理的5个目标,7.1节中列出了5中需求。请说明它们是一致 的。 答: 重定位≈支持模块化程序设计; 保护≈保护和访问控制以及进程隔离; 共享≈保护和访问控制; 逻辑组织≈支持模块化程序设计; 物理组织≈长期存储及自动分配和管理.

全面介绍Windows内存管理机制

全面介绍Windows内存管理机制及C++内存分配实例 文章整理: https://www.wendangku.net/doc/c32733667.html, 文章来源: 网络- - 本文背景: 在编程中,很多Windows或C++的内存函数不知道有什么区别,更别谈有效使用;根本的原因是,没有清楚的理解操作系统的内存管理机制,本文企图通过简单的总结描述,结合实例来阐明这个机制。 本文目的: 对Windows内存管理机制了解清楚,有效的利用C++内存函数管理和使用内存。本文内容: 本文一共有六节,由于篇幅较多,故按节发表。 1.进程地址空间 1.1地址空间 ?32|64位的系统|CPU 操作系统运行在硬件CPU上,32位操作系统运行于32位CPU 上,64位操作系统运行于64位CPU上;目前没有真正的64位CPU。 32位CPU一次只能操作32位二进制数;位数多CPU设计越复杂,软件设计越简单。 软件的进程运行于32位系统上,其寻址位也是32位,能表示的空间是232=4G,范围从0x0000 0000~0xFFFF FFFF。 ?NULL指针分区 范围:0x0000 0000~0x0000 FFFF 作用:保护内存非法访问 例子:分配内存时,如果由于某种原因分配不成功,则返回空指针0x0000 0000;当用户继续使用比如改写数据时,系统将因为发生访问违规而退出。 那么,为什么需要那么大的区域呢,一个地址值不就行了吗?我在想,是不是因为不让8或16位的程序运行于32位的系统上呢?!因为NULL分区刚好范围是16的进程空间。 ?独享用户分区 范围:0x0001 0000~0x7FFE FFFF 作用:进程只能读取或访问这个范围的虚拟地址;超越这个范围的行为都 会产生违规退出。 例子: 程序的二进制代码中所用的地址大部分将在这个范围,所有exe 和dll文件都加载到这个。每个进程将近2G的空间是独享的。 注意:如果在boot.ini上设置了/3G,这个区域的范围从2G扩大为3G: 0x0001 0000~0xBFFE FFFF。 ?共享内核分区 范围:0x8000 0000~0xFFFF FFFF 作用:这个空间是供操作系统内核代码、设备驱动程序、设备I/O高速缓存、非页面内存池的分配、进程目表和页表等。 例子: 这段地址各进程是可以共享的。

实验操作系统存储管理实验报告

实验四操作系统存储管理实验报告 一、实验目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。 本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 二、实验内容 (1)通过计算不同算法的命中率比较算法的优劣。同时也考虑了用户内存容量对命中率的影响。 页面失效次数为每次访问相应指令时,该指令所对应的页不在内存中的次数。 在本实验中,假定页面大小为1k,用户虚存容量为32k,用户内存容量为4页到32页。 (2)produce_addstream通过随机数产生一个指令序列,共320条指令。 A、指令的地址按下述原则生成: 1)50%的指令是顺序执行的 2)25%的指令是均匀分布在前地址部分 3)25%的指令是均匀分布在后地址部分 B、具体的实施方法是: 1)在[0,319]的指令地址之间随机选取一起点m; 2)顺序执行一条指令,即执行地址为m+1的指令; 3)在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; 4)顺序执行一条指令,地址为m’+1的指令 5)在后地址[m’+2,319]中随机选取一条指令并执行; 6)重复上述步骤1)~5),直到执行320次指令 C、将指令序列变换称为页地址流

在用户虚存中,按每k存放10条指令排列虚存地址,即320条指令在虚存中 的存放方式为: 第0条~第9条指令为第0页<对应虚存地址为[0,9]); 第10条~第19条指令为第1页<对应虚存地址为[10,19]); 。。。。。。 第310条~第319条指令为第31页<对应虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下属算法在不同内存容量下的命中率。 1)先进先出的算法

Windows内存管理机制

Windows内存管理机制 在编程中,很多Windows或C++的内存函数不知道有什么区别,更别谈有效使用;根本的原因是,没有清楚的理解操作系统的内存管理机制,本文企图通过简单的总结描述,结合实例来阐明这个机制。 本文目的: 对Windows内存管理机制了解清楚,有效的利用C++内存函数管理和使用内存。 本文内容: 本文一共有六节,由于篇幅较多,故按节发表。其他章节请看本人博客的Windows内存管理及C++内存分配实例(一)(二)(三)(四)和(五)。 1. 进程地址空间 2.内存状态查询函数 3.内存管理机制--虚拟内存 (VM) 4.内存管理机制--内存映射文件 (Map) 5.内存管理机制--堆 (Heap) 使用场合 操作系统为每个线程都建立一个默认堆栈,大小为1M。这个堆栈是供函数调用时使用,线程内函数里的各种静态变量都是从这个默认堆栈里分配的。

堆栈结构 默认1M的线程堆栈空间的结构举例如下,其中,基地址为0x0004 0000,刚开始时,CPU的堆栈指针寄存器保存的是栈顶的第一个页面地址 0x0013 F000。第二页面为保护页面。这两页是已经分配物理存储器的可用页面。 随着函数的调用,系统将需要更多的页面,假设需要另外5页,则给这5页提交内存,删除原来页面的保护页面属性,最后一页赋予保护页面属性。 当分配倒数第二页0x0004 1000时,系统不再将保护属性赋予它,相反,它会产生堆栈溢出异常STATUS_STACK_OVERFLOW,如果程序没有处理它,则线程将退出。最后一页始终处于保留状态,也就是说可用堆栈数是没有1M的,之所以不用,是防止线程破坏栈底下面的内存(通过违规访问异常达到目的)。

操作系统实验内存分配

精心整理西安邮电大学 (计算机学院) 课内实验报告 1. (1 (2 (3 原因,写出实验报告。 2.实验要求: 1)掌握内存分配FF,BF,WF策略及实现的思路; 2)掌握内存回收过程及实现思路; 3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。

3.实验过程: 创建进程: 删除其中几个进程:(默认以ff首次适应算法方式排列) Bf最佳适应算法排列方式: wf最差匹配算法排列方式: 4.实验心得: 明 实验中没有用到循环首次适应算法,但是对其他三种的描述还是很详细,总的来说,从实验中还是学到了很多。 5.程序源代码: #include #include #include #include

#define PROCESS_NAME_LEN 32 //进程名长度 #define MIN_SLICE 10 //最小碎片的大小#define DEFAULT_MEM_SIZE 1024 //内存大小 #define DEFAULT_MEM_START 0 //起始位置 /*内存分配算法*/ #define MA_FF 1 #define MA_BF 2 #define MA_WF 3 /*描述每一个空闲块的数据结构*/ struct free_block_type { }; /* /* { }; /* /* void display_menu(); int set_mem_size(); void set_algorithm(); void rearrange(int algorithm); int rearrange_WF(); int rearrange_BF(); int rearrange_FF(); int new_process(); int allocate_mem(struct allocated_block *ab);

操作系统内存管理原理

内存分段和请求式分页 在深入i386架构的技术细节之前,让我们先返回1978年,那一年Intel 发布了PC处理器之母:8086。我想将讨论限制到这个有重大意义的里程碑上。如果你打算知道更多,阅读Robert L.的80486程序员参考(Hummel 1992)将是一个很棒的开始。现在看来这有些过时了,因为它没有涵盖Pentium处理器家族的新特性;不过,该参考手册中仍保留了大量i386架构的基本信息。尽管8086能够访问1MB RAM的地址空间,但应用程序还是无法“看到”整个的物理地址空间,这是因为CPU寄存器的地址仅有16位。这就意味着应用程序可访问的连续线性地址空间仅有64KB,但是通过16位段寄存器的帮助,这个64KB大小的内存窗口就可以在整个物理空间中上下移动,64KB逻辑空间中的线性地址作为偏移量和基地址(由16位的段寄存器给处)相加,从而构成有效的20位地址。这种古老的内存模型仍然被最新的Pentium CPU支持,它被称为:实地址模式,通常叫做:实模式。 80286 CPU引入了另一种模式,称为:受保护的虚拟地址模式,或者简单的称之为:保护模式。该模式提供的内存模型中使用的物理地址不再是简单的将线性地址和段基址相加。为了保持与8086和80186的向后兼容,80286仍然使用段寄存器,但是在切换到保护模式后,它们将不再包含物理段的地址。替代的是,它们提供了一个选择器(selector),该选择器由一个描述符表的索引构成。描述符表中的每一项都定义了一个24位的物理基址,允许访问16MB RAM,在当时这是一个很不可思议的数量。不过,80286仍然是16位CPU,因此线性地址空间仍然被限制在64KB。 1985年的80386 CPU突破了这一限制。该芯片最终砍断了16位寻址的锁链,将线性地址空间推到了4GB,并在引入32位线性地址的同时保留了基本的选择器/描述符架构。幸运的是,80286的描述符结构中还有一些剩余的位可以拿来使用。从16位迁移到32位地址后,CPU的数据寄存器的大小也相应的增加了两倍,并同时增加了一个新的强大的寻址模型。真正的32位的数据和地址为程序员带了实际的便利。事实上,在微软的Windows平台真正完全支持32位模型是在好几年之后。Windows NT的第一个版本在1993年7月26日发布,实现了真正意义上的Win32 API。但是Windows 3.x程序员仍然要处理由独立的代码和数据段构成的64KB内存片,Windows NT提供了平坦的4GB地址空间,在那儿可以使用简单的32位指针来寻址所有的代码和数据,而不需要分段。在内部,当然,分段仍然在起作用,就像我在前面提及的那样。不过管理段的所有责任都被移给了操作系统。

内存的存储管理--段式和页式管理的区别

存储管理的基本原理 内存管理方法 内存管理主要包括内存分配和回收、地址变换、内存扩充、内存共享和保护等功能。 下面主要介绍连续分配存储管理、覆盖与交换技术以及页式与段式存储管理等基本概念和原理。 1.连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 (1)单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。 (2)分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。前者是占用分区内未被利用的空间,后者是占用分区之间难以利用的空闲分区(通常是小空闲分区)。为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。 分区式存储管理常采用的一项技术就是内存紧缩(compaction):将各个占用分区向内存一端移动,然后将各个空闲分区合并成为一个空闲分区。这种技术在提供了某种程度上的灵活性的同时,也存在着一些弊端,例如:对占用分区进行内存数据搬移占用CPU~t寸间;如果对占用分区中的程序进行“浮动”,则其重定位需要硬件支持。 1)固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。这种技术的优点在于,易于实现,开销小。缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2)动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎片。但它却引入了另一种碎片——外碎片。动态分区的分区分配就是寻找某个空闲分区,其大小需大于或等于程序

相关文档
相关文档 最新文档