文档库 最新最全的文档下载
当前位置:文档库 › 数学建模投资收益和风险的模型

数学建模投资收益和风险的模型

数学建模投资收益和风险的模型
数学建模投资收益和风险的模型

投资收益和风险的模型

摘要

在现代商业、金融的投资中,任何理性的投资者总是希望收益能够取得最大化,但是他也面临着不确定性和不确定性所引致的风险。而且,大的收益总是伴随着高的风险。在有很多种资产可供选择,又有很多投资方案的情况下,投资越分散,总的风险就越小。为了同时兼顾收益和风险,追求大的收益和小的风险构成一个两目标决策问题,依据决策者对收益和风险的理解和偏好将其转化为一个单目标最优化问题求解。随着投资者对收益和风险的日益关注,如何选择较好的投资组合方案是提高投资效益的根本保证。传统的投资组合遵循“不要将所有的鸡蛋放在一个蓝子里”的原则, 将投资分散化。 一 问题的提出

某公司有数额为M (较大)的资金,可用作一个时期的投资,市场上现有5种资产(i S )(如债券、股票等)可以作为被选的投资项目,投资者对这五种资产进行评估,估算出在这一段时期内购买i S 的期望收益率(i r )、交易费率(i p )、风险损失率(i q )以及同期银行存款利率0r (0r =3%)在投资的这一时期内为定值如表1,不受意外因素影响,而净收益和总体风险只受i r ,i p ,i q 影响,不受其他因素干扰 。现要设计出一种投资组合方案, 使净收益尽可能大, 风险尽可能小.

表1

投资项目i S 期望收益率(%)i r 风险损失率(%)i q

交易费率(%)i p

存银行0S

3 0 0 27 2.

4 1 22 1.6 2 2

5 5.2 4.5 23 2.2 6.5

21

1.5

2

其中0,1,2,3,4,5.i

二 问题假设及符号说明

2.1 问题假设

(1)总体风险可用投资的这五种中最大的一个风险来度量;

(2)在投资中,不考虑通货膨胀因素, 因此所给的i S 的期望收益率i r 为实际的平均收益率; (3)不考虑系统风险, 即整个资本市场整体性风险, 它依赖于整个经济的运行情况, 投资者无法分散这种风险, 而只考虑非系统风险, 即投资者通过投资种类的选择使风险有所分散; (4)不考虑投资者对于风险的心理承受能力。 2.2 符号说明

i x :购买第i 种资产的资金数额占资金总额的百分比;

i Mx :购买第i 种资产的资金数额; 0Mx :存银行的金额; ()i f x :交易费用; R :净收益;

Q :总体风险; i ρ:第i 种投资的净收益率。

三 模型的分析与建立

令交易费用 则净收益为

总体风险为 约束条件为 可以简化约束条件为

同时将5

0(1)i i i M M p x ==+∑代入,得

略去M,原问题化为双目标决策问题:

05

min max i i i Q x q ≤≤= (3.1)

以下设0i i r p ->,否则不对该资产投资。 四 模型的求解

4.1 固定R 使Q 最小的模型

固定R 使Q 最小,将模型(3.1)化为

05

min max i i i Q q x ≤≤=,

5

05

(),(1)s. t . (1)1,(2)00,1,,5

i i i i i i i i r p x R p x x i ==?-=???+=???≥?

=?∑∑ (4.1)

此模型又可改写为

令()(1)i i i i r p p ρ=-+,i ρ表示第i 种投资的净收益率,则i ρ必大于0ρ,否则, 若10ρρ≤, 则不对i S 投资, 因为对该项目投资纯收益率不如存银行, 而风险损失率又大于存银行。将i ρ从小到大排序,设k ρ最大, 则易见对模型(4.1)的可行解必有k R ρ≤≤03.0.

当03.0=R 时, 所有资金都存银行,0=Q ; 当k R ρ=时, 所有资金用于购买i S ,

1k

k

q Q p =+;当k R ρ<<03.0时,有如下结论[7]。 结论:若0.03

,)x x x 是模型(3.2.2)的最优解, 则1155x q x q =

=[7]。

而对于固定收益使风险最小的模型来说,这结论也可换句话说:在前5项投资总额一定的前提下,各项投资的风险损失相等即112255x q x q x q ===时,总体风险最小[8]。

证:设125,,

,y y y 是满足112255x q x q x q ==

=的一组解,即*112255y q y q y q Q ==

==。

显然此时*Q 为总体风险。

由于前5项投资总额M 是一定的,只要改变其中一项的值,便会导致总体风险增加。(比如说将1

y 的值增加为*1y 会使得**11y q Q >,总体风险显然增加;反之,若减小1y 的值,必然会导致另外一项或几项的值,总体风险自然增加。)

因此,当(0.03,)k R ρ∈时,可按以下步骤求出最优解:1)将(1)式和(2)式消去0x ;2)将i i

Q

x q =

代入解出Q ;3)由i i Q

x q =,15i ≤≤,5

01

1(1)i i i x p x ==-+∑求出最优解。

所以,我们算得如下结果:

(1)0.03R =时,0123451,0,0x x x x x x Q =======;

(2)0.261.01R =时,0234510,11.01,0.0241.01x x x x x x Q =======; (3)(0.03,0.261.01)R ∈时,0.03

,40.1721R Q -= 10.030.9641R x -=,20.030.6428R x -=, 30.03

2.0889

R x -=,

40.030.8838R x -=

,50.03

0.6026

R x -=,0123451 1.01 1.02 1.045 1.065 1.02x x x x x x =-----。

事实上应用Lingo 软件可算得如下结果:

表1

收益R 最小风

投资i S 的资金百分比i x (0,1,2,3,4,5.i =)

险度Q

0.0000 0.0000 0.0000 0.0000 0.0000 0.0300 0.0000 1.0000

0.0104 0.0156 0.0048 0.0113 0.0166 0.0400 0.0002 0.9397

0.0500 0.0005 0.8793

0.0207 0.0311 0.0096 0.0226 0.0332 0.0600 0.0007 0.8190 0.0311 0.0467 0.0144 0.0339 0.0498

0.0415 0.0622 0.0191 0.0453 0.0664 0.0700 0.0010 0.7587

0.0519 0.0778 0.0239 0.0566 0.0830 0.0800 0.0012 0.6984

0.0622 0.0933 0.0287 0.0679 0.0996 0.0900 0.0015 0.6380

0.0726 0.1089 0.0335 0.0792 0.1162 0.1000 0.0017 0.5777

0.1100 0.0020 0.5174

0.0830 0.1245 0.0383 0.0905 0.1328

0.0933 0.1400 0.0431 0.1018 0.1494 0.1200 0.0022 0.4571

0.1037 0.1556 0.0479 0.1131 0.1660 0.1300 0.0025 0.3967

0.1141 0.1711 0.0527 0.1245 0.1825 0.1400 0.0027 0.3364

0.1991

0.1245 0.1867 0.0574

0.1500 0.0030 0.2761

0.1358

0.1348 0.2023 0.0622 0.1471 0.2157 0.1600 0.0032 0.2158

0.1452 0.2178 0.0670 0.1584 0.2323 0.1700 0.0035 0.1554

0.1556 0.2334 0.0718 0.1697 0.2489 0.1800 0.0037 0.0951

0.1660 0.2489 0.0766 0.1810 0.2655 0.1900 0.0040 0.0348

0.1897 0.2846 0.0876 0.1097 0.3036 0.2000 0.0046 0.0000

0.2100 0.0062 0.0000 0.2589 0.3884 0.1195 0.0000 0.2132

0.3858 0.4160 0.1781 0.0000 0.0000 0.2200 0.0093 0.0000

0.2300 0.0131 0.0000 0.5471 0.1800 0.2525 0.0000 0.0000 0.2400 0.0170 0.0000 0.7084 0.0000 0.2722 0.0000 0.0000

0.2500 0.0209 0.0000 0.8701 0.0000 0.1160 0.0000 0.0000 0.26/1.01

0.0238 0.0000 0.9901 0.0000 0.0000 0.0000 0.0000 4.2 固定Q 使R 最大的模型

固定Q 使R 最大,将模型(3.2.1)化为

5

0max ()i i i i R r p x ==-∑,

50,s. t .(1)1,0,(0,1,,5.)

i i i i i i x q Q p x x i =≤?

??

+=???≥=?∑ (3.2.3)

对于每一个Q ,用模型(3.2.3) 都能求出R , 由净收益率()(1)i i i i r p p ρ=-+, 直观上想到i ρ越大,i x 应尽量大,这种想法是正确的,可将其写为如下结论。

结论[7]:设015(,,

,)x x x 是模型(3.2.3)的最优解, 若i j ρρ> , 0j x >,则i i x Q q =。

证明:反证法。假设i j ρρ>,0j x >,而i i x Q q <。

选取充分小的正数ε,使得()i i x q Q ε+<,(1)(1)i j j p x p ε+<+。

令*i i x x ε=+,*(1)(1)j j i j x x p p ε=-++,当,k i j ≠时,令*k k x x =,则*0k x ≥,且

5

*

*

,(1)(1)()(1)[(1)(1)](1)1k

k k

k i i j i j j k k i j

x

p x

p x p x p p p εε=≠+=

+++++-+++=∑∑,

5

5

*

*0

,0

()()()()[(1)(1)]()()k

k k k

k k i i i j i j j j k k k k k i j

k x

r p x r p x r p x p p r p x r p εε=≠=-=

-++-+-++->-∑∑∑。则

***015(,,,)x x x 才是最优解,因此015(,,,)x x x 不是模型(3.2.3)的最优解。

此处矛盾,则结论成立,证毕。

由此结论, 我们可将i ρ从大到小排序, 使i ρ最大的k 应尽量满足k k x q Q =, 若还有多余资金, 再投资i ρ次大的, 。对于不同的Q ,会有不同的投资方案, 我们可以算出Q 的临界值, 从而确

定各项目的投资值。

因此,设123450ρρρρρρ>>>>> , 则可用下面的方法算出各临界值1c ,2c ,3c ,4c ,5c 。 只有一种投资时,

111111(1),(1)0.023762c p q c q p +==+=。

当有两种投资时, 将121222,x c q x c q ==,代入1122(1)(1)1x p x p +++=,得

2121221[(1)(1)]0.009449c q q p q p q =+++=。

同理可得:3123123213312[(1)(1)(1)]0.007941c q q q p q q p q q p q q =+++++=,

于是得最优解:

当0.000000Q =时,0123451,0x x x x x x ======。 当00.004131Q <≤时,

5

112233445501,,,,,1(1)i i i x Q q x Q q x Q q x Q q x Q q x p x =======-+∑。

当0.0041310.005736Q <≤时,

4

11223344,5501,,,[1(1)](1),0i i i x Q q x Q q x Q q x Q q x p x p x ======-++=∑。

当0.0057360.007941Q <≤时,

3

11223344501,,,[1(1)](1),0i i i x Q q x Q q x Q q x p x p x x =====-++==∑。

当0.0079410.009449Q <≤时,

2

1122334501,,[1(1)](1),0i i I x Q q x Q q x p x p x x x ====-++===∑。

当0.0094490.023762Q <≤时,

1121123450,[1(1)](1),0x Q q x p x p x x x x ==-++====。

当0.023762Q >时,

11234501(1),0x p x x x x x =+=====。

当然,我们也可以换个角度来考虑上面这个模型。为了能够给不同风险承受能力的投资者提供某种风险水平下的最优投资组合的决策方案,我们必须确定最优收益值R 和最小风险度Q 的值之间的对应关系。

因此,我们将模型(3.2.3)改写成如下形式:

()()()000111555max R r p x r p x r p x =-+-+

+-,

为此编写MATLAB程序(见附录),从风险度0

Q=开始,以每次增加0.001的风险度进行搜索[5]。根据附录中程序一,最优收益值R和最小风险度Q以及投资额分配之间的对应关系计算结果列表如下:

风险度

Q 最优收

益R

投资

i

S的资金百分比

i

x(0,1,2,3,4,5.

i=)

0 0.0300 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0702 0.7577 0.0417 0.0625 0.0192 0.0455 0.0667 0.0020 0.1103 0.5153 0.0833 0.1250 0.0385 0.0909 0.1333 0.0030 0.1505 0.2730 0.1250 0.1875 0.0577 0.1364 0.2000 0.0040 0.1907 0.0306 0.1667 0.2500 0.0769 0.1818 0.2667 0.0050 0.2044 0.0000 0.2083 0.3125 0.0962 0.0285 0.3333 0.0060 0.2092 0.0000 0.2500 0.3750 0.1154 0.0000 0.2396 0.0070 0.2130 0.0000 0.2917 0.4375 0.1346 0.0000 0.1162 0.0080 0.2167 0.0000 0.3333 0.4927 0.1538 0.0000 0.0000 0.0090 0.2193 0.0000 0.3750 0.4317 0.1731 0.0000 0.0000 0.0100 0.2219 0.0000 0.4167 0.3708 0.1923 0.0000 0.0000 0.0110 0.2245 0.0000 0.4583 0.5266 0.0000 0.0000 0.0000 0.0120 0.2271 0.0000 0.5000 0.2489 0.2308 0.0000 0.0000 0.0130 0.2297 0.0000 0.5417 0.1879 0.2500 0.0000 0.0000 0.0140 0.2322 0.0000 0.5833 0.1269 0.2692 0.0000 0.0000 0.0150 0.2348 0.0000 0.6250 0.0660 0.2885 0.0000 0.0000 0.0160 0.2374 0.0000 0.6667 0.0051 0.3077 0.0000 0.0000 0.0170 0.2400 0.0000 0.7083 0.0000 0.2723 0.0000 0.0000 0.0180 0.2426 0.0000 0.7500 0.0000 0.2321 0.0000 0.0000

0.0190 0.2451 0.0000 0.7917 0.0000 0.1918 0.0000 0.0000 0.0200 0.2477 0.0000 0.8333 0.0000 0.1515 0.0000 0.0000 0.0210 0.2503 0.0000 0.8750 0.0000 0.1112 0.0000 0.0000 0.0220 0.2529 0.0000 0.9167 0.0000 0.0710 0.0000 0.0000 0.0230 0.2555 0.0000 0.9583 0.0000 0.0307 0.0000 0.0000 0.0240 0.2574 0.0000 0.9901 0.0000 0.0000 0.0000 0.0000 0.0250 0.2574 0.0000 0.9901 0.0000 0.0000 0.0000 0.0000 0.0990 0.2574 0.0000 0.9901 0.0000 0.0000 0.0000 0.0000

从上表可以看出,风险越大,收益也越大,冒险的投资者可能会集中投资,而保守的投资着者则会尽量分散投资。但是,在风险度Q 从0.0000增长到0.0080过程中,风险增加很少时,收益增加也很快,而风险度Q 在0.0080之后,风险增加很大时而收益却增加的很缓慢。由于在风险度Q 从

0.0240之后,最优收益R 已经达到最大,不再增加,所以对于一般投资者来说,选择

0.0240,0.2574Q R ==时的安排才为最优投资组合方案。

4.3.3 使R/Q 最大或Q/R 最小的模型

按照收益—风险最大原则, 可取模型

max R Q ,

由于00q =,因而取01251,0x x x x =====时,max R Q =+∞。当然,也可取模型

min Q R ,

同上,由于00q =,因而取01251,0x x x x =====时,min Q R =0,从而可知, 全部钱存银行是

最优解。对于此问题, 其他投资的收益与风险损失率都不影响该最优解, 故这种模型不够好。

4.3.4 偏好系数模型

由偏好系数法, 我们选取偏好系数(01)μμ≤≤,建立模型

max[(1)]R y μμ--,

具体数据可应用参数规划法进行计算。

权重r 最小

投资i S 的资金百分比i x

风险度Q (5,4,3,2,1,0

i)

[0,0.7200]

0.023

8 0.000

0.990

1

0.000

0.000

0.000

0.000

[0.7210,0.7920]

0.007

9 0.000

0.330

9

0.496

3

0.152

7

0.000

0.000

[0.7930,0.9070]

0.005

2 0.000

0.214

9

0.322

3

0.099

2

0.000

0.343

8

[0.9090,0.9750]

0.004

1 0.000

0.171

9

0.257

9

0.079

4

0.187

6

0.275

1

[0.9760,1]

0.000

0 1.000

0.000

0.000

0.000

0.000

0.000

附录一模型一Lingo 语句

min=y;

0.03*x0+(0.27-0.01)*x1+(0.22-0.02)*x2+(0.25-0.045)*x3+(0.

23-0.065)*x4+(0.21-0.02)*x5=0.03;

x0+1.01*x1+1.02*x2+1.045*x3+1.065*x4+1.02*x5=1;

0.024*x1<=y;

0.016*x2<=y;

0.052*x3<=y;

0.022*x4<=y;

0.015*x5<=y;

模型一Matlab 程序

>> R=0.03

>> while R<0.26/1.01;

C= [0 0 0 0 0 0 1];

A= [0 0.024 0 0 0 0 -1;0 0 0.016 0 0 0 -1;0 0 0 0.052 0 0 -1;0 0 0 0 0.022 0 -1;0 0 0 0 0 0.015 -1];

B= [0;0;0;0;0];

Aeq= [0.03 0.26 0.2 0.205 0.165 0.19 0;1 1.01 1.02 1.045 1.065 1.02 0];

Beq= [R;1];

Vlb= [0;0;0;0;0;0;0];% or Vlb= zeros(7,1);

Vub= [ ];

[x,fval]= linprog(C,A,B,Aeq,Beq,Vlb,Vub);

R

Q=fval

x=x'

plot(R, Q, 'm.')

axis([0 0.3 0 0.03])

xlabel('收益R')

ylabel('最小风险度Q')

title('最小风险度Q随收益R的变化趋势图')

hold on

R=R+0.01;

grid on

end

R=0.26/1.01;

C= [0 0 0 0 0 0 1];

A= [0 0.024 0 0 0 0 -1;0 0 0.016 0 0 0 -1;0 0 0 0.052 0 0 -1;0 0 0 0 0.022 0 -1;0 0 0 0 0 0.015 -1];

B= [0;0;0;0;0];

Aeq= [0.03 0.26 0.2 0.205 0.165 0.19 0;1 1.01 1.02 1.045 1.065 1.02 0];

Beq= [R;1];

Vlb= [0;0;0;0;0;0;0];% or Vlb= zeros(7,1);

Vub= [ ];

[x,fval]= linprog(C,A,B,Aeq,Beq,Vlb,Vub)

程序二模型二Matlab 程序

>> Q=0

>> while (1.1-Q)>1 % or Q<0.1;

C= [-0.03 -0.26 -0.20 -0.205 -0.165 -0.19];

A= [0 0.024 0 0 0 0;0 0 0.016 0 0 0;0 0 0 0.052 0 0;0 0 0 0 0.022 0;0 0 0 0 0 0.015]; B= [Q;Q;Q;Q;Q];

Aeq= [1 1.01 1.02 1.045 1.065 1.02];

Beq= [1];

Vlb= [0;0;0;0;0;0];% or Vlb= zeros(5,1);

Vub= [ ];

[x,fval]= linprog(C,A,B,Aeq,Beq,Vlb,Vub);

Q

R=-fval

x=x'

plot(Q,R,'m.')

axis([0 0.1 0 0.5])

xlabel('风险度Q')

ylabel('最优收益R')

title('最优收益R随风险度Q的变化趋势图')

hold on

Q=Q+0.001;

grid on

end

a=0;

while(1.1-a)>1

c=[-0.05 -0.27 -0.19 -0.185 -0.185];

Aeq=[1 1.01 1.02 1.045 1.065];

beq=[1];

A=[0 0.025 0 0 0;0 0 0.015 0 0;0 0 0 0.055 0;0 0 0 0 0.026];

b=[a;a;a;a];

vlb=[0,0,0,0,0];

vub=[];

[x,val]=linprog(c,A,b,Aeq,beq,vlb,vub);

a

x=x'

Q=-val

plot(a,Q,'.')

axis([0 0.1 0 0.5])

hold on

a=a+0.001;

end

xlabel('a'),ylabel('Q')

模型三Lingo 语句

max[(1)]R y μμ--,

max=((1-0.2)*

(0.03*x0+(0.27-0.01)*x1+(0.22-0.02)*x2+(0.25-0.045)*x3+(0.23-0.065)*x4+(0.21-0.02)*x5

)-0.8*y);

x0+1.01*x1+1.02*x2+1.045*x3+1.065*x4+1.02*x5=1;

0.024*x1<=y; 0.016*x2<=y; 0.052*x3<=y; 0.022*x4<=y; 0.015*x5<=y;

程序三模型三Matlab 程序

r=0

>> while r<1;

C= [-0.03*(1-r) -0.26*(1-r) -0.20*(1-r) -0.205*(1-r) -0.165*(1-r) -0.19*(1-r) r]; A= [0 0.024 0 0 0 0 -1;0 0 0.016 0 0 0 -1;0 0 0 0.052 0 0 -1;0 0 0 0 0.022 0 -1;0 0 0 0 0 0.015 -1]; B= [0;0;0;0;0];

Aeq= [1 1.01 1.02 1.045 1.065 1.02 0]; Beq= [1];

Vlb= [0;0;0;0;0;0];% or Vlb= zeros(6,1); Vub= [ ];

[x,fval]= linprog(C,A,B,Aeq,Beq,Vlb,Vub); r

Q=x(7) x=x '

plot(r,Q,'r-') axis([0 1 0 0.025])

xlabel('权重r ') ylabel('风险度Q ')

title('风险度Q 随权重r 的变化趋势图')

hold on r=r+0.001; grid on

end

r=0.8;

C= [-0.03*(1-r) -0.26*(1-r) -0.20*(1-r) -0.205*(1-r) -0.165*(1-r) -0.19*(1-r) r];

A= [0 0.024 0 0 0 0 -1;0 0 0.016 0 0 0 -1;0 0 0 0.052 0 0 -1;0 0 0 0 0.022 0 -1;0 0 0 0 0 0.015 -1];

B= [0;0;0;0;0];

Aeq= [1 1.01 1.02 1.045 1.065 1.02 0];

Beq= [1];

Vlb= [0;0;0;0;0;0];% or Vlb= zeros(6,1);

Vub= [ ];

[x,fval]= linprog(C,A,B,Aeq,Beq,Vlb,Vub)

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模模糊综合评价法

学科评价模型(模糊综合评价法) 摘要:该模型研究的是某高校学科的评价的问题,基于所给的学科统计数据作出综合分析。基于此对未来学科的发展提供理论上的依据。 对于问题1、采用层次分析法,通过建立对比矩阵,得出影响评价值各因素的所占的权重。然后将各因素值进行标准化。在可共度的基础上求出所对应学科的评价值,最后确定学科的综合排名。(将问题1中的部分结果进行阐述) (或者是先对二级评价因素运用层次分析法得出其对应的各因素的权重(只选取一组代表性的即可),然后再次运用层次分析法或者是模糊层次分析法对每一学科进行计算,得出其权重系数)。通过利用matlab确定的各二级评价因素的比较矩阵的特征根分别为:4.2433、2、4.1407、3.0858、10.7434、7.3738、3.0246、1 对于问题2、基于问题一中已经获得的对学科的评价值,为了更加明了的展现各一级因素的作用,采用求解相关性系数的显著性,找出对学科评价有显著性作用的一级评价因素。同时鉴于从文献中已经有的获得的已经有的权重分配,对比通过模型求得的数值,来验证所建模型和求解过程是否合理。 对于问题3、主成份分析法,由于在此种情况下考虑的是科研型或者教学型的高校,因此在评价因素中势必会有很大的差别和区分。所以在求解评价值的时候不能够等同问题1中的方法和结果,需要重新建立模型,消除或者忽略某些因素的影响和作用(将问题三的部分结果进行阐述)。 一、问题重述

学科的水平、地位是评价高等学校层次的一个重要指标,而学科间水平的评价对于学科本身的发展有着极其重要的作用。而一个显著的方面就是在录取学生方面,通常情况下一个好的专业可以录取到相对起点较高的学生,而且它还可以使得各学科能更加深入的了解到本学科的地位和不足之处,可以更好的促进该学科的发展。学科的评价是为了恰当的学科竞争,而学科间的竞争是高等教育发展的动力,所以合理评价学科的竞争力有着极其重要的作用。鉴于学科评价的两种方法:因素分析法和内涵解析法。本模型基于某大学(科研与教学并重型高校)的13个学科在某一时期内的调查数据,包括各种建设成效数据和前期投入的数据。 通过计算每一级、每一个评价因素所占的权重,确定某一学科在评价是各因素所占的比重,构建评价等级所对应的函数。通过数值分析得出学科的评价值。需要解决一下几个问题: 1、根据已给数据建立学科评价模型,要求必要的数据分析及建模过程。 2、模型分析,给出建立模型的适用性、合理性分析。 3、假设数据来自于某科研型祸教学型高校,请给出相应的学科评价模 型。 二、符号说明与基本假设 2.1符号说明 符号说明 S——评价数(评价所依据的最终数值) X——影响评价数值的一级因素所构成的矩阵

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的 i j=L位置上的数表示(其中∞表示两个客户之间无直接的路线到i j(,1,,10) (,) 达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给 客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能 装满10个客户所需要的全部货物,请问货车从提货点出发给10个客户配送

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

模糊综合评价法的数学建模方法简介_任丽华

8 《商场现代化》2006年7月(中旬刊)总第473期 20世纪80年代初,汪培庄提出了对绿色供应链绩效进行评价的模糊综合评价模型,此模型以它简单实用的特点迅速波及到国民经济和工农业生产的方方面面,广大实际工作者运用此模型取得了一个又一个的成果。本文简单介绍模糊综合评价法的数学模型方法。 一、构造评价指标体系 模糊综合评价的第一步就是根据具体情况建立评价指标体系的层次结构图,如图所示: 二、确定评价指标体系的权重 确定各指标的权重是模糊综合评价法的步骤之一。本文根据绿色供应链评价体系的层次结构特点,采用层次分析法确定其权重。尽管层次分析法中也选用了专家调查法,具有一定的主观性,但是由于本文在使用该方法的过程中,对多位专家的调查进行了数学处理,并对处理后的结果进行了一致性检验,笔者认为,运用层次分析法能够从很大程度上消除主观因素带来的影响,使权重的确定更加具有客观性,也更加符合实际情况。 在此设各级指标的权重都用百分数表示,且第一级指标各指标的权重为Wi,i=1,2,…,n,n为一级指标个数。一级指标权重向量为: W=(W1,…,Wi,…Wn) 各一级指标所包含的二级指标权重向量为: W=(Wi1,…,Wis,…Wim),m为各一级指标所包含的二级指标个数,s=1,2,…,m。 各二级指标所包含的三级指标权重向量为: Wis=(Wis1,…Wis2,…Wimq),q为各二级指标所包含的三级指标个数。三、确定评价指标体系的权重建立模糊综合评价因素集将因素集X作一种划分,即把X分为n个因素子集X1,X2,…Xn,并且必须满足: 同时,对于任意的i≠j,i,j=1,2,…,均有 即对因素X的划分既要把因素集的诸评价指标分完,而任一个评 价指标又应只在一个子因素集Xi中。 再以Xi表示的第i个子因素指标集又有ki个评价指标即:Xi={Xi1,Xi2,…,XiKi},i=1,2,…,n 这样,由于每个Xi含有Ki个评价指标,于是总因素指标集X其有 个评价指标。 四、 进行单因素评价,建立模糊关系矩阵R 在上一步构造了模糊子集后,需要对评价目标从每个因素集Xi上进行量化,即确定从单因素来看评价目标对各模糊子集的隶属度,进而得到模糊关系矩阵: 其中si(i=1,2,…,m)表示第i个方案,而矩阵R中第h行第j列元素rhj表示指标Xih在方案sj下的隶属度。对于隶属度的确定可分为两种 情况:定量指标和定性指标。 (1)定量指标隶属度的确定 对于成本型评价因素可以用下式计算: 对于效益型评价因素可以用下式计算:对于区间型评价因素可以用下式计算:上面三个式子中:f(x)为特征值,sup(f),inf(f)分别为对应于同一个指标的所有特征值的上下界,即是同一指标特征值的最大值和最小 模糊综合评价法的数学建模方法简介 任丽华 东营职业学院 [摘 要] 本文一种数学模型方法构造了一种对绿色供应链绩效进行评价的模糊综合评价法,主要从构造评价指标体系,确定评价指标体系的权重,确定评价指标体系的权重,建立模糊综合评价因素集,进行单因素评价、建立模糊关系矩阵R,计算模糊评价结果向量B等五个方面介绍这种评价方法。 [关键词] 绿色供应链绩效评价 模糊综合评价法 数学模型方法 流通论坛

数学建模大赛-货物运输问题

货物配送问题 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。 针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为40.5007小时,费用为4685.6元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为26.063小时,费用为4374.4元。 针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所以认为车辆可以掉头。然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为 19.6844小时,费用为4403.2。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题:

数学建模中常见的十大模型讲课稿

数学建模中常见的十 大模型

精品文档 数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的 收集于网络,如有侵权请联系管理员删除

数学建模运输问题

华东交通大学数学建模 2012年第一次模拟训练题 所属学校:华东交通大学(ECJTU ) 参赛队员:胡志远、周少华、蔡汉林、段亚光、 李斌、邱小秧、周邓副、孙燕青 指导老师:朱旭生(博士) 摘要: 本文的运输问题是一个比较复杂的问题,大多数问题都集中在最短路径的求解问题上,问题特点是随机性比较强。 根据不同建模类型 针对问题一 ,我们直接采用Dijkstra 算法(包括lingo 程序和手算验证),将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为:109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 121098436751V V V V V V V V V V V →→→→→→→→→→ 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文); 针对问题四,

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

数学建模统计模型

数学建模

论文题目: 一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作,和. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男). 请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.

一、摘要 在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻

时间之间的数据进行深层次地处理并加以讨论概率值P (是否<)和拟合度R-S q的值是否更大(越大,说明模型越好)。 首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。对模型Ⅰ用m i n i t a b 软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用m i n i t a b软件进行回归分析后,用药剂量对病痛减轻时间不显着,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用m i n i t a b 软件进行回归分析后,结果合理。最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型: Y=1x 3x 1x 3x 2 1 x 对模型Ⅱ和模型Ⅲ关于男性病人用m i n i t a b软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用m i n i t a b软件进行回归分析后,结果合理。最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模 型:Y=1x1x 3x 2 1 x关键词止痛剂药剂量性别病痛减轻时 间

教师评价模型_数学建模教学提纲

教师评价模型_数学建 模

教师评价模型 一、摘要 学校是一个充满着评价人的场所,每时每刻都在对各个人进行评价。毫不 夸张地说评价教师是学校里每个人的“日常功课”。 由于教师职业劳动的特殊性,它是复杂劳动。不能仅仅用工作量来评价 教师的劳动,同时评价教师的人员纷繁复杂,方式多种多样。评价教师的标准 往往束缚着学校的教学质量,教师教学的积极性。所以教师评价的确定就显的 很重要。 新课程强调:评价的功能应从注重甄别与选拔转向激励、反馈与调整;评 价内容应从过分注重学业成绩转向注重多方面发展的潜能;评价主体应从单一 转向多元。 那么如何公正、客观地评价教师的同时,有效地保护教师的教学积极性和 帮助提高学校的办学水平呢? 此模型的建立改变了以往同类模型的多种弊端,从另一角度更加合理地分析、评价,就是为了更公平,公正地对教师做出合理的评价,从而促进学生发 展和教师提高。 本模型主要用了模糊数学模型和对各项评价付权重的方法进行建模分析。 从(1)教师对自己的评价,(2)学生对教师的评价;(3)由专家组对教师的评价的角度出发,通过量化,加权,得出结果。然后确定三方面的比重来评价 教师。同时通过确定教师自评与他人评价的比值范围,而确定这次评价是否有效。 在各个方面采用的数学模型如下:

1、教师对自己的评价: 教师对自己的满意度,既体现教师的主人翁意识也保护教师的教学积 极性。 16 1160i i i P Q D ( i ∈[1,16]) (Q 表示教师自评的得分 Pi 表示教师对自己各项符合度而打的分数 Di 表示对教师自评要求各项所加给的权重 ) 2、学生对教师的评价: 表明以学生为主体,体现了模型的客观性,公平、公开的原则。 90j i ij i d c a ij a =ij n u ij a =A (U ,V ) ( U 为评价的主要因素, V 为评价因素分等。 C i 为学生对教师的各项评价要求所付的权重 N 为填写有效调查表的人数) 3、由专家组成通过听课对教师的评价: 表明专家对教师指导性,帮助教师提高教学水平。体现了评价的权威 性,真实性。同时也是作为教师提拔的一个方面。 (1)建立综合评价矩阵51ij ij ik k c g c (2)综合评价 B=A ⊕R=(b 1,b 2,……,b m )

数学建模模型

五邑大学 数学建模 课程考核论文 2010-2011 学年度第 2 学期 010 20 30 40 50 60 70 8090 第一季度第三季度 东部西部北部 论文题目 抑制物价快速上涨问题 得分 学号 姓名(打印) 姓名(手写) ap0808221 林加海 ap0808204 陈荣昌 指导老师—邹祥福

——2011.6.20 抑制物价快速上涨问题 摘要 本文通过一个多元线性回归模型较好地解决了影响物价因素的问题。使我国经济快速发展的同时,使百姓得到真的实惠,又保证了经济的长远的发展。 物价问题比较复杂。在本次实验中我们参阅大量资料把影响物价的的因素主要概括括需求性因素(消费,投资,进出口,政府支出等)、货币性因素(货币供给量)、结构性因素(房地产价格,农产品价格等)以及其他因素(如预期因素等)。 总结出原先物价计算方法的不足之处,需要建立一种新的计算和预测的方法。首先,为了确定物价和影响因素之间的关系我们用了多元线性回归,从国家统计局找到相关数据经过挑选,建立了函数关系,为了使函数更具有说服力我们进一步用了残差分析,检验所得到的结果的合理性 。本文利用matlab 软件实现了拟合出多元线性回归函数y=86.4798967193207+0.00441024146152813*x1+4.32730555279258e-007*x2+0.00377788223112076*x3+2.70211635024846e-006*x4+7.58738000216411e-005*x5,置信度95%,且20.932609896853743,_R F ==检验值8.30338450288840>,但是显著性概率.α=005相关的0.055839341752489056>0.p =。再利用逐步回归的方法,拟合出Y=94.4958+0.00771506*x1+5.8917e-007*x2+0.00250019*x3+1.90595e-006*x4+ 6.62396e-005*x5.93269896853743R =200,修正的R 2值.R α =20897797,F_检验值=26.3535,与显著性概率相关的p 值=..<000106754005,残差均方RMSE =0.204517,以上指标值都很好,说明回归效果比较理想。通过对物价形成及演化问题的讨论,提出以量化分析为基础的调节物价的方法,深入分析找出影响物价的主要因素,并就此分析现在物价的上涨情况,根据《关于稳定消费价格总水平保障群众基本生活的通知》,根据模型分析给出抑制物价的政策建议,并对未来的形势走向根据模型给出预测。 关键字:物价,逐步回归分析,上涨因素,预测,多元回归分析

冰山运输数学模型

冰山运输数学模型 摘 要 当今社会,水资源短缺已成为世界性问题,水资源紧张地区正不断扩大,除淡化海水的方法外,专家提出从相距9600千米以外的南极托运冰山到波斯湾,将其化成冰水从而取代淡化海水作为国民用水。本文所要解决的是选择合适的拖船与船速使得冰山到达目的地后得到每立方米水所花的费用最低的问题,由此建立了一个关于费用y 的数学模型。首先,根据表3中的拖船速率v 和拖船与南极的距离可知冰山融化速率,从而确定剩余的冰山体积。然后,根据表2中的船速 v 和运输过程中剩余冰山的体积N 可知每千米燃料消耗量0q ,从而可以求出所 需燃料总消耗量Q ,再分别选取小、中、大三种船型确定拖船的租金总费用M ,则运输总费用Y Q M =+,运输每立方米水所花费用即为 0.06260.85Y y N = =。 根据运输每立方米水所花的费用最低,将该问题归结 为优化问题,运用积分方法,通过Matlab 计算,得到最优解确定船型和船速,再与海水淡化的费用相比较,确定其可行性。 关键字:冰山体积 融化速率 燃料消耗量 最优化 1.问题重述 在以石油着称的波斯湾地区,浩瀚的沙漠覆盖着大地,水资源十分缺乏,不得不采用淡化海水的办法为国民提供用水。成本大约是每立方米英镑。有些专家提出从相距9600km 外的南极用拖船运送冰山到波斯湾,以取代淡化海水的办法。 在运送冰山的过程中,拖船的租金、运量、燃料消耗以及冰山运送过程中融化速率等方面的数据如下: (1)三种拖船的日租金和最大运量如表1.所示。

(2)燃料消耗(英镑/km),主要依赖于船速和所运冰山的体积,船型的影响可以忽略,如表2.所示。 (3)冰山运输过程中的融化速率(m/d),指在冰山与海水接触处每天融化的深度。融化速率除与船速有关,还与运输过程中冰山到达与南极的距离有关,这是由于冰山要从南极运往赤道附近的缘故。如表3.所示。 表3. 本文所要解决的问题是:选择拖船的船型与船速,使冰山到达目的地后,可以得到的每立方米水所花的费用最低,并与海水淡化的费用相比较。拖船在拖运冰山的过程中,有以下假设: (1)拖船航行过程中船速不变,航行不考虑天气等任何因素的影响,总航行距离9600km; (2)冰山形状为球形,球面各点的融化速率相同; (3)冰山到达目的地后,13 m的冰可以融化成3m的水。 2.问题分析 为更好地计算冰山运输的费用,我们对问题进行了分析。 根据题目已给的资料和数据,我们发现:冰山的运输主要和拖船的租金、运量、燃料消耗及冰山运输过程中融化速率有关,因此,我们可以把问题分成以下五步来分析解决:

数学建模论文《学科评价模型》

答卷编号(参赛学校填写): 答卷编号(竞赛组委会填写): 论文题目:学科评价模型(A) 组别:本科生 参赛队员信息(必填): 姓名专业班级及学号联系电话参赛队员1 08生物技术一班0886 参赛队员2 08生物技术一班1680 参赛队员3 08生物技术一班0698

答卷编号(参赛学校填写): 答卷编号(竞赛组委会填写): 评阅情况(学校评阅专家填写):学校评阅1. 学校评阅2. 学校评阅3. 评阅情况(省赛评阅专家填写):省赛评阅1. 省赛评阅2. 省赛评阅3.

学科评价模型 摘要本学科评价模型采用了指标体系法,其所具有的客观公正性使之成为目前大学学科评价的主流方法。学科评价一方面取决于指标体系本身设计是否科学,另一方面则取决于原始数据和指标的可比性。由于本题目并没有给出具体的哪13个学科,而不同学科之间在某些方面存在着不同程度上的差异性。所以,我们采用层次分析法分配权重以及灰色多层次分析法处理数据,从而使评价结果更加客观公正。学科评价应分类别、分层次进行,不同的类别和层次适用于不同的情形。比如科研教学并重型高校的学科评价模型与科研型或者教学型高校的学科评价模型会有所区别。同时,在学科评价体系中,指标分级是必要的,我们将题目所给的指标分为三级。通过模型的建立及求解,我们得出了各学科各指标的评价结果,以及各学科的综合实力评价结果,并对结果进行横向分析和纵向分析,为大学学科评估及资源优化提供了较为合理的依据。 关键词层次分析法,权重, 灰色多层次分析法,关联度

一 问题的重述 学科的水平、地位是高等学校的一个重要指标,而学科间水平的评价对于学科的发展有着重要的作用,它可以使得各学科能更加深入的了解本学科(与其他学科相比较)的地位及不足之处,可以更好的促进该学科的发展。因此,如何给出合理的学科评价体系或模型一直是学科发展研究的热点问题。现有某大学(科研与教学并重型高校)的13个学科在一段时期内的调查数据,包括各种建设成效数据和前期投入的数据。 1、根据已给数据建立学科评价模型,要求必要的数据分析及建模过程。 2、模型分析,给出建立模型的适用性、合理性分析。 3、假设数据来自于某科研型或教学型高校,请给出相应的学科评价模型。 二 合理的假设 1、假设各学科所属领域以及学科特点的差异不对本评估体系产生影响 2、假设某些权威杂志对特定的学科没有偏重 3、假设国家和社会对各学科没有任何偏重 4、假设各学科培养出的人才素质没有差异 5、假设专家对学科各指标相对重要性的评判合理、客观、全面。 三 符号的说明 ijk C :各级指标 ik C :(i=1,2,3····n;k=1,2,····m)第i 个参评学科中第k 个指标的原始数据 *k C :最优指标集 S :综合分析评价值 A :目标向量 ij D :表示i D 对j D 的相对重要性数值 ij P :判断矩阵)3,2,1,m 3,2,1(n j i :特征向量 max :最大特征值 CR :判断矩阵的随机一致性比率 CI :判断矩阵的一般一致性指标 RI :平均随机一致性指标 i W :各个分向量的权重系数 *W :第三指标权重分配矩阵

数学建模_四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

相关文档