文档库 最新最全的文档下载
当前位置:文档库 › 专题3植物逆境胁迫时生理特征的变化植物的抗旱性是植物在干旱

专题3植物逆境胁迫时生理特征的变化植物的抗旱性是植物在干旱

专题3植物逆境胁迫时生理特征的变化植物的抗旱性是植物在干旱
专题3植物逆境胁迫时生理特征的变化植物的抗旱性是植物在干旱

专题3、植物逆境胁迫时生理特征的变化植物的抗旱性是植物在干旱环境中生长、繁殖或生存,以及在干旱解除后迅速恢复生长的能力。通过从生理角度对植物抗旱性比较可以为抗旱育种与栽培生产提供参考一定程度上的参考。近年来,气候全球性恶化所引发干旱的周期越来越短, 程度越来越重。对粮食生产构成了严重的威胁。我国是水资源十分短缺的国家之一,干旱缺水地区面积占全国国土面积52%,受旱面积达200~270 万公顷, 其中完全没有灌溉条件的旱耕地有4133.3万公顷,仅靠改进耕作栽培技术,是不太现实的,那就让我们必须从作物上来解决这个问题。一是直接提高作物产量的遗传潜力;另一方面是改良各种非生物和生物胁迫因素的抗逆性,比起前者,后者的潜力和可行性受到广泛的关注和重视。玉米和高粱是我国北方的主要耕种作物,其在畜牧业、工业上也发挥了重要的作用,因此本实验想通过对它们的生理抗旱性测试比较,来更好地指导农业生产,保证国家粮食安全。

实验目的:

1、研究不同种类逆境对不同种类植物的影响;

2、研究不同种类植物对不同逆境的应激性和适应能力程度。

实验原理:

在自然界中,植物并不是总是生长在适宜的条件下,经常会遇到不利于植物生存和生长的环境条件,凡是对植物生存与生长不利的环境因子,总称为逆境(stress environment)。逆境有自然的、人为的、化学的、物理的和生物的,例如大气污染、盐碱、低温、干旱和病虫害等。任何一种使植物内部产生潜在有害变化的环境因子,称为胁迫(stress);植物受到胁迫而发生的相应变化称为胁变(strain)。胁变有两种,胁迫解除后可恢复正常的胁变称为弹性胁变(elastic strain)即可逆伤害;胁迫解除后不能恢复正常的胁变称为塑性胁变(plastic strain),实际上是不可逆伤害,然而在一定范围内植物对塑性胁变是可以忍受,但超过一定范围,植物将会死亡。植物对各种不利的环境因子都具有一定的抵抗或忍耐能力,这种能力称为抗逆性(stress resistance),简称抗性。抗性是植物对环境的适应性反应,是一种遗传特性,是在不良环境(特指逆境)条件下逐步形成的,这种抗逆遗传特性在特定不良环境诱导下,植物逐步获得的过程,称为抗性锻炼。植物可能通过抗性锻炼提高抗逆性。植物对逆境的抵抗主要有两种方式,避(逆)性和耐(逆)性。避逆性(stress avoidance,有人译为御逆性),目前还没有比较好的定义,它的有实际含义是植物通过物理障碍或生理生化途径完全排除或部分排除逆境对植物体产生的直接有害效应来抵抗逆境的方式。耐逆性

(stress tolerance)是指植物虽然经受逆境的直接效应,但可通过代谢反应阻止,降低或修复逆境效应造成的损害,来抵抗逆境的方式,这种抗逆性是在保持正常或较正常的生理活动条件下的抗逆性。

实验材料

1、材料

从附中校园采集肥沃土壤,与购买的有机土壤混匀后,分别向每个花钵中加入一定量的土壤,然后每个花钵中播种2-3粒植物种子(小麦、玉米、蚕豆等由各个实验小组自己决定),播种后喷洒营养液,并将花钵置于恒温光照培养箱(光照度60,12h;黑暗8h)中,定期喷洒营养液。

2、处理方法

当幼苗长至10cm高度时,停止营养液喷洒,对幼苗进行相应的逆境处理。如干旱处理方法:采用5%、10%、15%、20%PEG6000处理,模拟水分胁迫,48h后开始实验。

3、指标的测定

1、质膜透性;

2、叶绿素含量测定;

3、MDA含量测定;

4、pro含量测定;

5、POD酶活性的测定

1.3 实验方法

质膜透性的测定参考附一

叶绿素含量测定参考附二

MDA含量测定参考附三

pro含量测定参考附四

POD酶活性的测定参考附五

附一、植物细胞质膜透性的测定

实验目的

植物细胞质膜是细胞与外界环境的一道分界面,对维持细胞的微环境和正常的代谢起着重要作用。但植物常受到外界不良因子的影响,而不同植物种类其抗逆性则不同。用电导仪率法测定植物质膜透性的变化,可作为植物抗逆性的生理指标之一。本实验主要测定低温对

细胞质膜透性的影响,并掌握用电导仪法测定植物细胞质膜透性的原理及方法。

实验原理

植物细胞的细胞质由一层质膜包围着,这种质膜具有选择透性的独特功能。植物细胞与外界环境之间发生的一切物质交换都必须通过质膜进行。各种不良环境因素对细胞的影响往往首先作用于这层由类脂和蛋白质所构成的生物膜。如极端的温度、干旱、盐渍,重金属离子(如Cd2+等)和大气污染物(如SO2、HF、O3)等都会使质膜受到不同程度的损伤,其表现往往为细胞膜透性增大,细胞内部分电解质外渗,外液电导率增大。该变化可用电导仪测定出来。细胞膜透性变得愈大,表示受害愈重,抗性愈弱,反之则抗性愈强。

实验材料、仪器设备

1.材料:植物叶片。

2.仪器设备:电导仪;电子天平;冰箱;真空泵;真空干燥器;恒温培养箱;电炉;50ml 烧杯;50ml量筒;小镊子;纱布;表皿;滤纸条;镜头纸;剪刀;玻棒;胶头滴管;瓷盘。实验步骤

1.清洗用具

所用玻璃用具均需先用洗衣粉清洗,然后用自来水、蒸馏水洗3次,干燥后备用。

2.实验材料的准备及处理

选取叶龄相似的植物叶片,剪下后用湿布包住。实验时用自来水将供试叶片冲洗,除去表面沾污物,再用蒸馏水冲洗1~2次,用干净纱布轻轻吸干叶片表面水分,然后剪成约1cm2的小叶片(或用直径为1的打孔器钻取小园片),注意除掉大叶脉。将剪下的小叶片混合均匀,快速称取鲜样三份,每份1g,分别放入编号为A、B、C的三个烧杯中。作如下处理:A杯放入冰箱0℃以下作低温处理,处理15~30min后取出(供试叶片也可以在实验前低温处理好待用,处理温度及时间依不同植物叶片耐寒性而定),加入蒸馏水50ml。

B杯常温处理,加入蒸馏水50ml。

将A、B二杯放入真空干燥器,用真空泵抽气20—30min(以抽出细胞间隙中的空气),然后缓缓放入空气,从真空干燥器中取出A、B杯。

C杯加入蒸馏水50ml,称重,盖上表皿,置于电炉上煮沸10~15min(煮沸时间依不同植物叶片而定),冷却后再称重并加蒸馏水至原重量,继续浸泡叶片。

将A、B、C三杯放置室温下浸提1 h左右(经常摇动,以有利电解质外渗)。然后将叶片从杯中夹出进行下一步测定。

3.电导率测定

用电导仪分别测定A、B、C三杯的电导率,同时测定蒸馏水(空白)的电导率(注意:每测定完一个样液后,用蒸馏水漂洗电极,再用滤纸将电极擦干,然后进行下一个样液的测定),所测得的结果记入下表:

电导率测定记录表

附二、植物叶绿素含量测定——丙酮提取法

高等植物光合作用过程中利用的光能是通过叶绿体色素(光合色素)吸收的。叶绿体色素由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。叶绿体色素的提取、分离和测定是研究它们的特性以及在光合中作用的第一步。叶片叶绿素含量与光合作用密切相关,是反眏叶片生理状态的重要指标。在植物光合生理、发育生理和抗性生理研究中经常需要测定叶绿素含量。叶绿素含量也是指导作物栽培生产和选育作物品种的重要指标。

实验原理

叶绿素不溶于水,溶于有机溶剂,可用多种有机溶剂,如丙酮、乙醇或二甲基亚砜等研磨提取或浸泡提取。叶绿色素在特定提取溶液中对特定波长的光有最大吸收,用分光光度计测定在该波长下叶绿素溶液的吸光度(也称为光密度),再根据叶绿素在该波长下的吸收系数

即可计算叶绿素含量。

利用分光光计测定叶绿素含量的依据是Lambert-Beer定律,即当一束单色光通过溶液时,溶液的吸光度与溶液的浓度和液层厚度的乘积成正比。其数学表达式为:

A=Kbc

式中:A为吸光度;K为吸光系数;b为溶液的厚度;c为溶液浓度。

叶绿素a、b的丙酮溶液在可见光范围内的最大吸收峰分别位于663、645nm处。叶绿素a和b在663nm处的吸光系数(当溶液厚度为1cm,叶绿素浓度为g·L-1时的吸光度)分别为82.04和9.27;在645nm处的吸光系数分别为16.75和45.60。根据Lambert-Beer定律,叶绿素溶液在663nm和645nm处的吸光度(A663和A645)与溶液中叶绿素a、b和总浓度(a+b)(Ca、Cb 、Ca十b,单位为g·L-1),的关系可分别用下列方程式表示:

A663=82.04Ca+9.27Cb (1)

A645=16.76Ca+45.60Cb (2)

只要测得叶绿素溶液在663nm和645nm处的吸光度,就可计算出提取液中的叶绿素a、b浓度和叶绿素总浓度(a+b)。

实验仪器与试剂

1.材料:植物绿色叶片。在本实验中利用光合速率测定实验中取回室内的绿色半叶和黄色半叶为试材。

2.仪器:分光光度计;天平;研钵;滤纸;漏斗;5ml移液管;打孔器;滴管;剪刀;25ml 容量瓶;毛刷;擦镜纸。

实验方法

1.取样:用毛笔或毛刷清除叶片表面的灰尘,用打孔器从绿叶和黄叶上各打取0.25dm-2的叶圆片,立即称重,剪碎后放入研钵中。(在正规实验中应各重复3次,本实验为减少丙酮向环境中的排放,故不设重复)。注意取样时要避开大的叶脉。如果需要计算叶片干样叶绿素含量,另取一份相同样品置于烘箱中烘干,用于测定干重。

2.研磨提取:向研钵中加入80%丙酮2.5ml,以及少许CaCO3 (中和酸性,防止叶绿素酯酶分解叶绿素) 和石英砂,研磨成匀浆,再加入3ml 80%丙酮,继续研磨至组织变白,在暗处静止3~5min后,用一层干滤纸过滤到25ml容量瓶中,用滴管吸取80%丙酮将研钵洗净,清洗液也要过滤到容量瓶中,并用80%丙酮沿滤纸的周围洗脱色素,待滤纸和残渣全部变白后,用80%丙酮定容至刻度。

3.读取吸光度:取厚度为lcm的洁净比色皿,注意不要用手接触比色皿的光面,先用少量色素提取液清洗2~3次,注意清洗时要使清洗液接触比色皿内壁的所有部分,然后将色素提取液倒入比色皿中,液面高度约为比色皿高度的4/5,将撒在比色皿外面的溶液用滤纸吸掉(注意不能擦),再用擦镜纸擦干擦净。将比色皿放入仪器的比色皿架上,注意不要将溶液撒入仪器内。第一个位置放盛有80%丙酮的比色皿,做为空白对照。将仪器波长分别调至663、645、652nm处,以80%丙酮做为空白对照调透光率100%,分别测定溶液在上述三个波长下的吸光度。每个样品重复测定3次。注意,每次在转换波长时,都要用80%丙酮调透光率100%。

4.结果计算:将645、663、652nm处测得的吸光度代入公式计算叶绿素a、b浓度和总浓度。再将叶绿素a、b浓度和总浓度代入公式(7)中求出所测材料单位重量或单位面积的叶绿素a、b含量和总含量。

附三、植物组织MDA含量测定

实验目的

1.掌握植物组织MDA含量测定的原理及具体测量步骤;

2.深化理解MDA与逆境和衰老的关系,理解植物组织MDA含量测定的意义;

3.了解膜脂过氧化、氧自由基和MDA形成的关系;

4.能够根据待测材料的具体情况设计实验步骤测定MDA含量;

5.学习分光光度计,低温离心机等仪器的使用方法。

实验原理

植物遭受逆境胁迫或衰老时,体内会发生一系列生理生化变化,如核酸和蛋白质含量下降、叶绿素降解、光合作用降低,活性氧平衡失调及内源激素平衡失调等。活性氧代谢失调直接导致植物体内活性氧的大量积累,从而引发或加剧膜脂过氧化作用,造成细胞膜系统的损伤,严重时会导致植物细胞死亡。

膜脂过氧化的产物有二烯轭合物、脂类过氧化物、丙二醛、乙烷等。其中丙二醛(Malondialdehyde,MDA)是膜脂过氧化最重要的产物之一,它的产生还能加剧膜的损伤。因此在植物衰老生理和抗性生理研究中,MDA含量是一个常用指标,可通过测定MDA了解膜脂过氧化的程度,以间接测定膜系统受损程度以及植物的抗逆性。

MDA 在高温及酸性环境下可与2-硫代巴比妥酸(TBA )反应,产生红棕色的产物3,5,5-三甲基恶唑2,4-二酮(Trimet —nine ),又名三甲川,该物质在532nm 处有最大光吸收,在600nm 处有最小光吸收。由于TBA 也可与其它物质反应,并在532nm 处有吸收,为消除硫代巴比妥酸与其它物质反应的影响,同时测定600nm 下的吸光度,利用532nm 与600nm 下的吸光度的差值计算MDA 的浓度。

即:A 532-A 600=ε·C·L

式中,A 532和A 600分别表示532nm 和600nm 处的吸光度值,C 是MDA 浓度,L 为比色杯厚度,ε=155L·mmol -1·cm -1。

TBA MDA 3,5,5-三甲基恶唑2,4-二酮

需要指出的是,植物组织中糖类物质可能对MDA-TBA 反应有干扰作用。可用下列公式消除由蔗糖引起的误差。

C (μmol·L -1)=6.45×(A 532-A 600) -0.56×A 450

实验材料与试剂

1.材料:四种菠菜样品,即绿色和黄色叶片的高温处理和室温对照。

2.仪器:

分光光度计;冷冻离心机;水浴锅;天平;研钵;剪刀; 5ml 刻度离心管;刻度试管(10ml);镊子;移液管(5ml 、2ml 、1ml);冰箱。

3.药品

0.05mol/L pH7.8磷酸钠缓冲液;5%三氯乙酸溶液:称取5g 三氯乙酸,先用少量蒸馏水溶解,然后定容到100ml ; 0.5%的TBA 溶液:称取0.5g 硫代巴比妥酸,用5%三氯乙酸溶解,定容至100ml 。

实验步骤

1.MDA 的提取:取样品0.5g (W ),加入2ml 预冷的0.05mol/L pH7.8的磷酸缓冲液,冰浴研磨成匀浆,转移到5ml 刻度离心试管,将研钵用缓冲液洗净,清洗液也移入离心管+100 C O HN

S N H O O O H H HN

HS N

H O

O HO OH N N H S 2

O

中,最后用缓冲液定容至5ml 。4500rpm ,4度,离心10min ,上清液即为MDA 提取液,测量提取液的体积(V )。

2.MDA 含量测定:吸2ml (V2)的提取液于刻度试管中(空白为2ml 缓冲液),加入3ml 0.5%的TBA 溶液,将试管放入沸水浴中煮沸10 min (自试管内溶液中出现小气泡开始计时)。到时间后,立即将试管取出并放入冰浴中。4500rpm ,4度,离心10min ,取上清液并量其体积(V1)。上清液于532nm 、600nm 波长下测定吸光度。

3.结果计算:

MDA(nmol·g -1)=6.452×(A 532-A 600) ×W

V2V 1V ?? 式中,V 1为反应液总量(ml );V 2为反应液中的提取液数量(ml);V 为提取液总量(ml ); W 为植物样品重量(g)。

附四、植物组织中脯氨酸的含量测定

在逆境条件下(旱、盐碱、热、冷、冻),植物体内脯氨酸(proline ,Pro )的含量显著增加。植物体内脯氨酸含量在一定程度上反映了植物的抗逆性,抗旱性强的品种往往积累较多的脯氨酸。因此测定脯氨酸含量可以作为抗旱育种的生理指标。另外,由于脯氨酸亲水性极强,能稳定原生质胶体及组织内的代谢过程,因而能降低冰点,有防止细胞脱水的作用。在低温条件下,植物组织中脯氨酸增加,可提高植物的抗寒性,因此,亦可作为抗寒育种的生理指标。

实验原理

用磺基水杨酸提取植物样品时,脯氨酸便游离于磺基水杨酸的溶液中,然后用酸性茚三酮加热处理后,溶液即成红色,再用甲苯处理,则色素全部转移至甲苯中,色素的深浅即表示脯氨酸含量的高低。在520nm 波长下比色,从标准曲线上查出(或用回归方程计算)脯氨酸的含量。

实验材料与试剂

材料:待测植物(水稻、小麦、玉米、高粱、大豆等)叶片。

仪器:722型分光光度计;研钵;100ml 小烧杯;容量瓶;大试管;普通试管;移液管;注射器;水浴锅;漏斗;漏斗架;滤纸;剪刀。

试剂: 酸性茚三酮溶液:将1.25g 茚三酮溶于30ml 冰醋酸和20ml6mol/L 磷酸中,搅拌加

热(70℃)溶解,贮于冰箱中;3%磺基水杨酸:3g磺基水杨酸加蒸馏水溶解后定容至100ml;冰醋酸;甲苯。

实验步骤

1. 标准曲线的绘制(1)在分析天平上精确称取25mg脯氨酸,倒入小烧杯内,用少量蒸馏水溶解,然后倒入250ml容量瓶中,加蒸馏水定容至刻度,此标准液中每ml含脯氨酸100μg。(2)系列脯氨酸浓度的配制取6个50ml容量瓶,分别盛入脯氨酸原液0.5,1.0,1.5,

2.0,2.5及

3.0ml,用蒸馏水定容至刻度,摇匀,各瓶的脯氨酸浓度分别为1,2,3,4,5及6μg/ml。(3)取6支试管,分别吸取2ml系列标准浓度的脯氨酸溶液及2ml冰醋酸和2ml酸性茚三酮溶液,每管在沸水浴中加热30min。(4)冷却后各试管准确加入4ml甲苯,振荡30S,静置片刻,使色素全部转至甲苯溶液。(5)用注射器轻轻吸取各管上层脯氨酸甲苯溶液至比色杯中,以甲苯溶液为空白对照,于520nm波长处进行比色。(6)标准曲线的绘制:先求出吸光度值(Y)依脯氨酸浓度(X)而变的回归方程式,再按回归方程式绘制标准曲线,计算2ml测定液中脯氨酸的含量(μg/2ml)。

2. 样品的测定(1)脯氨酸的提取:准确称取不同处理的待测植物叶片各0.5g,分别置大管中,然后向各管分别加入5ml3%的磺基水杨酸溶液,在沸水浴中提取10min,(提取过程中要经常摇动),冷却后过滤于干净的试管中,滤液即为脯氨酸的提取液。(2)吸取2ml提取液于另一干净的带玻塞试管中,加入2ml冰醋酸及2ml酸性茚三酮试剂,在沸水浴中加热30min,溶液即呈红色。(3)冷却后加入4ml甲苯,摇荡30S,静置片刻,取上层液至10ml 离心管中,在3000rpm下离心5min。(4)用吸管轻轻吸取上层脯氨酸红色甲苯溶液于比色杯中,以甲苯为空白对照,在分光光度计上520nm波长处比色,求得吸光度值。

实验结果

根据回归方程计算出(或从标准曲线上查出)2ml测定液中脯氨酸的含量(Xμg/2ml),然后计算样品中脯氨酸含量的百分数。计算公式如下:

脯氨酸含量(μg/g)=[X×5/2]/样重(g)。

附五、植物POD酶活力测定

实验原理:

1、过氧化物酶广泛颁布于植物的各个组织器官中。在有过氧化氢存在下,过氧化物酶能使愈创木酚氧化,生成茶褐色物质,可用分光光度计测量生成物的含量。

2、了解过氧化氢酶活性测定的几种方法,掌握用愈创木酚法分别测定过氧化氢酶和过氧化物酶的活性。

实验材料、试剂

1、实验仪器722型分光光度计、离心机、秒表、电子天平、研钵

2、实验试剂愈创木酚、30%过氧化氢、20mmol/LKH2PO4、100mmol/L磷酸缓冲液(pH6.0)、反应混合液[100mmol/L磷酸缓冲液(pH6.0)50mL,加入愈创木酚28uL,加热搅拌,直至愈创木酚溶解,待溶液冷却后,加入30%过氧化氢19uL,混合均匀保存于冰箱中]

3、实验材料胁迫处理的植物叶片组织

实验步骤

1、粗酶液的提取称取胁迫处理的植物叶片组织材料0.1g,加20mmol/L KH2PO4 5mL,于研钵中研磨成匀浆,以10000r/min离心10分钟,收集上清液保存在冷处,所得残渣再用20mmol/L KH2PO45mL溶液提取一次,全并两次上清液。

2、酶活性的测定取比色皿2只,于一只中加入反应混合液3mL,KH2PO41mL,作为校零对照,另一只中加入反应混合液3mL,上述酶液1mL(如酶活性过高可适当稀释),立即开启秒表,于分光光度计470nm波长下测量OD值,每隔30s读数一次。以每分钟表示酶活性大小,即以△OD470/min.mg蛋白质表示,蛋白质含量测定按Folin法进行。

结果计算

以每分钟吸光度变化值表示酶活性大小,即以ΔA470/[min.g(鲜重)]表示之。也可以用每min内A470变化0.01为1个过氧化物酶活性单位(u)表示。

过氧化物酶活性[u/(g.min)]=

式中:ΔA470——反应时间内吸光度的变化。W——植物鲜重,g。

VT ——提取酶液总体积,mL。Vs ——测定时取用酶液体积,mL。

t——反应时间,min。

植物生理学名词解释重点

自由水:据离胶体颗粒或渗透调节物质远,不被吸附或受到别的吸附力很小而自由移动的水分。 束缚水:在细胞中被蛋白质等亲水大分子组成的胶体颗粒或渗透物质所吸附的不易自由移动的水分。 水分临界期:植物在生活周期中对水分缺乏最敏感、最易受害的时期。 三羧酸循环:丙酮酸在有氧条件下进入线粒体,经过三羧酸循环等一系列物质转化,彻底氧化为水和CO2的循环过程。 氧化磷酸化:在生物氧化中,电子经过线粒体的电子传递链传递到氧,伴随ATP合成酶催化,使ADP和磷酸合成A TP的过程。P/O:是指氧化磷酸化中每消耗1mol氧时所消耗的无机磷酸摩尔数之比,是代表线粒体氧化磷酸化活力的重要指标。 末端氧化酶:处于生物氧化一系列反应的最末端,把电子传递给O2的酶。 代谢源:是制造或输出同化物质的组织、器官或部位。 代谢库:是消耗或贮藏同化物质的组织、器官或部位。 植物激素:在植物体内合成,通常从合成部位运往作用部位,对植物的生长发育产生显著调节作用的微量有机物,生长素IAA、赤霉素GA、脱落酸ABA、乙烯ETH、细胞分裂素CTK. 植物生长物质:是调节植物生长发育的微量化学物质。 乙烯的三重反应:是指含微量乙烯的气体中,豌豆黄化幼苗上胚轴伸长生长受到抑制,增粗生长受到促进和上胚轴进行横向生长、抑制伸长生长,促进横向生长,促进增粗生长。 偏向生长:上部生长>下部生长 春化作用:低温诱导植物开花的过程。 光周期现象:植物感受白天和黑夜相对长度的变化,而控制开花的现象。 临界夜长:短日照植物开花所需的最小暗期长度或长日照植物开花所需的最大暗器长度。 呼吸骤变:当呼吸成熟到一定程度时,呼吸速率首先降低,然后突然升高,最后又下降现象。 休眠:成熟种子在合适的萌发条件下仍不萌发的现象。 衰老:细胞器官或整个植物生理功能衰退,最终自然死亡的过程。 脱落:植物细胞组织或器官与植物体分离的过程。 抗逆性:植物的逆境的抵抗和忍耐能力。 避逆性:植物通过物理障碍或生理生化途径完全排除或部分排除逆境对植物体产生直接有害效应。 耐逆性:植物在不良环境中,通过代谢变化来阻止、降低甚至修复由逆境造成的伤害,从而保证生理活动。 逆境:对植物生存和发育不利的各种环境因素的总称。 渗透调节:在胁迫条件下,植物通过积累物质,降低渗透势,而保持细胞压力势的作用。活性氧:化学物质活泼,氧化能力强的氧化代谢产物及含氧衍生物的总称。 交叉适应:植物处于一种逆境下,能提高植物对另外一些逆境的抵抗能力,这种与不良环境反应之间的相互适应作用叫做~ 单性结实:有些植物的胚珠不经受精子房仍能继续发育成没有种子的果实。 幼年期:任何处理都不能诱导开花的植物早期生长阶段。 花熟状态:植物能感受环境条件的刺激而诱导开花的生理状态。 脱春化作用:在春化作用完成前,把植物转移到较高温度下,春化被解除。 临界日长:长日植物开花所需的最短日长或短日植物开花所需的最长日长。 长日植物:日照长度必须长于一定时数才能开花的植物。 日中性植物:在任何日照条件下都可以开花的植物。 花发育ABC模型:典型的花器官从外到内氛围花萼、花瓣、雄蕊和心皮4轮基本结构,控制其发育的同源异型基因划分为A、B、C三大组。 光形态建成:这种依赖光调节和控制的植物生长、分化和发育过程,称为植物的~ 光敏色素:是一种易溶于水的浅蓝色的色素

《植物逆境生理学》课 程 论 文

《植物逆境生理学》课程论文 论文题目论植物的抗性生理综述 学生专业班级 学生姓名学号 指导教师 完成时间

论植物的抗性生理综述 摘要:对植物产生伤害的环境成为逆境。逆境会伤害植物,严重时会导致死亡。逆境可分为生物胁迫和非生物胁迫。其中生物胁迫有病害等,非生物胁迫有寒冷,高温,干旱,盐渍等。有些植物不能适应这些不良环境,无法生存,有些植物却能适应这些环境,生存下去。这种对不良环境的适应性和抵抗力叫做植物抗逆性。植物抗性生理是指逆境对生命活动的影响,以及植物对逆境的抵御抗性能力。本文将对植物的抗冷性,抗冻性,抗热性,抗旱性,抗涝性,抗盐性,抗病性等方面具体阐述植物的抗性生理,以利于更深入的研究。 关键词:抗冷性 ; 抗冻性 ; 抗热性 ; 抗旱性 ; 抗病性 引言:抗性是植物长期进化过程中对逆境的适应形成的。我国幅员辽阔,地形复杂,气候多变,各地都有其特殊的环境,抗性生理与农林生产关系极为密切。我们研究植物的抗性生理,对农作物产量的提高,保护森林等具有重要的意义。 1植物的抗冷性 低温冷害是指零度以上低温对植物造成的伤害或死亡的现象。当植物受到冷胁迫后, 会发 生一系列形态及生理生化方面的变化。植物的这种对低温冷害的忍受和适应的特性, 就是植物的抗冷性。[1]低温胁迫是影响植物正常生长的主要障碍因子之一, 植物尤其是经济作物的抗冷性强弱直接影响作物产量。 1.1细胞膜系统与植物抗冷性 细胞膜的流动性和稳定性是细胞乃至整个植物体赖以生存的基础。在低温下植物细胞膜由液晶态转变成凝胶状态, 膜收缩; 温度逆境不可逆伤害的原初反应发生在生物膜系统类脂分子的相变上。大量研究证实, 膜系中脂肪酸的不饱和度或膜流动性与植物抗寒性密切相关。膜脂上的不饱和脂肪酸成分比例越大, 膜流动性越强, 植物的相变温度越低, 抗寒性越强。[2] 1.2植物的渗透调节与抗冷性 1.2.1脯氨酸植物在低温条件下,游离脯氨酸的大量积累被认为是对低温胁迫的适应性反应。脯氨酸具有溶解度高,在细胞内积累无毒性,水溶液水势较高等特点,因此,脯氨酸可作为植物抗冷保护物质。植物在受到冷害时,游离脯氨酸可能是通过保护酶的空间结构,为生化反应提供足够的自由水及化学和生理活性物质,对细胞起保护作用。 1.2.2 可溶性糖低温胁迫下植物体内可溶性糖的含量增加,它的含量与植物的抗冷性密切相关。低温下植株中可溶性糖积累是作为渗透调节物质和防脱水剂而起作用的,它们可降低细胞水势,增强持水力。

植物生理学名词解释 (1)

2、细胞信号转导:是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程 。 3、代谢源(metabolic source ): 是指能够制造并输出同化物的组织、器官或部位。如绿色植物的功能叶,种子萌发期间的胚乳或子叶,春季萌发时二年生或多年生植物的块根、块茎、种子等。 4、代谢库:接纳消耗或贮藏有机物质的组织或部位。又称代谢池 。 5、光合性能:是指植物光合系统的生产性能或生产能力。光合生产性能与作物产量的关系是:光合产量的多少取决于光合面积、光合性能与光合时间三项因素。农作物经济产量与光合作用的关系可用下式表示: 经济产量=[(光合面积 X 光合能力 X 光合时间)— 消耗] X 经济系数 6、光合速率(photosynthetic rate ):是指单位时间、单位叶面积吸收CO2的量或放出O2的量。常用单位12--??h m mol μ,1 2--??s m mol μ 7、光和生产率(photosynthetic produce rate ):又称净同化率(NAR ),是指植物在较长时间(一昼夜或一周)内,单位叶面积产生的干物质质量。常用单位1 2--??d m g 8、氧化磷酸化:生物化学过程,是物质在体内氧化时释放的能量供给ADP 与无机磷合成ATP 的偶联反应。主要在线粒体中进行。 9、质子泵:能逆浓度梯度转运氢离子通过膜的膜整合糖蛋白。质子泵的驱动依赖于ATP 水解释放的能量,质子泵在泵出氢离子时造成膜两侧的pH 梯度和电位梯度。 10、水分临界期:作物对水分最敏感时期,即水分过多或缺乏对产量影响最大的时期 。 11、呼吸跃变(climacteric ):当果实成熟到一定时期,其呼吸速率突然增高,最后又突然下降的现象。 12、种子活力:即种子的健壮度,是种子发芽和出苗率、幼苗生长的潜势、植株抗逆能力和生产潜力的总和,是种子品质的重要指标。 13、种子生活力(viability ):是指种子的发芽潜在能力和种胚所具有的生命力,通常是指一批种子中具有生命力(即活的)种子数占种子总数的百分率。 14、光饱和点:在一定的光强范围内,植物的光合强度随光照度的上升而增加,当光照度上升到某一数值之后,光合强度不再继续提高时的光照度值。 15、光补偿点:植物的光合强度和呼吸强度达到相等时的光照度值。在光补偿点以上,植物的光合作用超过呼吸作用,可以积累有机物质。 阴生植物的光补偿点低于阳生植物,C3植物低于C4植物。 16、同化力:ATP 和NADPH 是光合作用过程中的重要中间产物,一方面这两者都能暂时将能量贮藏,将来向下传递;另一方面,NADPH 的H+又能进一步还原CO2并形成中间产物。这样就把光反应和碳反应联系起来了。由于ATP 和NADPH 用于碳反应中的CO2同化,所以把这两种物质合成为同化力(assimilatory power ). 17、极性运输:极性运输就是物质只能从植物形态学的上端往下运输,而不能倒转过来运输。比如生长素的极性运输:茎尖产生的生长素向下运输,再由根基向根尖运输。生长素是唯一具有极性运输特点的植物激素,其他类似物并无此特性 。 18、生理酸性盐:选择性吸收不仅表现在对不同的盐分吸收量不同,而且对同一盐的阳

第十一章 植物的逆境生理

第十一章植物的逆境生理 Ⅰ教学大纲基本要求和知识要点 一、教学大纲基本要求 了解抗逆生理、逆境蛋白概念、植物在逆境下的形态变化与代谢特点;了解渗透调节与抗逆性的关系、膜保护物质与自由基的平衡;了解植物激素在抗逆性中的作用;了解低温和高温对植物的伤害以及植物抗寒和耐热的机理与途径;了解干旱和湿涝对植物的伤害以及植物抗旱、抗涝的机理与途径;了解病虫对植物的伤害以及植物的抗病性和抗虫性;了解盐分过多对植物的危害以及植物抗盐性及其提高途径;了解大气、水体、土壤等环境污染对植物的伤害,植物抗环境污染机理与途径,以及进行环境保护必要性;了解抗逆生理与农业生产的关系,掌握提高作物抗逆性的途径。 二、知识要点 逆境是指对植物生存和生长发育不利的各种环境因素的总称。植物对逆境的抗性包括逆境逃避和逆境忍耐(图11.1 )。 图11.1 逆境类型 植物的抗性既受系统发生的遗传基因所控制,又受个体发育中生理生态因素所制约。在逆境下植物形态结构和生理特性发生明显变化。多种胁迫都会使自由水含量降低,光合作用减缓,呼吸变化异常,蛋白质、碳水化合物等物质分解大于合成。脯氨酸、甜菜碱、可溶性糖等可通过调节细胞的渗透势从而提高植物的抗渗透胁迫能力。在逆境下植物激素的相对比例发生改变,以不同方式使植物的抗性得以提高,特别是脱落酸在其中起了重要的作用。生物膜往往是胁迫的原初作用部位,逆境下活性氧的产生和消除失去平衡,而SOD 等膜保护物质通过清除活性氧等作用,对膜系统起保护作用。逆境下原有蛋白的合成受到抑制,形成一些逆境蛋白。逆境蛋白是基因表达的结果,其中热击蛋白是最先发现的逆境蛋白。植物在经历了一种胁迫后,往往可提高对其他胁迫的抵抗力,这叫交叉适应,其原理有助于认识多种胁迫对植物影响的共同特点及植物抗逆性提高的本质。 寒害包括冷害和冻害。冷害使植物膜透性增加,膜相由液晶态变为凝胶态,原生质流动减慢,代谢紊乱(图11.2 左)。冻害主要是冰晶的伤害,结冰会引起细胞质过度脱水,蛋白质空间结构破坏而使植物受害(图11.2 右)。通过抗寒锻炼、化学调控和农业栽培措施可提高植物的抗寒性。 图11.2 冷害(左)和冻害(右)的可能机理 高温使蛋白质变性,脂类液化、代谢失调,并可能产生有毒物质从而造成热害。 干旱可分为大气干旱、土壤干旱和生理干旱。原生质脱水是旱害的核心。而涝害的根本原因则是液相取代了气相,细胞因缺氧而受伤害(图11.3 )。 图11.3 干旱对植物的危害

植物生理学名词解释汇总

第一章绪论 第二章水分代谢 1.内聚力 同类分子间的吸引力 2.粘附力 液相与固相间不同类分子间的吸引力 3.表面张力 处于界面的水分子受着垂直向内的拉力,这种作用于单位长度表面上的力,称为表面张力 4.毛细作用 具有细微缝隙的物体或内径很小的细管(≤1mm),称为毛细管。液体沿缝隙或毛细管上升(或下降)的现象,称为毛细作用 5.相对含水量(RWC) 6.水的化学势 当温度、压力及物质数量(除水以外的)一定时,体系中1mol水所具有的自由能,用μw表示 7.水势 在植物生理学中,水势是指每偏摩尔体积水的化学势

8.偏摩尔体积 偏摩尔体积是指在恒温、恒压,其他组分浓度不变情况下,混合体系中加入1摩尔物质(水)使体系的体积发生的变化 9.溶质势(ψs) 由于溶质颗粒的存在而引起体系水势降低的值,为溶质势(ψs) 10.衬质势(ψm) 由于衬质的存在而引起体系水势降低的数值,称为衬质势(ψm),为负值 11.压力势(ψp) 由于压力的存在而使体系水势改变是数值,为压力势(ψp) 12.重力势(ψg) 由于重力的存在而使体系水势改变是数值,为重力势(ψg) 13.集流 指液体中成群的原子或分子在压力梯度作用下共同移动的现象 14.扩散 物质分子由高化学势区域向低化学势区域转移,直到均匀分布的现象。扩散的动力均来自物质的化学势差(浓度差) 15.渗透作用 渗透是扩散的特殊形式,即溶液中溶剂分子通过半透膜(选择透性膜)的扩散 16.渗透吸水 由于溶质势ψs下降而引起的细胞吸水,是含有液泡的细胞吸水的主要方式(以渗透作用为动力) 17.吸胀吸水

依赖于低的衬质势ψm而引起的细胞吸水,是无液泡的分生组织和干种子细胞的主要吸水方式。(以吸胀作用为动力) 18.降压吸水 因压力势ψp的降低而引起的细胞吸水。当蒸腾作用过于旺盛时,可能导致的吸水方式 19.主动吸水 由根系的生理活动而引起的吸水过程。动力是内皮层内外的水势差(产生根压) 20.被动吸水 由枝叶蒸腾作用所引起的吸水过程。动力是蒸腾拉力 21.根压 植物根系的生理活动促使液流从根部上升的压力,称为根压 22.伤流 如果从植物的茎基部靠近地面的部位切断,不久可看到有液滴从伤口流出。这种从受伤或折断的植物组织中溢出液体的现象,叫做伤流(bleeding) 23.吐水 没有受伤的植物如处于土壤水分充足、天气潮湿的环境中,从叶片尖端或边缘向外溢出液滴的现象 24.萎蔫(wilting) 植物吸水速度跟不上失水速度,叶片细胞失水,失去紧张度,气孔关闭,叶柄弯曲,叶片下垂,即萎蔫 25.暂时萎蔫(temporary wilting) 是由于蒸腾大于吸水造成的萎蔫。发生萎蔫后,转移到阴湿处或到傍晚,降低蒸腾即可恢复。这种萎蔫称为暂时萎蔫。 26.永久萎蔫(permanent wilting)

逆境胁迫对植物质膜透性的影响

逆境胁迫对植物质膜透性的影响(电导率法) 【实验目的】 1.学习电导仪法测定膜相对透性的方法。 2.理解逆境对植物膜透性的影响。 【实验原理】 植物细胞膜对维持细胞的微环境和正常的代谢起着重要的作用。在正常情况下,细胞膜对物质具有选择透性能力。 当植物受到逆境影响时,如高温或低温,干旱、盐渍、病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,电导率增大。 膜透性增大的程度与逆境胁迫强度有关,也与植物抗逆性的强弱有关。 这样,比较不同作物或同一作物不同品种在相同胁迫温度下膜透性的增大程度,即可比较作物间或品种间的抗逆性强弱。 因此,电导法目前已成为作物抗性栽培、育种上鉴定植物抗逆性强弱的一个精确而实用的方法。 相对电导率根据公式计算得出:Relative ion leakage = (C1 - C0) / (C2 - C0) ×100%(注C0为双蒸水的电导率) 【实验材料及仪器】 材料:小麦幼苗:对照、100mM NaCl处理、100mM NaCl处理、5%PEG-6000处理、15%PEG-6000处理 仪器设备:电导仪、温箱、水浴锅 【实验步骤】 1.取0.1g对照和盐或PEG6000处理的小麦叶片,切成约1cm小段,每种处理做两个平行; 2.用双蒸水冲洗3 遍以除去表面粘附的电解质; 3.加10 ml双蒸水,25℃振荡温育1小时,期间经常摇动,测定此时的电导率为C1;

4.将盛有根的试管100℃煮沸15 min,冷却到室温后,测定此时的电导率为C2; 5.相对电导率根据公式计算得出:Relative ion leakage = (C1 - C0) / (C2 - C0) ×100%(注C0为双蒸水的电导率) 【数据记录及结果处理】 双蒸水的电导率C0=1.6 根据公式Relative ion leakage = (C1 - C0) / (C2 - C0) ×100%,计算各根尖的相对电导率 对照:①Relative ion leakage = 6.72% ②Relative ion leakage = 8.33%平均=7.53% 100mM NaCl处理:①Relative ion leakage = 13.16% ②Relative ion leakage = 10.22%平均=11.68% 200mM NaCl处理:①Relative ion leakage = 29.93% ②Relative ion leakage = 29.10%平均=29.51% 5%PEG-6000处理:①Relative ion leakage = 6.69% ②Relative ion leakage = 6.95%平均=6.82%

植物生理学名词解释19814

植物生理学名词解释 植物生理学是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢和物质代谢。 水分代谢:植物对水分的吸收、运输、利用和散失的过程。 水势:相同温度下一个含水的系统中一摩尔体积的水与一摩尔体积纯水之间的化学势差称为水势。把纯水的水势定义为零,溶液的水势值则是负值。 压力势:植物细胞中由于静水质的存在而引起的水势增加的值。 渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。 根压:由于植物根系生理活动而促使液流从根部上升的压力。伤流和吐水现象是根压存在的证据。 自由水:与细胞组分之间吸附力较弱,可以自由移动的水。 渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水。 衬质势:由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。 吐水:从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。(水,温,湿) 伤流:从受伤或折断的植物组织伤口处溢出液体的现象。 蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。 蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用g·kg-l表示。蒸腾系数:植物每制造1g干物质所消耗水分的g数,它是蒸腾效率的倒数,又称需水量。抗蒸腾剂:能降低蒸腾作用的物质,它们具有保持植物体中水分平衡,维持植株正常代谢的作用。抗蒸腾剂的种类很多,如有的可促进气孔关闭。 吸胀作用:亲水胶体物质吸水膨胀的现象称为吸胀作用。胶体物质吸引水分子的力量称为吸胀。 永久萎蔫:降低蒸腾仍不能消除水分亏缺恢复原状的萎蔫 永久萎蔫系数:将叶片刚刚显示萎蔫的植物,转移至阴湿处仍不能恢复原状,此时土壤中水分重量与土壤干重的百分比叫做永久萎蔫系数。水分临界期:植物在生命周期中,对缺水最敏感、最易受害的时期。一般而言,植物的水分临界期多处于花粉母细胞四分体形成期,这个时期一旦缺水,就使性器官发育不正常。作物的水分临界期可作为合理灌溉的一种依据。内聚力学说:以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说。 植物的最大需水期:指植物生活周期中需水最多的时期。 小孔扩散律:指气体通过多孔表面扩散的速率,不与小孔的面积成正比,而与小孔的周长或

逆境胁迫对植物生理生化代谢的影响

逆境胁迫对植物生理生化代谢的影响 20093391 魏晓明农学0901 摘要:对植物产生伤害的环境称为逆境,又称胁迫。常见的逆境有寒冷、干旱、高温、盐渍等。逆境会伤害植物,严重时会导致植物死亡。逆境对植物的伤害主要表现在细胞脱水、膜系统受破坏,酶活性受影响,从而导致细胞代谢紊乱。有些植物在长期的适应过程中形成了各种各样抵抗或适应逆境的本领,在生理上,以形成胁迫蛋白、增加渗透调节物质(如脯氨酸含量)、提高保护酶活性等方式提高细胞对各种逆境的抵抗能力。 关键词:逆境胁迫,抗逆性,相对电导率,脯氨酸,丙二醛,样品,细胞膜透性,过氧化物酶活性,叶绿素,可溶性糖。 前言:植物细胞膜起调节控制细胞内外物质交换的作用,它的选择透性是其最重要的功能之一。当植物遭受逆境伤害时,细胞膜受到不同程度的破坏,膜的透性增加,选择透性丧失,细胞内部分电解质外渗。膜结构破坏的程度与逆境的强度、持续的时间、作物品种的抗性等因素有关。因此,质膜透性的测定常可作为逆境伤害的一个生理指标,广泛应用在植物抗性生理研究中。 当质膜的选择透性被破坏时细胞内电解质外渗,其中包括盐类、有机酸等,这些物质进入环境介质中,如果环境介质是蒸馏水,那么这些物质的外渗会使蒸馏水的导电性增加,表现在电导

率的增加上。植物受伤害愈严重,外渗的物质越多,介质导电性也就越强,测得的电导率就越高(不同抗性品种就会显示出抗性上的差异)。 在植物胁迫处理过程中,叶绿素含量会下降,可以把叶绿素含量下降看作是胁迫发展中由功能性影响到器质性伤害的一个中间过程。 过氧化物酶是植物体内普遍存在的、活性较高的一种酶,他与呼吸作用、光合作用及生长素的氧化等都有密切关系,在植物生长发育过程中,他的活性不断变化,因此测量这种酶,可以反映某一时期植物体内代谢的变化。 植物体内的碳素营养状况以及农产品的品质性状,常以糖含量作为重要指标。植物为了适应逆境条件,如干旱、低温,也会主动积累一些可溶性糖,降低渗透势和冰点,以适应外界环境条件的变化。 植物器官衰老时,或在逆境条件下,往往发生膜脂过氧化作用,丙二醛(MDA)是其产物之一,通常利用它作为脂质过氧化指标,表示细胞膜脂过氧化程度和植物对逆境条件反应的强弱。 植物细胞膜对维持细胞的微环境和正常的代谢起着重要作用。在正常情况下,细胞膜对物质具有选择透性能力。当植物受到逆境影响时,如高温、干旱、盐渍、病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,以至于植物细胞侵提液的电导率增大。膜透性增大的程度与逆境胁迫强度有

植物生理学名词解释 (2)

植物生理学名词解释 名词解释 1. 根压——植物根系的生理活动使液流从根部上升的压力 2. 蒸腾作用——水分通过植物体表面(如叶片等),以气体状态从体内散失到体外的现象 3. 水分临界期——指在植物生长发育过程中对缺水最为敏感,最易受害的阶段 4. 内聚力学说——以水分具有较大的内聚力保证由叶至根水柱不断,来解释水分上升原因的学说 5. 矿质营养——植物对矿物质的吸收、转运和同化以及矿质在生命活动中的作用,通称为矿质营养 6. 必需元素——指在植物营养生理上表现为直接的效果、如果缺乏时则植物生育发生障碍,不能完成生活史、以及去除时植物表现出专一的、可以预防和恢复的症状的一类元素 7. 单盐毒害——溶液中只有一种金属离子对植物起有害作用的现象 8. 离子对抗——在发生单盐毒害的溶液中,如加入少量其他金属离子来减弱或消除单盐毒害的作用叫离子对抗 9. 平衡溶液——含有适当比例的多盐溶液,对植物生长有良好作用的溶液 10. 还原氨基化——还原氨直接使酮酸氨基化而形成相应氨基酸的过程 11. 胞饮作用——物质吸附在质膜上,然后通过膜的内折而转移到细胞内的攫取物质及液体的过程 12. 通道蛋白——在细胞质膜上构成圆形孔道的内在蛋白 13. 植物营养临界期——植物在生长发育过程中,对某种养分的需要虽然绝对数量不一定很多;但有很迫切的时期,如供应量不能满足植物的要求,会使生长发育受到很大影响,以后很难弥补损失 14. C3途径——以RUBP为CO2受体,CO2固定后最初产物为PGA三碳化合物的光合途径16. C4途径——以PEP为CO2受体,CO2固定后最的初产物是四碳双羧酸的光合途径15. 交换吸附——根部细胞在吸收离子的过程中,同时进行着离子的吸附与解吸附的过程,总有一部分离子被其它离子所置换,所以细胞吸附离子具有交换性质 17. 光系统——能吸收光能并将吸收的光能转化成电能的机构。由不同的中心色素和一些天线色素、电子供体和电子受体组成的蛋白色素复合体。 18. 反应中心——进行光化学反应的机构。由中心色素、原初电子供体及原初电子受体组成的具有电荷分离功能的色素蛋白复合体结构。 19. 荧光现象——叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象,由第一线态回到基态时所产生的光。 20. 磷光现象——当去掉光源后,叶绿素溶液和能继续辐射出极微弱的红光,它是由三线态回到基态时所产生的光。这种发光现象称为磷光现象。

逆境胁迫对植物生理生化指标的影响

本科学生综合性实验报告 学号姓名 学院专业、班级 实验课程名称植物生理学实验 教师及职称 开课学期2012 至2013 学年上学期 填报时间2012 年12 月15 日

云南师范大学教务处编印 逆境胁迫对植物生理生化指标的影响 作者: (,云南昆明650092) 摘要:对植物产生危害的环境称为逆境,又称胁迫。干旱是制约植物生长的主要逆境因素,以小麦幼苗在模拟干旱胁迫下,植株体内的生理生化指标会发生变化。实验采用PEG处理小麦幼苗,对抗氧化酶;脯氨酸;谷胱甘肽;过氧化氢;可溶性糖;丙二醛在植物体内的含量变化进行了研究,实验通过分光光度计分别在不同的波长中测出吸光率,间接计算出其含量,而通过对正常条件下的和逆境胁迫下一定量小麦体内以上各种物质含量的对比,从而了解小麦体内生理生化指标发生的变化。 关键词:小麦(Triticum aestivumLinn);干旱胁迫;生理生化 1 引言 干旱是自然界常见的逆境胁迫因素,而且干旱也是植物最容易受到的胁迫之一。干旱不仅制约植物的生长发育与产量,也会引起植被结构与功能的时空变化。因此植物对干旱胁迫的适应及机制一直是植物逆境适应策略研究的一个热点【1-3】作物抗旱性的研究方法有多种,适应能力进行了研究:植物对干旱胁迫的适应过程和受伤害程度与干旱胁迫的强度以及植物自身的抗性紧密联系,并从生化代

谢、生理功能、形态适应、生长发育以及生物生产力等多种形式表现出来【1-5】。土壤有效水分状况与植物之间的关系一直是植物生理生态学研究领域的热点问题。大多数植物在短期或轻度土壤缺水情况下叶片水势下降,气孔关闭。限制CO2 摄取和光合作用速率:长期严重干旱条件下可限制植物生长,引起形态结构发生变化。甚至导致植物死亡【6】。大多实验是在人工控制的干旱或人工模拟干旱条件下进行。其主要方法是室外盆栽控制水分,苗期室内水培或砂培采用PEG 渗透胁迫、人工控制的温室、气候室和培养箱等。其中,PEG渗透胁迫法简单易行、条件容易控制、重复性好、试验周期短。本试验采PEG溶液模拟干旱胁迫的方法,研究干旱胁迫对小麦幼苗发芽率、抗氧化酶、脯氨酸、谷胱甘肽、过氧化氢、可溶性糖、丙二醛等生理生化指标含量的变化,并初步探讨小麦的抗逆机理,期望能够应用于农业生产实践中,为干旱农业生产提供理论依据。 2、材料与方法 2.1、实验材料 小麦种子:购于西山种子公司,供实验备用。(适宜条件下,选购的小麦种子发芽率较高的,所选购的实验材料较理想的,有利于用作实验材 料。) 培养条件:室温,充足水分、充足阳光供给,PEG干旱处理。 用水:自来水。 2.2、种子生命力(发芽率)的快速测定 将待测种子在适宜水中浸种,以增强种胚的呼吸强度。使显色迅速。 2.3、其它实验种子处理一致如下; 小麦种子→用0.1% HgCl2消毒10 min后→用蒸馏水漂洗干净→用蒸馏水于26℃下吸涨12 h →播于垫有6层湿润滤纸的带盖白磁盘(24cm×

现代植物生理学名词解释(完整版)

绪论 植物生理学:研究植物生命活动规律及其与环境相互关系的科学。 物质转化:植物对外界物质的同化及利用。 能量转化:植物对光能的吸收,转化,储存,释放与利用的过程。 信息传递:在植物生命活动过程中,在整体水平上,从信息感受部位将信息传递到发生反应部位的过程。 信号转导:在单个细胞水平上信号与受体结合后,通过信号传递,放大与整合,产生生理反应的过程。 形态建成:植物在物质转化与能量转化的基础上发生的植物体大小,形态结构方面的变化,完全依赖于植物体内各种分生组织的活动。 细胞生理 原核细胞:无典型细胞核的细胞,核质外面缺少核膜,细胞质中没有复杂的细胞器与内膜系统。 真核细胞:具有明显的细胞核,核质外有核膜包裹,细胞之中有复杂的内膜系统与细胞器。 生物膜:细胞中主要由脂类与蛋白质组成的,具有一定结构与生理功能的膜状组分,即细胞内所有膜的总称,包括质膜,核膜,各种细胞器被膜及其她内膜。 内质网:存在于真核细胞,由封闭的膜系统及其围成的腔形成互相沟通的网状结构。 胞间连丝:穿越细胞壁,连接相邻细胞原生质体的管状通道。 共质体:胞间连丝把原生质体连成一体。 质外体:细胞壁,质膜与细胞壁间的间隙以及细胞间隙等互相连接成的一个连续的整体。 原生质体:去掉细胞壁的植物细胞,由细胞质,细胞核与液泡组成。 细胞质:由细胞质膜,胞基质及细胞器等组成。 胞基质:在真核细胞中除去可分辨的细胞器以外的胶状物质,细胞浆。 细胞器:细胞质中具有一定形态与特定生理功能的细微结构。 内膜系统:在结构,功能乃至发生上相关的由膜围绕的细胞器或细胞结构。 细胞骨架:真核细胞中的蛋白纤维网架体系,广义的指细胞核/细胞质/细胞膜骨架与细胞壁。 微管:存在于细胞质中的由微管蛋白组装成的长管状细胞器结构。 微丝:真核细胞中由肌动蛋白组成,直径为7nm的骨架纤维,肌动蛋白纤维。 中间纤维:一类由丝状角蛋白亚基组成的中空管状蛋白质丝。 核糖体:由蛋白质与rRNA组成的微小颗粒,蛋白质生物合成的场所。

植物生理学名词解释

第四章呼吸作用 一、名词解释 1、呼吸作用:生物体内的有机物质通过氧化还原而产生CO2,同时释放能量的 过程。 2、有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放 出CO 2 并形成水,同时释放能量的过程。 3、三羧酸循环:丙酮酸在有氧条件下由细胞质进入线粒体逐步氧化分解,最终 生成水和二氧化碳。 4、生物氧化:指有机物质在生物体内进行氧化分解,生成CO 2和H 2 O,放出能量 的过程。 5、呼吸链:呼吸代谢中间产物的电子和质子,沿着一系列有序的电子传递体组 成的电子传递途径,传递到氧分子的总轨道。 6、氧化磷酸化:在生物氧化过程中,电子经过线粒体的呼吸链传递给氧(形成水分子),同时使ADP被磷酸化为ATP的过程。 7、呼吸商:又称呼吸系数。是指在一定时间内,植物组织释放CO 2 的摩尔数与 吸收氧的摩尔数之比。 8.糖酵解:胞质溶胶中的己糖在无氧或有氧状态下分解成丙酮酸的过程。 二、填空题 1、呼吸作用的糖的分解代谢途径中,糖酵解和戊糖磷酸途径在细胞质中进行; 三羧酸循环途径在线粒体中进行。三羧酸循环是英国生物化学家Krebs 首先发 现的。 2、早稻浸种催芽时,用温水淋种和时常翻种,其目的就是使呼吸作用正常进行。当植物组织受伤时,其呼吸速率加快。春天如果温度过低,就会导致秧苗发烂,这是因为低温破坏了线粒体的结构,呼吸“空转”,缺乏能量,引起代谢紊 乱的缘故。 3.呼吸链的最终电子受体是 O 2 氧化磷酸化与电子传递链结偶联,将影响_ ATP _的产生。 4.糖酵解是在细胞细胞基质中进行的,它是有氧呼吸和无氧呼 吸呼吸的共同途径。

5.氧化磷酸化的进行与 ATP合酶密切相关,氧化磷酸化与电子传递链解偶联将影响__ ATP__的产生。 6.植物呼吸过程中,EMP的酶系位于细胞的细胞基质部分,TCA的酶系位于线粒体的线粒体基质部位,呼吸链的酶系位于线粒体的嵴部位。 7. 一分子葡萄糖经有氧呼吸彻底氧化,可净产生__38__分子ATP,?需要经过__6_底物水平的磷酸化。 8.组成呼吸链的传递体可分为氢传递体和电子传递体。 9. 呼吸作用生成ATP的方式有电子传递磷酸化和底物水平磷酸化两种磷酸化方式。 10.把采下的茶叶立即杀青可以破坏多酚氧化酶酶的活性,保持茶叶绿色。 11、无氧呼吸的特征是,底物氧化降解,大部分底物仍是,因释放。 不利用O 不彻底有机物的形式能量少 2 12、有机物质在生物体内氧气的类型有反应,反应,反应及反应。 脱电子(e-)脱氢加水脱氢加氧 13、当细胞质内NADPH+H+浓度低时,可以葡萄糖-6-磷酸脱氢酶活性,反之,当NADPH+H+浓度高时,则可葡萄糖-6-磷酸脱氢酶活性,从而调节PPP的运行速度。 提高抑制 14、酚氧化酶是一种含的氧化酶,存在于、内。这种酶在制茶中有重要作用,在制绿茶时要立即刹青,防止,避免产生,保持茶色清香。 铜质体微体多酚氧化酶活化醌类 15、水稻种子萌发第一个时期是从吸胀到萌动为止,主要进行呼吸,第二个时期从萌动开始,胚部真叶长出为止,则以呼吸为主。 无氧有氧 16、植物茎、叶和地下贮藏组织中的PPP所占比例,而在胚组织和果实中PPP所占比例 。植物组织感病时PPP所占比例,而EMP-TCA所占比例。

第十一章 植物的逆境生理 复习参考 植物生理学复习题(推荐文档)

第十一章植物的逆境生理 一、名词解释 1.CaM 2.渗透调节与逆境蛋白 3.耐逆性与御逆性 4.植物对逆境的耐性与御性 5.逆境蛋白 6.活性氧清除系统 7.膜脂相变 8.热激反应与热激蛋白 9.活性氧 10.交叉适应 二、填空 1.用来解释干旱伤害机理的假说主要是__________和_________。 2.根据所含金属元素的不同,SOD可以分三种类型:______、______和____。 3.干旱条件下,植物为了维持体内水分平衡,一方面要________,另一方面要_______。 4.干旱条件下,植物体内大量积累的氨基酸是________,大量产生的激素是______;低温锻炼后,植物体内________脂肪酸和_______水的含量增

多。 5.植物体活性氧清除系统包括________和________两种系统。 6.植物受到干旱等逆境胁迫时,渗透调节能力增强,细胞主动合成的有机溶剂是_________、________和__________。 7.在逆境下,植物体内主要有_______、_______、_______、_____等渗透调节物质。 8.经过抗寒锻炼的植物会发生的变化有: A 双硫键增加 B 自由水增加 C 膜脂双键增加 三、选择题 1.冬季植物体内可溶性糖的含量()。 A.增多 B. 减少 C.变化不大 D. 不确定 2.干旱条件下,植物体内哪一种氨基酸显著增加?() A. 丙氨酸 B.脯氨酸 C. 天冬氨酸 D. 甘氨酸 3.植物细胞中属于相容性物质的是: A、Ca B、ABA C、Pro 4. 植物抗盐的SOS途径中,与Na+外排和区域化实现不直接相关的是: A. Ca+-CaM B. Na+/H+ symporter C. Na+/H+ antiporter 三、问答 1.水稻幼苗经过0.1mol/L NaCI预处理24h后,再转移到8~10℃环境中,能表现出良好的抗冷性。试分析其原因。

植物逆境生理学论文(改)

青岛农业大学 植物逆境生理学课程论文 学院:经济与管理学院 专业:财务管理 班级:11级6班 姓名:刘菲菲 学号:20111607 2012年11月14日

植物抗旱生理的研究及降低干旱对植物伤害的建议 姓名:刘菲菲班级:财务管理11级6班学号:20111607 摘要:旱灾是世界上分布最广的自然灾害。每年因为干旱,人们遭受了许多不可弥补的损失。干旱有多种分类,对植物的伤害也是因植物而不同的,植物虽然具有一定的抗旱性,能对外界环境对自身的生理影响做出调节,但其调节能力也是有限的,所以人们必须了解的抗旱的有关知识,通过一定的措施来降低干旱给植物造成的伤害和对自己造成的经济损失。 关键字:旱灾后果抗旱性建议 引言:植物的地理分布,生长发育以及产量形成等均受到环境的制约。干旱是对植物生长影响最大的环境因素之一。世界上干旱半干旱区遍及50多个国家和地区,其总面积约占陆地总面积的三分之一,且有逐年增加的趋势。在我国华北、西北、内蒙古和青藏高原绝大部分地区属于干旱半干旱地区,约占全国土地总面积的45﹪。由于全球荒漠化问题的严重性,加之干旱问题对人类的困扰,人们迫切希望通过提高植物的抗旱性以及选育抗旱性强的农作物或林木品种以合理利用水资源,达到生产人们所需要的农林收获物和改善环境的目的。因而尽管提高植物的抗旱性的难度很大,人们从来也没有停止过对这个问题的探索。相信在不久的将来人们在此方面的研究会有所突破的。 1旱害 1.1干旱的概念 旱害指因气候严酷或不正常的干旱而形成的气象灾害。一般指因土壤水分不足,农作物水分平衡遭到破坏而减产或歉收从而带来粮食问题,甚至引发饥荒。同时,旱灾亦可令人类及动物因缺乏足够的饮用水而致死。此外,旱灾后则容易发生蝗灾,进而引发更严重的饥荒,导致社会动荡。1.2 干旱的分类 根据引起水分亏缺的原因,干旱可分为(1)大气干旱,是指空气过度干燥,相对湿度过低,伴随高温和干风,这时植物蒸腾过强,根系吸水补偿不了失水。(2)土壤干旱,是指土壤中没有或只有少量的有效水,严重降低植物吸水,使其水分亏缺引起永久萎蔫。(3)生理干旱,土壤中的水分

植物生理学名词解释和符号

2、植物水分代谢 水势:每偏摩尔体积水的化学势差。符号是ψw 。 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。 蒸腾比率:植物每消耗1kg水时所形成的干物质的质量。 水分临界期:植物对水分不足最敏感、最易受伤害的时期。(小麦的水分临界期是孕穗期和灌浆始期—乳熟末期) 偏摩尔体积:指在恒温恒压,其他组分的浓度不变情况下,混合体系中1mol该物质所占据的有效体积。 Ψw 水势ψp 压力势ψs溶质势ψm 衬质势ψπ渗透势AQP水孔蛋白 MPa兆帕 3、植物矿质和氮素营养 必需元素:指在植物完成生活史中的、起着不可替代的直接生理作用、不可缺少的元素。(三个标准:元素不可缺少性、不可替代性和直接功能性。17种必须元素,14种矿质元素,9种大量元素、8种微量元素) 单盐毒害:将植物培养在单一盐溶液中(即溶液中只含有一种金属离子)不久植株就会呈现不正常状态,最终死亡,这种现象成为单盐毒害。 离子对抗:在单盐溶液中若加入少量含有其他金属离子的盐类,单盐毒害现象就会减弱或者消除,离子间的这种作用叫做离子对抗。 生理酸性盐:植物根系对盐的阳离子吸收多而快,导致溶液变酸的盐类。 叶片营养:也称根外营养,是指植物地上部分,尤其是叶片对矿质元素的吸收过程。 可再利用元素:某些元素进入植物地上部分以后,仍呈离子状态或形成不稳定的化合物,可不断分解,释放出的离子又转移到其他器官中去,可反复被利用的元素。(常见可再利用元素N、P、K、Mg;不可再利用元素Ca、Fe、Mn、B、S) 缺素症:当植物缺少某些元素时表现出的特殊性病症。(缺少N、Mg、S、Fe会引起缺绿病)AFS表观自由空间 4、植物的呼吸作用 能荷:是对细胞中内腺苷酸A TP-ADP-AMP体系中可利用的高能磷酸键的一种度量。其数值为(A TP+0.5ADP)/(A TP+ADP+AMP)。 呼吸商RQ:在一定时间内植物组织释放二氧化碳的摩尔数与吸收氧气摩尔数之比。 伤呼吸:植物组织因受到伤害而增强的呼吸。 呼吸速率:单位鲜重、干重的植物组织在单位时间内所释放二氧化碳的量或吸收氧气的量,也称呼吸强度。 巴斯的效应:由巴斯德发现的氧气抑制发酵作用的现象。 末端氧化酶:处于生物氧化一系列反应的最末端,将底物脱下的氢或者电子传递给分子氧,形成水或过氧化氢的氧化酶。(包括细胞色素氧化酶、交替氧化酶、酚氧化酶、抗坏血酸氧化酶、乙醇酸氧化酶。) 呼吸跃变:果实成熟过程中,呼吸速率突然上升然后又很快下降的现象。(降温可以推迟呼吸跃变;增加周围环境中的二氧化碳和氮气浓度,降低氧浓度可以降低呼吸跃变强度。) 抗氰呼吸:指某些植物的组织或者器官在氰化物存在的情况下仍能进行的呼吸。(参与抗氰呼吸的末端氧化酶为交替氧化酶) 氧化磷酸化:指呼吸链上的氧化过程偶联ADP和无机磷酸形成A TP的作用。

植物的逆境生理复习题参考答案

植物的逆境生理复习题参考答案 一、名词解释 1、逆境(environmental stress):又称胁迫(stress)。系指对植物生存和生长不利的各种环境因素的总称。如低温、高温、干旱、涝害、病虫害、有毒气体等。 2、抗逆性(stress resistance):植物对逆境的抵抗和忍耐能力,简称为抗性。抗性是植物对环境的一种适应性反应,是在长期进化过程中形成的。 3、抗性锻炼(hardiness hardening):在生活周期中,植物的抗逆遗传特性需要特定环境因子的诱导才能表现出来,这种诱导过程称为抗性锻炼,例如抗寒锻炼、抗旱锻炼。 4、抗寒锻炼(cold resistance hardening):植物在冬季来临之前,随着气温的降低,体内发生了一系列适应低温的生理生化变化,抗寒能力逐渐增强,这种抗寒能力逐渐提高的过程称为抗寒锻炼。 5、抗旱锻炼(drought resistance hardening ):在种子萌发期或幼苗期进行适度的干旱处理,使植物的生理代谢上发生相应的变化,从而增强对干旱的抵抗能力,这个过程称为抗旱锻炼。 6、交叉适应(cross adaptation):植物经历了某种逆境后,能提高对另一些逆境的抵抗能力,这种对不同逆境间的相互适应作用,称为交叉适应。 7、避逆性(stress avoidance):植物通过设置物理屏障或某些特殊的代谢反应和生长发育变化,从而避免或减小逆境对植物组织施加的影响,使其仍保持较正常的生理活动,这种抵抗称为避逆性。 8、耐逆性(stress tolerance):又称逆境忍耐。植物组织虽然经受逆境的影响,但可通过代谢反应阻止、降低或者修复由逆境造成的损伤,从而保持其生存能力,这种抵抗称为耐逆性。 9、逆境逃避(stress escape):指植物通过生育期的调整避开逆境,例如沙漠中的一些植物在雨季里快速生长,完成生活史,自身并不经历逆境。 10、渗透调节(osmotic adjustment.) :植物细胞通过主动增加溶质降低渗透势,增强吸水和保水能力,以维持正常细胞膨压的作用。 11、寒害(cold injury):低温导致的植物受伤或死亡。 12、冻害(feezing injury):温度下降到零度以下,植物体内发生冰冻,因而

植物生理学名词解释(全)

一、绪论 1、植物生理学就是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢与物质代谢。 二、植物的水分生理 1、水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。把纯水的水势定义为零,溶液的水势值则就是负值。水分代谢:植物对水分的吸收、运输、利用与散失的过程。 2.衬质势: 由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。 3、压力势:植物细胞中由于静水质的存在而引起的水势增加的值。 4、渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。 5、渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,就是指水分子从水势高处通过半透膜向水势低处扩散的现象。 6、质壁分离:植物细胞由于液泡失水而使原生质体与细胞壁分离的现象。 7、吸胀作用: 亲水胶体物质吸水膨胀的现象称为吸胀作用。胶体物质吸引水分子的力量称为吸胀。 8、根压:由于植物根系生理活动而促使液流从根部上升的压力。伤流与吐水现象就是根压存在的证据。 9、蒸腾作用:水分通过植物体表面(主要就是叶片)以气体状态从体内散失到体外的现象。 10.蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用g·kg-l表示。 11、蒸腾系数:植物每制造1g干物质所消耗水分的g数,它就是蒸腾效率的倒数,又称需水量。12、气孔蒸腾:植物细胞内的水分通过气孔进行蒸腾的方式称为气孔蒸腾。 13、气孔运动主要受保卫细胞的液泡水势的调节,但调节保卫细胞水势的途径比较复杂。 14、保卫细胞:新月形的细胞,成对分布在植物叶气孔周围,控制进出叶子的气体与水分的量。形成气孔与水孔的一对细胞。双子叶植物的保卫细胞通常就是肾形的细胞,但禾本科的气孔则呈哑铃形。气孔的保卫细胞含有叶绿体,因为细胞壁面对孔隙的一侧(腹侧)比较厚,而外侧(背侧)比较薄,所以随着细胞内压的变化,可进行开闭运动。 15、蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。 16、水孔蛋白: 存在在生物膜上的具有通透水分功能的内在蛋白。水通道蛋白亦称水通道蛋白。 17、内聚力(the cohesion value)又叫粘聚力,就是在同种物质内部相邻各部分之间的相互吸引力,这种相互吸引力就是同种物质分子之间存在分子力的表现。 18、蒸腾拉力-内聚力-张力学说 19、萎焉:水分亏缺严重时,植物细胞因失水而松弛,靠膨压维持挺立状态的叶片与茎的幼嫩部分下垂,这种现象叫萎焉。 20、暂时萎焉:当蒸腾作用强烈,根系吸水及转运水分的速度较慢,不足以弥补蒸腾失水时, 发生暂时萎焉,当蒸腾速率降低时,根系吸水的水分足以弥补失水,消除水分亏缺,即使不浇水或者通过荫蔽能恢复,这种靠降低蒸腾就能消除的萎焉。

相关文档
相关文档 最新文档