文档库 最新最全的文档下载
当前位置:文档库 › 红外成像技术及应用现状

红外成像技术及应用现状

红外成像技术及应用现状
红外成像技术及应用现状

红外影像(Infrared ImagIng)技术是目前对各军兵种都非常有用的新型高科技,具有极强抗干扰能力,而且在作战中不会产生各种辐射,隐蔽性好且生存能力强。红外影像探测器可探测0.1至0.05度的温差,长波红外影像可穿透烟雾,分辨率高,空间分辨能力更可达0.1毫弧度。另外,红外影像不受低空工作时地面和海面的多路径效应影响,低空导引精度很高,可直接攻击目标要害,具有多目标全景观察、追踪及目标识别能力,可整合微处埋器实现对目标的热影像智慧型化导引;具有良好的抗目标隐形能力,现有的电磁隐形、点源非影像红外隐形技术对红外影像导引均无效。

中国的红外线技术起步于1985年,现与西方相比有10年左右差距,红外影像技术更有15年左右的差距,70年代上海第11和211技术物理研究所首先对这方面进行研究。中国在近红外和中红外技术的研究应用已有较高水准,其中单元及多元近红外和中红外光敏元件的生产技术比较成熟,用于武器系统的目标点源探测、追踪和导引,已广泛在中国三军中推广应用。

1980年代初以来中国在长波红外元件的研制和生产技术有很大进展,目前自制长波单元碲镉汞(HgCdT e)元件的生产工艺较成熟,元件黑体探测度D可达(2至5)/1010公分H1/2/W响应度达104V/W,能稳定量产,成品率相当高,可用于医疗。用于导引的红外影像设备需有足够空间和温度分辨率,对高速运动目标能实时成像,故需要研制高性能的多元线列元件或凝视焦平面阵列器件,以简化成像扫瞄机构,适应武器系统恶劣工作条件及实时成像的要求。

中国科研部门在80年代后期终于突破了长波蹄镉汞材料关键技术及元件生产工艺难关。1989年研制出高性能60元线列元件,平均黑体D达2×1010公分H1/2W以上,响应度达10V4/W。1990年春运用该元件研制了与电视兼容的实时红外影像样机,灵敏度、空间和温度分辨率都达到很高的水准,它为中国红外影像导引技术奠定了基础。另外,大陆自80年代中期开始研究双色红外亚成像导引挂术,单项技术获得重大突破,己完成原理样机研制进入实际试验阶段。

在红外影像对目标的智慧型识别及追踪方面,中国己将自制全数字化红外线影像智慧型识别追踪电子组合与红外热像仪整合,构成自动目标捕获与追踪系统。87年11月在各种气象条件下进行试验,在复杂背景下完成了对不同型号战机捕获和稳定追踪的功能;1989年4月又进行了夜间对飞机的自动截获和追踪,以及目标在低空飞行中被遮挡情况下记忆追踪的试验。这项技术成果将陆续应用于自制的红外影像空对空近距缠斗飞弹和陆军野战防空探测系统。

进入90年代以来,中国在红外影像设备上使用的低噪音宽频带前置放大器、微型致冷器等关键技术方面已有了很大的进步。1990年代以来,进展有加速的迹象,并走出实验室运用于试验性的武器装备上,部份并已进入部队服役。陆军在这方面应用较多,目前已有多种便携式野战热像仪投产,红箭8反坦克飞弹载具的*****也使用红外影像技术,作为国防科工委重点之一的7551工程,其中的空中盾牌火控热像仪是防空射控系统中红外雷射雷达系统的配套产品,属于北方公司的重点外贸军品,系由红外影像通用组件构成,对歼6之类战机的迎头探测距离12至15公里,部份亦在中国陆军试用。205所、211所、214所为战车、反坦克飞弹、攻击直升机和红旗七号(FM-80的光电追踪器)研制的通用组件红外热像仪,亦完成试验即将投产。正研制中的新世代驱逐舰亦会使用这类装备。去年研制成功的火网近防舰炮系统中,(采用两座俄罗斯AK-630M1型30毫米机炮),所配备的OFD-630光电跟踪仪也可以做这种改进,另外红外成像型潜望镜也在研制中,预计到下世纪初,中国的新型舰艇大都装有红外影像的光电火射系统。

目前大陆的红外探测器碲镉汞(CMT)线列己达60元水准,SPRITE通用组件相当于英国二类组件水准,采用8条等效96元CMTSPRITE探测器,视场为60度X40度,最小温差分辨率小于摄氏0.1度64元和128元锑化铟(InSb)镶嵌凝视焦平面阵列红外探测器也初具量产能力,这几种基本组件曾在珠海航

展上露面。

作为国防科工委第8个5年计划预研课题的蓝天(相当于美国(LANTIRN)低空导航吊舱已由607所完成样机试验,它是飞机全天候超低空突防的关键设备,重量200公斤,由地形跟踪雷达(TFR)、前视红外系统(FLIR)组成,前视红外探测距离10公里。蓝天吊舱除不含导引武器分系统外,功能和技术与1980年代末期的美制LANTRN吊舱相当,将于2000年前投产以改进海空军飞机远程低空攻击能力。此外,一批夜间低空导航和红外瞄准的组合式吊舱亦正在发展中。

机载的红外影像精确导引武器技术以613所、北京电子工程总体研究所等为主,目前己取得很大突破。正在进行的研究项目包括下一代先进近距缠斗空对空飞弹的导引头试验,还有类似美国AGM-154联合射距外武器(JSOW)或英国风暴之影(StormShad0w)先进远程距外多功能飞弹等空射武器的终端红外影像导引预研工作,尚传闻中国正研制反舰飞弹用的红外影像导引头,其可能性相当高。上述新技术的发展可望在2000年后一改中国在空射距外攻击武器落后的被动局面。

经过近40年的发展,大陆在红外线器材的研制已有庞大的规模和潜力,但在1980年代中期以前进展有限、水准不高。特别在红外影像方面更大幅落后,至今仍在大量使用第一、二代微光夜视器材,第一代红外影像装备直到1990年代初才开始配装,而且多数是陆军系统。虽然某种程度优于俄罗斯,但与西方相比却落后了10年以上,目前欧美己开始装备第二代红外影像武器,并进行第三代的预研工作,但中国现在才推广第一代红外影像设备,和进行第二代的预研工作。与中国关系密切的俄罗斯在这个领域恐怕心有余而力不足,能够提供协助的大概只有以色列和法国,但关键还是大陆需具备自行研制的能力。近10年来,中国在红外影像技术有加速发展突飞猛进之势,与欧美的差距已逐渐缩短,某些研制中的武器装备竟与西方同步,以今后应对其发展水准和潜力密切注意。

红外热成像技术应用与发展

红外热成像摄象机在智能视频监控中的应用与发展 一、引言 1672年,牛顿使用分光棱镜把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光,证实了太阳光(白光)是由各种颜色的光复合而成。1800年,英国物理学家 F. W. 赫胥尔从热的观点来研究各种色光时,偶然发现放在光带红光外的一支温度计,比其他色光温度的指示数值高。经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布:太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,叫做红外线。这种红外线,又称红外辐射,是指波长为0.78~1000μm的电磁波。其中波长为0.78 ~1.5μm 的部分称为近红外,波长为1.5 ~10μm的部分称为中红外,波长为10~1000μm的部分称为远红外线。而波长为2.0 ~1000μm的部分,也称为热红外线。 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。这种红外线辐射是,基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量。分子和原子的运动愈剧烈,辐射的能量愈大;反之,辐射的能量愈小。 在自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。同一目标的热图像和可见光图像不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布的图像。或者可以说,它是人眼不能直接看到目标的表面温度分布,而是变成人眼可以看到的代表目标表面温度分布的热图像。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温,并可进行智能分析判断。 众所周知,海湾战争已成为展示高科技武器使用先进技术的平台。在这些新科技中,红外热成像技术就是其中最为闪亮的高科技技术之一。红外热成像技术(Infrared thermal imaging technology)是利用各种探测器来接收物体发出的红外辐射,再进行光电信息处理,最后以数字、信号、图像等方式显示出来,并加以利用的探知、观察和研究各种物体的一门综合性技术。它涉及光学系统设计、器件物理、材料制备、微机械加工、信号处理与显示、封装与组装等一系列专门技术。该技术除主要应用在黑夜或浓厚幕云雾中探测对方的目标,探测伪装

红外热成像摄像机原理分析以及应用

红外热成像摄像机原理分析以及应用 随着技术的进步,监控系统已经在各个领域得到了广泛的应用。目前的视频监控系统主要采用可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护,但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安防系统在夜间或恶劣天气条件下的防范能力大打折扣。 同时,由于现在的视频监控系统仍然依托于人工监视,安保人员需要对监控画面进行24小时不间断的监视、人为对视频图像进行分析报警,否则系统就起不到实时报警的功能,而更多的只是事发后取证的作用。从整体上来说,目前的视频监控系统还处于在半天时、半天候和半自动状态。 在伊拉克战争中,美军平均每个士兵拥有1.7台红外热像仪产品 一项统计数据表明,世界上47%的暴力犯罪案件发生在晚6点到早6点之间。原因很简单,在夜幕的笼罩下,犯罪分子容易隐蔽,犯罪场面也不容易被看见——黑暗掩盖了犯罪行为。即使安装了一般的视频监控系统,也有可能让犯罪分子逃之夭夭。因此,如何提高在“夜黑风高”的案件高发时间段的自动报警防范能力,成为安防系统当成亟待解决的难题之一。 在这种情况下,红外热成像技术以其作用距离远、穿透能力强、能识别隐蔽目标等优势被引入安防领域,成为监控领域的一份子。 热成像摄像机的监控原理 在自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线,但红外线不论强弱,人们都看不到。 热成像摄像机(又叫热像仪)就是利用红外探测器、光学成像物镜接收被测目标的红外辐射信号,经过红外光学系统红外探测器的光敏源上利用电子扫描电路对被测物的红外热像进行扫描转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热图像。利用这种原理制成的仪器为热成像摄像机。它通过探测微小的温度差别,将温度差异转换成实时的视频图像,显示在监视器上。与其他需要少量光线产生影像的夜视系统不同,其完全不需要任何光,这使它成为人们在全黑环境、黑暗的夜晚监控的完美工具。

红外热像检测技术综述

作业一红外热像检测技术综述 院(系)名称机械工程及自动化学院科目现代无损检测技术 学生姓名X X 学号XXXXXXXX 2016 年1X 月1X 日

红外热像检测技术综述 XXXX XXXX 目录 1 红外热像检测技术的原理介绍 (1) 2 红外热像检测技术的应用 (2) 2.1材料的内部制造缺陷的红外热像检测 (2) 2.3结构内部损伤及材料强度的检测 (3) 2.4在建筑节能检测中的应用 (3) 2.5建筑外外墙面饰面层粘贴质的检测 (4) 2.6在建筑物渗漏检测中的应用[13] (4) 3 红外热像检测技术国内外发展现状 (5) 3.1红外热像检测技术国外发展现状 (5) 3.2红外热像检测技术国内发展现状 (7) 4 参考文献 (10) I

1 红外热像检测技术的原理介绍 红外热成像检测技术采用主动式控制加热激发被检物内部缺陷,通过快速热图像采集和基于热波理论图像处理技术实现缺陷检测。它通过光学机械扫描系统,将物体发出的红外线辐射汇聚在红外探测器上,形成红外热图像,由此来分辨被测物体的表面温度。该技术具有检测速度快、非接触、范围广、精度高、易于实现自动化和实时观测等诸多优点,适合于裂缝、分层、积水、冲击损伤等问题的诊断。 红外线和可见光及无线电波一样是一种电磁波,红外线的波长比可见光长,比无线波短,为0.78~1000m μ,可分为近红外、中红外和远红外。任何物体只要不是绝对零度,都会因为分子的东{转和振动而发出“辐射能量”,红外辐射是其中一种。如果把物体看成是黑体,吸收所有的人射能量,则根据斯蒂芬—玻尔兹曼定律,在全波长范围内积分可得到黑体的总辐射度为: ()40 ,M M T d T λλσ∞==? (1.1) 式中:()()152121,exp 1c M T c W m m T λλμλ---??????=-???? ?????? ??? 为黑体的光谱辐射度;1c ,2c 为辐射常数,8241 3.741810c W m m μ-=???,42=1.438810c m K μ??,σ为斯蒂芬—玻尔兹曼常数,8245.6710W m K σ---=???,实际的大部分人工或天然材料都是灰体而不是黑体材料,与黑体不同,灰体材料的发射率1ε≠,灰体表面能反射一部分入射的长波()>3m λμ辐射,因此灰体表面的辐射由自身发射的和环境反射的两部分组成,用红外探测器可直接测量灰体发射和反射的总和ap M ,但无法确定各自的份额。通常假设物体表面为黑体,将ap M 称为表观辐 射度,为便于理解,一般将其转换为人们较熟悉的温度单位,称为表观温度ap T ,即: ()()()()04,,ap t l ap ap M M T M T d T λελλρλλλσ=+=? (1.2) 上述的表观温度ap T ,即为红外探测器测量所得温度。在无损检测中测量距离一般较近,可以忽瞬大气的影响,故被测物体的表面发射率。的取值是否准确是影响测量精度的关键因素。

红外成像技术在医学中的应用技术及应用

能力拓展训练任务书 学生姓名:青蛙哥专业班级:电子科学与技术0803班指导教师:封小钰工作单位:信息工程学院 题目:红外成像技术在医学中的应用技术及应用 初始条件: 具有扎实的电子科学与技术专业基本理论和系统的专业知识;具备初步的文献查阅和专题调研技能;一定的中英文文献阅读与综合能力。 要求完成的主要任务: 1.在电子科学与技术专业体系范围内确定选题,题目自拟。 2.查阅与选题相关的文献资料,通过对文献资料的阅读分析与综合,写出调研报告; 要求报告内容的可读性强,撰写格式规范,图标的使用正确,参考文献的引用恰当; 字数不少于6000字,参考文献不少于10篇,其中外文文献不少于2篇。 时间安排: 1.2011年7月8日分班集中,能力拓展训练任务;讲解训练具体实施计划、报告格式的要求与答疑事项。 2.2011年7月11日至2011年7月15日完成选题的确定、资料查阅、能力拓展训练报告的撰写。 3. 2011年7月16日提交能力拓展训练报告书,进行验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1 引言...................................................... 错误!未指定书签。2红外热成像技术............................................ 错误!未指定书签。 2.1 光纤通信技术的定义.................................. 错误!未指定书签。 2.2红外热成像技术的应用原理............................. 错误!未指定书签。3红外技术在医学领域应用的历史,现状,和前景................ 错误!未指定书签。4红外技术在医学上的应用.................................... 错误!未指定书签。 4.1红外技术在医学检测上的应用........................... 错误!未指定书签。 4.1.1乳腺瘤的早期诊断............................... 错误!未指定书签。 4.1.2血管疾病的诊断................................. 错误!未指定书签。 4.1.3皮肤损伤病症的诊断............................. 错误!未指定书签。 4.2 红外技术在医疗监护上的应用.......................... 错误!未指定书签。 4.3其他................................................. 错误!未指定书签。 5 结束语.................................................... 错误!未指定书签。参考文献.................................................... 错误!未指定书签。

影响红外热成像法检测结果的几个因素

影响红外热成像检测结果的几个因素: 1红外热成像设备的性能; 1.1距离:由于判别饰面层的脱粘空鼓状况,至少需要识别5mm的大小范 围,所以要根据仪器的具体指标来计算仪器的最大检测距离。而不能 理解在规范中的10~50m范围内就行。 1.2视角镜头的视角越小,在相同距离下,在红外热像仪中的显示越大, 物体的细节越清晰;换一种方式来说,如果显示大小相同,那么镜头 度数越小,检测距离就可以越大、 1.3精度:红外热像仪图像的温度分辨率要求较高,测温的精度及准确度 并非十分的重要。满足在建筑领域应用时,温度分辨率小于0.1。c的要 求。因为分析图片时,温度分辨率越高,分析的图片越精细; 2被检测外墙的这种干扰因素; 2.1构造不同:不同的构造会出现不同类型的干扰,在红外图片分析中, 剔除干扰,找到真正的异常区是非常重要的。构造干扰,往往呈现出 一种规则的图像,比如梁、柱呈现出规则的低温; 2.2外墙面是否干净,是否平整,又没有色差;外墙的污渍以及色差呈现 出来的干扰是不规则的,这要根据肉眼观察、数码相片、以及复查时 加以确认; 2.3施工干扰:施工中的脚手眼、外架的附墙等。这类干扰,一般在图片 中分布的较为规则。这需要检测者有现场施工的经验,发现此类问题 时检测人员可以询问委托方核实。必要时委托方出具业主、监理和施 工单位三方签字的书面证明; 2.4环境干扰:检测中太阳照射在建筑物上投射的阴影,以及周边建筑物 的辐射干扰。此类干扰要求检测人员要在检测前,对各种环境干扰要 有一个大致的判断,这样在图片分析时,才能剔除此类干扰。 2.5实例 红外照片 6F

6F 初看红外图片,可以发现规则的方形高温区,现场查看结构图,发现高温区为填充墙,低温区为剪力墙,所以正常,此异常为构造不同造成的异常; 再细看红外图片,可看见在左边的最高的两层填充墙上出现了方形的高温区。当时判断,如果是空鼓不可能如此规则,到现场进行复测发现,在上述部位施工单位涂刷了一层胶质防水材料。 3检测时的气候条件; 3.1温度:红外辐射在被探测器接收之前,必然要经过大气、成像系统等 介质,造成红外损失。根据史蒂夫——波尔兹曼定律,黑体的全辐射 率和黑体热力学温度的四次方成正比。所以温度越高,物体发射的红 外线就越强。因而在一定范围内,高温跟有利于红外检测; 3.2日照:检测墙面的最佳时间段的选取,目的是为了突出外墙饰面层脱 粘空鼓部位与正常部位的温差,一般是选择立面受日照量最大的时刻; 3.3湿度:当大气湿度大于85%的情况下,由于水气密度增加,水汽对红 外辐射吸收的增大缘故,大气对目标物体辐射的衰减急剧加大,因此, 在雾天、雨天,不适宜进行红外检测; 3.4风速:检测气候条件应为晴好的天气,且室外平均风速不大于5m/s; 3.5实例 天气影响对红外图片的对比分析实例 图A

红外热像技术基础知识介绍

诱发企业安全事故的因素有众多,其Array中电气安全事故是当今企业的一个带有普 遍性的安全隐患,对用电系统的检查是每 一个企业安全风险评估必不可少的一项内 容。通常我们使用红外热像技术进行检测, 能有效地对电气设备进行预防性维护及评 估。 一、什么是红外热像技术? 红外辐射是自然界存在的一种最为广泛的电磁波辐射,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域,因此人的肉眼无法看见。 德国天文学家Sir William Herschel,Herschel让太阳光穿过一个棱镜并在各种颜色处放置温度计,利用灵敏的水银温度计测量每种颜色的温度,结果发现了红外辐射。Herschel发现,当越过红色光线进入他称为“暗红热”区域时,温度便会升高。 红外热成像技术是被动接收物体发出的红外辐射,其原理是基于自然界中一切温度高于绝对零度(-273℃)的物体,均会发出不同波长的电磁辐射,物体的温度越高,分子或原子的热运动越剧烈,则其中的红外辐射越强。黑颜色或表面颜色较深的物体,辐射系数大,辐射较强;亮颜色或表面颜色较浅的物体,辐射系数小,辐射较弱。红外辐射的波长在0.7μm~1mm之间,所以人眼看不到红外辐射。 通过探测物体发出的红外辐射,热成像仪产生一个实时的图像,从而提供一种景物的热 图像。并将不可见的辐射图像转变为人眼可见的、清晰的图像。热成像仪非常灵敏,能探测

到小于0.1℃的温差。 二、红外热像技术的特点: 非接触式测温 红外热像传感器无需与物体表面进行接触,即可远距离测温和成像。 热分布图像 通过将物体表面的温度值进行调色,红外热像技术可以直观地观察物体表面 热分布图像。 区域测温 红外热像测试的是物体表面整个面的温度值,可以同时测试上万个点甚至数十万个点的温度值。 三、什么是红外热像仪? 通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。 人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C (0.005°F) 的温差作出反应。例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,

红外成像技术的发展及应用

红外成像技术的发展及应用 热成像仪是从对红外线敏感的光敏元件上发展而来,但是光敏元件只能判断有没有红外线,无法呈现出图像。在第二次世界大战中交战各国对热成像仪的军事用途表现出了兴趣,对其进行了零星的研究和小规模应用,1943年美国就与RNO合作生产了一款代号M12的机型,其功能和外观已经能看出热成像仪的雏形,这应该算是最找的一款热成像仪,算是热成像仪的鼻祖。 1952年,一款非常重要的材料研-锑化铟被开发出来,这种新的半导体材料促进了红外线热成像仪的进一步发展。不久之后,德州仪器和RNO公司联合开发出了具有实用价值的前视红外线(Forward looking infrared)热成像仪。这一系统采用的是单原件感光,利用机械装置控制镜片转动,将光线反射到感光元件上。 随着碲镉汞材料制造工艺的成熟,在军事领域大规模采用热成像仪成为了可能。60年代之后出现了由60或更多的感光元件组成的线性整列,美国的RNO公司将热成像仪的应用拓展至民用领域发展。然而由于最初采用的是非制冷感光元件,制冷部件加上机械扫描机构使得整个系统非常庞大。 等到CCD技术成熟之后,焦平面阵列式热成像仪取代了机械扫描式热成像仪。至80年代半导体制冷技术取代了液氮、压缩机制冷之后开始出现了便携、手持的热成像仪。90年代之后,RNO公司又开发

出了基于非晶硅的非制冷红外焦平面阵列,进一步降低了热成像仪的生产成本。 红外线,又称红外辐射,是指波长为0.78~1000微米的电磁波。其中波长为2~1000微米的部分称为热红外线。 目标的热图像和目标的可见光图像不同,它不是人眼所能看到的可见光图像,而是表面温度分布图像。红外热成像使人眼不能直接看到表面温度分布,变成可以看到的代表目标表面温度分布的热图像。所有温度在绝对零度(-273)℃以上的物体,都会不停地发出热红外线。红外线(或热辐射)是自然界中存在最为广泛的辐射,它还具有两个重要的特性:(1)物体的热辐射能量的大小,直接和物体表面的温度相关。热辐射的这个特点使人们可以利用它来对物体进行无需接触的温度测量和热状态分析,从而为工业生产,节约能源,保护环境等方面提供了一个重要的检测手段和诊断工具。(2) 大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的热红外线却是透明的。因此,这两个波段被称为热红外线的“大气窗口”。利用这两个窗口,使人们在完全无光的夜晚,或是在烟云密布的战场,清晰地观察到前方的情况。由于这个特点,热红外成像技术在军事上提供了先进的夜视装备,并为飞机、舰艇和坦克装上了全天候前视系统。这些系统在现代战争中发挥了非常重要的作用。 全球红外热像仪市场发展具有广阔的前景并呈现良好的发展趋势。红外热像仪是一种用来探测目标物体的红外辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像

红外热成像技术在变电站中的应用

红外热成像技术在变电站中 的应用 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

红外热成像技术在公司电网中的应用 [摘要]本文通过红外热成像仪对变电站运行设备温度进行检测,能准确的判断出发热源,为发热故障的预警起到重要作用,有效的提高了变电站设备的安全可靠性。 关键词:变电站发热故障红外成像预防措施安全可靠性应用 1.引言 随着公司科研生产任务日益繁重,保证供电系统的安全运行和保障电力设备时刻处于稳定良好状态,成为动力厂管理的突出问题,由于电力设备的热效应是多种故障和异常现象的原因,因此,加强设备巡视,是保障电力设备的必要手段,变电站作为电力系统的关键环节,应用红外热成像技术巡视变电站运行设备显的十分重要。 2.红外线成像技术介绍 红外热成像诊断技术具有安全、直观、高效、防止漏检4大核心优势。普通红外线测温仪仅有单点测量功能,而红外线热成像仪则可捕获被测目标的整体温度分布,快速发现高温、低温点,从而避免漏检。红外线测温仪扫描一个高约1米的电气柜,需要反复来回扫描,还存在漏掉某个高温的风险,造成安全隐患,比较费事费力,一般测量一次需要10分钟。而使用红外线热成像仪,1分钟的时间就可完成,最关键的是一目了然,绝对无遗漏。普通红外测温仪虽有激光指示器,但仅起提示被测目标作用,并不等于被测温点,而是对应的目标区域内的平均温度,但是大部分的使用者都会误以为屏幕显示的温度值就是激光点的温度,大错特错!而红外线热成像仪则不存在这个问题,由于显示的是整体的温度分布,一目了然,红外线热成像仪带指示器,以及LED灯,可以准确的读出所对应点的温度,便于现场快速定位识别。对于某些有安全距离限制的检测环境,普通红外测温仪无法满足需求,因为随测量距离增大,即扩大了准确检测的目标面积,自然得出的温度值会受到影响。但是,红外线热成像仪却能在使用者的安全距离外提供准确测量,因为300:1的D:S距离系数远超红外测温仪。对于数据的记录和分析,普通红外测温仪没有这样的功能,只能

红外热成像检测技术的应用和展望

红外热成像检测技术的应用和展望 摘要:无损检测,是指在不会对材料或元件的有效性或可靠性造成损害的前提下,对其内部的异性结构(缺陷或损伤)进行探测、定位、识别及测量的一种实用性技术。红外热成像技术是在红外探测器、微电子和计算机技术的基础上发展起来的,属于综合性高新技术,该技术正朝着快速扫描、非致冷、焦平面阵列式接收、计算机图像处理的方向发展,利用便携式笔记本电脑控制的系统正日趋完善。 关键词:无损检测;热成像技术;应用;发展趋势

红外热成像无损检测技术(又称红外热波无损检测技术),是一门跨学科的技术,它的研究和应用,对提高航空航天器,多种军、民用工业设备的安全可靠性具有重要意义。1.红外热成像检测技术的原理 红外热成像无损检测技术的基本原理是利用被检物的不连续性缺陷对热传导性能的影响,使得物体表面温度不一致,即物体表面的局部区域产生温度梯度,导致物体表面红外辐射能力发生差异。借助红外热像仪探测被检物的辐射分布,通过形成的热像图序列就可推断出内部缺陷情况。 从理论上分析可知,材料或构件因内部缺陷将导致局部力学性能的强度改变,由于材料内部结构的不连续性,这种缺陷将引起材料或构件的热传导不连续,致使材料或构件的温度梯度不同,因而显现出的红外热图像也有所不同。通过研究被检测材料的内部缺陷及结构力学性能,找出其热传导特性与红外热图像之间的关系和机理,根据显示图像的温度梯度就可以确定缺陷的位置和范围,由温度梯度随时间变化的速率可以确定缺陷的深度。 采用红外热成像技术进行检测的特点是不受材料的几何结构及材质的限制,可以实现非接触、大面积的检测。 2.红外热成像检测技术的分类 根据探测方式不同,红外热成像检测技术可划分为透射式和反射式,其中反射式更便于使用;根据引起温差的方式不同,可划分为主动式和被动式。 主动式红外热成像检测技术可以对物体表面进行快速、准确的检测,并具有直观、非接触、单次检测面积大等特点。根据主动式激励源不同,主要划分脉冲红外热成像检测技术、锁相红外热成像检测技术和超声红外热成像检测技术等。 2.1脉冲红外热成像检测技术 脉冲红外热成像技术是一种集光、机、电为一体的非接触式无损检测方法,也是目前研究最多和最成熟的方法之一。工作原理如图1所示:以高能脉冲闪光灯作为激励热源,热流在被测构件内部传导过程中,若构件内部存在缺陷或损伤,则使得物体内部热分布将存在不连续性结构,从而导致其缺陷或损伤处的表面温度与无缺陷或损伤处有明显不同。 图1冲红外热成像检测技术的工作原理 脉冲红外热成像检测方式虽然简单实用,但是也存在着一些缺点:适于检测平板类构件,对于复杂结构构件检测存在困难;对热源的均匀性要求非常高;检测构件厚度有限,

红外热像仪技术分析报告

红外热像仪技术分析报告

XXXXXX技术分析报告 XXXXXX股份有限公司 2012年5月

目次 1 初始上电时热像仪输出视频时序 (1) 2 外同步信号设计方案及试验验证 (1) 3 红外热像仪调光算法及抗热窗算法 (6) 3.1 红外热像仪调光算法 (6) 3.1.1 背景概述 (6) 3.1.2 常用图像增强算法比较 (7) 3.1.3 本系统调光算法 (12) 3.1.4 选择本方案的原因 (16) 3.2 红外热像仪抗热窗算法 (18) 3.2.1 热窗效应产生的原因 (18) 3.2.2 红外热像仪抗热窗算法原理 (19) 3.2.3 抗热窗算法实验结果 (20) 4 14位图像在不调光情况下是否满足导引头使用要求 (21) 4.1 背景 (21) 4.2 实验验证 (24)

XXXXXX技术分析报告 1 初始上电时热像仪输出视频时序 红外热像仪系统总共输出三路视频信号,分别为14位数字图像信号、8位数字图像信号和模拟视频信号,其中14位数字图像主要经过数据采集、非均匀性校正、死点替换处理后送出14位数字信号;8位数字图像在14位数字图像的基础上,再经过DSP处理之后的8位数字信号;模拟视频为经DSP处理后的数字信号转为模块信号。 关于14位数字口、8位数字口、模拟视频三路信号时序关系,相对于积分时间的时序如下图: 注1:14位数字口:经过数据采集、非均匀性校正、死点替换等处理后,需要将数据缓存一帧,再根据客户要求时序送出,故第一个有效数据从 14位接口送出相对积分时间下降沿共延迟约12.4mS; 注2:8位数字口:经过数据采集、非均匀性校正、死点替换等处理后,直接将数据送给DSP,经DSP处理后再按要求时序送出,共延迟约40mS; 注3:模拟视频信号: DSP处理后的数据首先保证8位数字接口时序送出,为满足本地视频显示时序要求,需再缓存一帧数据后按PAL制式时序 输出给ADV7123芯片,共延迟约56mS。 2 外同步信号设计方案及试验验证 在系统始用过程中,由于需要红外热像仪输出的14位数字图像、

红外热成像检测技术的应用与展望

红外热成像检测技术的应用与展望 无损检测,是指在不会对材料或元件的有效性或可靠性造成损害的前提下,对其内部的异性结构(缺陷或损伤)进行探测、定位、识别及测量的一种实用性技术。红外热成像技术是在红外探测器、微电子和计算机技术的基础上发展起来的,属于综合性高新技术,该技术正朝着快速扫描、非致冷、焦平面阵列式接收、计算机图像处理的方向发展,利用便携式笔记本电脑控制的系统正日趋完善。 红外热成像无损检测技术(又称红外热波无损检测技术),是一门跨学科的技术,它的研究和应用,对提高航空航天器,多种军、民用工业设备的安全可靠性具有重要意义。 1.红外热成像检测技术的原理 红外热成像无损检测技术的基本原理是利用被检物的不连续性缺陷对热传导性能的影响,使得物体表面温度不一致,即物体表面的局部区域产生温度梯度,导致物体表面红外 辐射能力发生差异。借助红外热像仪探测被检物的辐射分布,通过形成的热像图序列就可 推断出内部缺陷情况。 从理论上分析可知,材料或构件因内部缺陷将导致局部力学性能的强度改变,由于材 料内部结构的不连续性,这种缺陷将引起材料或构件的热传导不连续,致使材料或构件的 温度梯度不同,因而显现出的红外热图像也有所不同。通过研究被检测材料的内部缺陷及 结构力学性能,找出其热传导特性与红外热图像之间的关系和机理,根据显示图像的温度 梯度就可以确定缺陷的位置和范围,由温度梯度随时间变化的速率可以确定缺陷的深度。 采用红外热成像技术进行检测的特点是不受材料的几何结构及材质的限制,可以实现

非接触、大面积的检测。 2.红外热成像检测技术的分类 根据探测方式不同,红外热成像检测技术可划分为透射式和反射式,其中反射式更便于使用;根据引起温差的方式不同,可划分为主动式和被动式。 主动式红外热成像检测技术可以对物体表面进行快速、准确的检测,并具有直观、非接触、单次检测面积大等特点。根据主动式激励源不同,主要划分脉冲红外热成像检测技术、锁相红外热成像检测技术和超声红外热成像检测技术等。 2.1脉冲红外热成像检测技术 脉冲红外热成像技术是一种集光、机、电为一体的非接触式无损检测方法,也是目前研究最多和最成熟的方法之一。工作原理如图1所示:以高能脉冲闪光灯作为激励热源,热流在被测构件内部传导过程中,若构件内部存在缺陷或损伤,则使得物体内部热分布将存在不连续性结构,从而导致其缺陷或损伤处的表面温度与无缺陷或损伤处有明显不同。 图1冲红外热成像检测技术的工作原理 脉冲红外热成像检测方式虽然简单实用,但是也存在着一些缺点:适于检测平板类构件,对于复杂结构构件检测存在困难;对热源的均匀性要求非常高;检测构件厚度有限,当检测厚度较高的构件时,难以显示缺陷结果。 2.2锁相红外热成像检测技术

红外热成像基本原理概论

红外热成像仪基本原理与发展前景概论 光电1201 王知权 120150111 前言 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。 原理 红外线是一种电磁波,具有与无线电波和可见光一样的本质。红外线的发现是人类对自然认识的一次飞跃。利用某种特殊的电子装置将物体表面的温度分布转换成人眼可见的图像,并以不同颜色显示物体表面温度分布的技术称之为红外热成像技术,这种电子装置称为红外热像仪。 这种热像图与物体表面的热分布场相对应;实质上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光图像相比,缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热分布场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实标校正,伪色彩描绘等高线和直方进行数学运算、打印等。 红外成像系统简介 红外技术是一门研究红外辐射的产生、传播、转化、测量及其应用的技术科学。任何物体的红外辐射包括介于可见光与微波之间的电磁波段。通常人们又把红外辐射称为红外光、红外线。实际上其波段是指其波长约在0.75μm到1000μm 的电磁波。通常人们将其划分为近、中、远红外三部分。近红外指波长为 0.75-3.0μm;中红外指波长为3.0-20μm;远红外则指波长为20-1000μm。由于大气对红外辐射的吸收,只留下三个重要的“窗口”区,即1-3μm、3-5μm 和8-13μm可让红外辐射通过。 红外探测器是红外技术的核心,它是利用红外辐射与物质相互作用所呈现出来的物理效应来探测红外辐射的传感器,多数情况下是利用这种相互最用所呈现出的电学效应。红外探测器主要分为光子探测器和热敏感探测器两大类型。其中,光子探测器按原理啊可分为光电导探测器、光伏探测器、光电磁探测器和量子阱探测器。 光子探测器的材料有PbS,PbSe,InSb,HgCdTe(MCT),GaAs/InGaAs等,其中HgCdTe和InSb斗需要在低温下才能工作。光子探测器按其工作温度又可分为制

红外成像技术原理及其应用

红外热成像技术,也是一个有非常广阔前途的高科技技术,其大量的应用将会引起许多行业变革性的改变。 一、什么是红外热成像? 光线是大家熟悉的。光线是什么?光线就是可见光,是人眼能够感受的电磁波。可见光的波长为:0.38 ~0.78 微米。比0.38 微米短的电磁波和比0.78 微米长的电磁波,人眼都无法感受。比0.38 微米短的电磁波位于可见光光谱紫色以外,称为紫外线,比0.78 微米长的电磁波位于可见光光谱红色以外,称为红外线。红外线,又称红外辐射,是指波长为0.78 ~1000微米的电磁波。其中波长为0.78 ~2.0 微米的部分称为近红外,波长为2.0 ~1000 微米的部分称为热红外线。 照相机成像得到照片,电视摄像机成像得到电视图像,都是可见光成像。自然界中,一切物体都辐射红外线,因此利用探测仪测定目标的本身和背景之间的红外线差并可以得到不同的红外图像,热红外线形成的图像称为热图。 目标的热图像和目标的可见光图像不同,它不是人眼所能看到的目标可见光图像,而是目标表面温度分布图像,换一句话说,红外热成像使人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 二、红外热成像的特点是什么? 有位著名的美国红外学者指出:“人类的发展可分为三个阶段。第一个阶段是人类通过制造工具,扩展体力活动的能力,第二阶段通过提高判断能力,寻求更清晰和更广泛的理解与判断事物的标准,而人类近年来致力的增强获得输入信息的能力,扩大感觉范围或增填新的感官,使我们的大脑能接受更多的信息,正是人类发展的第三阶段。在这个阶段中,红外技术的发展已经把人类的感官由五种增加到六种”。这一席话,我认为恰如其分的道出了红外热成像技术在当代的重要性。因为,我们周围的物体只有当它们的温度高达1000 ℃以上时,才能够发出可见光。相比之下,我们周围所有温度在绝对零度(-273 ℃)以上的物体,都会不停地发出热红外线。例如,我们可以计算出,一个正常的人所发出的热红外线能量,大约为100 瓦。所以,热红外线(或称热辐射)是自然界中存在最为广泛的辐射。热辐射除存在的普遍性之外,还有另外两个重要的特性。 1.大气、烟云等吸收可见光和近红外线,但是对3 ~5 微米和8 ~14 微米的热红外线却是透明的。因此,这两个波段被称为热红外线的“大气窗口”。利用这两个窗口,可以使人们在完全无光的夜晚,或是在烟云密布的战场,清晰地观察到前方的情况。正是由于这个特点,红外热成像技术在军事上提供了先进的夜视装备,并为飞机、舰艇和坦克装上了全天候前视系统。这些系统在海湾战争中发挥了非常重要的作用。 2.物体的热辐射能量的大小,直接和物体表面的温度相关。热辐射的这个特点使人们可以利用它来对物体进行无接触温度测量和热状态分析,从而为工业生产,节约能源,保护环境等等方面提供了一个重要的检测手段和诊断工具。 红外热成像仪器 根据所有物体都在不停发射红外线的特点,各国竞相开发出各种红外热成像仪器。美国德克萨斯仪器公司(TI)在1964年首次研制成功第一代的热红外成像装置,叫红外前视系统(FLIR),这类装置利用光学元件运动机械,对目标的热辐射进行图像分解扫描,然后应用光电探测器进行光—电转换,最后形 成热图象视频信号,并在荧屏上显示,红外前视系统至今仍是军用飞机、舰船和坦克上的重要装置。 六十年代中期瑞典AGA 公司和瑞典国家电力局,在红外前视装置的基础上,开发了具有温度测量功能的热红外成像装置。这种第二代红外成像装置,通常称为热像仪。七十年代法国汤姆荪公司研制出不需致冷的红外热电视产品。 九十年代出现致冷型和非致冷型的焦平面红外热成像仪,这是一种最新一代的红外热成像仪,可以进行大规模的工业化生产,把红外热成像的应用提高到一个新的阶段。 七十年代中国有关单位已经开始对红外热成像技术进行研究,到八十年代初,中国在长波红外元件的研制和生产技术上有了一定的进展。到了八十年代末和九十年代初,中国已经研制成功了实时红外成像样

使用红外热成像仪检测中存在的问题及对策

使用红外热成像仪检测中存在的问题及对策 开封供电公司变电运行部运行部赵阳 摘要:随着”三集五大”体系建设和变电设备“状态检修”的大力推进,传统的传统的变电设备检修和运行模式发生了根本性改变,能够实时、有效、动态地评价设备健康状况成为确保设备安全、稳定运行的前提,红外成像仪是目前变电运行人员检测运行设备健康状况的有力保证,可以有效的避免因设备发热而造成的非计划停电,为提高供电可靠率做出了贡献 关键词:变电红外热成像仪检测规范存在的问题对策 引言:本文针对当前变电设备红外成像检测技术的应用中存在问题及改进方法进行了思考以及对红外测温未来发展的展望。由于这种技术无需对所测设备停电,即可准确发现安全隐患,所以更要充分利用好、发挥好红外成像检测这一高科技手段,夯实变电设备“状态检修”基础,确保运行的可控、在控、预控。 一目前在使用中所存在的问题: (1)重设备,轻人员,培训工作不到位。 目前,红外成像设备已基本覆盖到重要的生产班组,极大提高了生产一线的技术装备水平,然而,好的检测设备必须得到正确和规范的应用,才可能发挥其最好的性能,不能只重视检测设备的配置,而忽略了对人员进行必要的培训,目前对红外成像仪方面培训的主要方

式还是以产品说明书为主,没有专业的培训教材和权威的培训师资,虽然厂家的技术人员会不定期到各基层单位组织测温培训,但由于运行人员倒班的原因,造成了一线人员缺乏热像仪的操作技能培训,同时,昂贵的机器也需要专业的使用和维护技巧,没有经过专业培训,在使用红外线成像器材时就不可避免要出现:保养不当、充电电池报废、昂贵的红外线镜头被划损等等现象,既造成了经济损失,也影响了测温工作的正常开展。 对策:(1)建立完善的红外成像检测制度,对红外检测工作的准备、风险预控、规范、安全注意事项等进行详细的规定。同时根据各站所管辖的一、二次设备详细列表并建立测温表单,以表单的形式使测温制度和规范落到实处;(2)加强红外热成像仪使用技术的培训,考虑到运行人员工作的特殊性,可以首先由相关厂家的技术人员对各个部门的技术专责进行培训并考核,然后由各个部门的专责负责对各个集控站,变电站站长进行培训,最后由各个集控站,变电站站长在现场向各自站运行人员进行现场培训,由各个部门专责不定期到各站检查培训效果并加以考核,同时将培训和考核结果与每个月的绩效工资挂钩。制定针对红外测温的奖罚措施,这样才能从根本上保证运行人员“愿意学,学的会” 2、重测温,轻分析,技术标准不到位 目前,能够娴熟掌握红外成像分析软件的运行人员寥寥无几,怕麻烦、图省事,直接把测温照片复制粘贴,往缺陷上报系统上一传了

-红外热成像技术在医疗领域中的应用

热成像技术在医疗领域中的应用 一、医用热像图的理论基础 热成像技术(Thermography)又称温差摄影,是利用红外辐射照相原理研究体表温度分布状态的一种现代物理学检测技术。与精密的解剖学相比,热成像系统在反映人体生理的改变以及新陈代谢的进程方面有着独一无二的特性。 人是恒温动物,能维持一定的体温。用物理学的观点来看,人体就是一个自然的生物红外辐射源。它不断地向周围空间发散红外辐射能。当人体患病或某些生理状况发生变化时,这种全身或局部的热平衡受到破坏或影响,于是在临床上表现为组织温度的升高或降低。因此测定人体温度的变化,也就成为临床医学诊断疾病的一项重要指标。 医用热成像技术就是采用焦平面热探测器阵列(或光机扫描)将红外辐射能量转为电子视频信号,经过处理后形成被测物体的红外热图像,这种图像可在彩色监视器上显示,同时可送入计算机进行相应的数据处理,或存贮在硬盘或软盘上,也可由打印机打印成照片。红外热像图的诊断原理正是利用红外辐射能照相来研究体表温度分布状态,并将病变时的人体热像和正常生理状态下的人体热像进行比较,从而为某些疾病的诊断提供客观依据。 红外热成像探测的是人体自身皮肤辐射出的红外线,检查时既无创伤,又无不适,快速方便。它是绝对被动和不伤害人体的,这一点对于诊断工具来说,是非常重要的。 二、医用热像仪的应用领域 从热像仪的工作原理可知,热像仪探测的是人体表面的热辐射,皮肤是一个良好的红外辐射体,其比辐射率可达0.99以上,所以,体内器官的温度差异是可以经过热传导至体表从而被热像仪探测到的;同时,当体内深层器官的病变严重时,在体表也能探测到温度的差异,因此,医用热像仪不仅能诊断体表或接近体表的一些疾病,如皮肤、乳房、甲状腺肿瘤、血管疾病、关节病变等,而且对深层器官疾病的病变也起到很好的临床诊断作用。 医用热像技术用于临床诊断已有几十年历史,现已成为了诊断浅表肿瘤、血管疾病和皮肤病症等的有效工具。现就几个典型病症的诊断来进行简要的介绍。 1

红外成像技术

摘要:红外成像技术由于诸多特点在军用和民用领域都取得了广泛的应用,红外图像处理技术在红外成像系统中起着至关重要的作用。本文简述国内外红外成像技术部分最新的研究成果和动态,针对我国具体状况,提出关于我国红外成像技术发展的若干思考,讨论红外成像及其图像处理、应用中的一些新技术、发展重点和难点,对以后一段时期内的红外成像新技术发展及其市场前景进行展望。 关键词:红外成像,焦平面,图像处理,图像融合,市场前景 1. 引言 红外成像具有作用距离远、抗干扰性好、穿透烟尘雾霾能力强、可全天候、全天时工作等优点,在军用和民用领域都得到了极为广泛的应用。在军事上,包括对军事目标的搜索、观瞄、侦察、探测、识别与跟踪;对远、中、近程军事目标的监视、告警、预警与跟踪;红外成像的精确制导;武器平台的驾驶、导航;探测隐身武器系统,进行光电对抗等。在民用领域,在工业、遥感、医学、消费电子、测试计量和科学研究等许多方面也得到广泛应用。 目前国外红外成像器件已发展到了智能灵巧型的第四代,在光电材料、生产工艺、成像质量及系统应用等方面都取得了丰硕的成果,但是国内红外相关技术研究与生产起步较晚,并且受工业基础制约,发展远滞后于国外,而市场需求却持续强劲,无论在军用还是民用领域都有巨大的发展空间。 本文简述国内外红外成像技术部分最新的研究成果和动态,针对我国具体状况,提出关于我国红外成像技术发展的若干思考,讨论红外成像及其图像处理、应用中的一些新技术、发展重点和难点,对以后一段时期内的红外成像新技术发展及其市场前景进行展望。 2. 红外探测器发展现状 从第一代红外探测器至今已有40余年历史,按照其特点可分为四代:第一代(1970s-80s)主要是以单元、多元器件进行光机串/并扫描成像;第二代(1990s-2000s)是以4×288为代表的扫描型焦平面;第三代是凝视型焦平面;目前正在发展的可称为第四代,以大面阵、高分辨率、多波段、智能灵巧型系统级芯片为主要特点,具有高性能数字信号处理功能,甚至具备单片多波段融合探测与识别能力。 在红外探测器发展过程中,新材料、新工艺、新器件、新方法不断涌现,按工作环境可分为致冷型和非致冷型两大类。

红外热成像监控技术应用的优缺点分析.

红外热成像监控技术应用的优缺点分析 热成像技术是一种被动红外夜视技术,是利用自然界物体不同部位红外热辐射强度的不同来形成图像,它根据目标与背景或目标各部分之间的温差或热辐射差来发现目标。本文将简单介绍红外热成像技术的优缺点: 红外热成像技术的缺点: 由于该技术不随周围光照条件的变化而变化,所以可以在白天黑夜,甚至大雾,下雨等恶劣环境下提供视频图像。但是它无法实现较远距离的监控,且监控画面只能判别是否有可疑人员进入,而无法看清楚人脸及外貌特征。 红外热成像技术的优点: 1、夜间及恶劣气候条件下目标的监控 在伸手不见五指的夜晚,基于可见光的监视设备已经不能正常工作,如果采用人工照明手段,则容易暴露目标。若采用微光夜视设备,它同样也工作在可见光波段,依然需要外界微弱光照明。而红外热成像仪是被动接受目标自身的红外热辐射,无论白天黑夜均可以正常工作,并且也不会暴露自己。即使在雨、雾等恶劣的气候条件下,由于可见光的波长短,克服障碍的能力差,因而观测效果差,但红外线的波长较长,特别是工作在8~14um的热成像仪,穿透雨、雾的能力较高,因此仍可以正常观测目标。因此在夜间,尤其在恶劣的气候条件下,采用红外热成像监控设备则可以对各种目标,如人员、车辆等进行监控。 2、防火监控 由于红外热成像仪是反映物体表面温度而成像的设备,因此除了夜间可以作为现场监控使用外,还可以作为有效的火警探测设备。应用红外热成像仪可以快速有效地发现这些隐火,并且可以准确判定火灾的地点和范围,透过烟雾发现着火点,做到早知道早预防,早扑灭。 3、伪装及隐蔽目标的识别

普通的伪装是以防可见光观测为主。一般犯罪分子作案通常隐蔽在草丛及树林中,由于野外环境的恶劣及人的视觉错觉,容易产生错误判断。红外热成像装置是被动接受目标自身的热辐射,人体和车辆的温度及红外辐射一般都远大于草木的温度及红外辐射,因此目标不易伪装,也不容易被错误判断。 4、红外热成像检验检疫的应用 近年来,机场航空业务发展十分迅猛,每日出入境旅客达千余人,各国出入境机场、口岸出入人员流动量大、繁忙拥挤、情况复杂,与之对应的出入境人员 的检验检疫工作任务十分繁重。同时,近年来,随着SARS、禽流感等传染病疫情的流行和肆虐,传统的检验检疫工作面临越来越严峻的挑战。为确保新形势下出入境旅客的安全顺畅通关,需采用创新思维、创新手段,采用自动化程度较高的红外体温监测系统则是较好的技术选择。

相关文档