文档库 最新最全的文档下载
当前位置:文档库 › 高中数学难点突破_难点19__解不等式

高中数学难点突破_难点19__解不等式

高中数学难点突破_难点19__解不等式
高中数学难点突破_难点19__解不等式

难点19 关于解不等式

不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式.

●难点磁场

(★★★★)解关于x 的不等式2

)1(--x x a >1(a ≠1).

●案例探究

[例1]已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[-1,1],m +n ≠0时

n

m n f m f ++)()(>0.

(1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式:f (x +

2

1)<f (

1

1-x );

(3)若f (x )≤t 2

-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围.

命题意图:本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力,属★★★★★级题目.

知识依托:本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用.

错解分析:(2)问中利用单调性转化为不等式时,x +2

1∈[-1,1],

1

1-x ∈[-1,1]

必不可少,这恰好是容易忽略的地方.

技巧与方法:(1)问单调性的证明,利用奇偶性灵活变通使用已知条件不等式是关键,(3)问利用单调性把f (x )转化成“1”是点睛之笔.

(1)证明:任取x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=2

121)

()(x x x f x f --+·(x 1

-x 2)

∵-1≤x 1<x 2≤1,

∴x 1+(-x 2)≠0,由已知

2

121)

()(x x x f x f --+>0,又 x 1-x 2<0,

∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数.

(2)解:∵f (x )在[-1,1]上为增函数,

∴???

?

?

?

???

-<+≤-≤-≤+≤-112111111211x x x x 解得:{x |-23≤x <-1,x ∈R }

(3)解:由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1,故对x ∈[-1,1],恒有f (x )≤1,所以要f (x )≤t 2

-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2

-2at +1

≥1成立,故t 2-2at ≥0,记g (a )=t 2

-2at ,对a ∈[-1,1],g (a )≥0,只需g (a )在[-1,1]上的最小值大于等于0,g (-1)≥0,g (1)≥0,解得,t ≤-2或t =0或t ≥2.∴t 的取值范围是:{t |t ≤-2或t =0或t ≥2}.

[例2]设不等式x 2

-2ax +a +2≤0的解集为M ,如果M ?[1,4],求实数a 的取值 范围.

命题意图:考查二次不等式的解与系数的关系及集合与集合之间的关系,属★★★★级题目.

知识依托:本题主要涉及一元二次不等式根与系数的关系及集合与集合之间的关系,以及分类讨论的数学思想. 错解分析:M =?是符合题设条件的情况之一,出发点是集合之间的关系考虑是否全面,易遗漏;构造关于a 的不等式要全面、合理,易出错.

技巧与方法:该题实质上是二次函数的区间根问题,充分考虑二次方程、二次不等式、二次函数之间的内在联系是关键所在;数形结合的思想使题目更加明朗.

解:M ?[1,4]有n 种情况:其一是M =?,此时Δ<0;其二是M ≠?,此时Δ>0,分三种情况计算a 的取值范围.

设f (x )=x 2 -2ax +a +2,有Δ=(-2a )2-(4a +2)=4(a 2-a -2) (1)当Δ<0时,-1<a <2,M =

?[1,4]

(2)当Δ=0时,a =-1或2.当a =-1时M ={-1} [1,4];当a =2时,m ={2}[1,4]. (3)当Δ>0时,a <-1或a >2.设方程f (x )=0的两根x 1,x 2,且x 1<x 2,那么M =[x 1,

x 2],M ?[1,4]?1≤x 1<x 2≤4?

??>?≤≤>>?0,410

)4(,0)1(且且a f f

即?????

??>-<>>->+-2

100

7180

3a a a a a 或,解得:2<a <718,

∴M ?[1,4]时,a 的取值范围是(-1,

7

18).

●锦囊妙计

解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题: (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法.

(2)掌握用序轴标根法解高次不等式和分式不等式,特别要注意因式的处理方法.

(3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法. (4)掌握含绝对值不等式的几种基本类型的解法.

(5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式.

(6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论. ●歼灭难点训练 一、选择题

1.(★★★★★)设函数f (x )=????

???

≥-<<-+-≤+)1(11

)11(22)1()1(2x x

x x x x ,已知f (a )>1,则a 的取值范围是( )

A.(-∞,-2)∪(-21,+∞)

B.(-

2

1,

2

1)

C.(-∞,-2)∪(-2

1,1)

D.(-2,-2

1

)∪(1,+∞)

二、填空题

2.(★★★★★)已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2

,b ),g (x )>0的解集是(

2

2

a

2

b ),则f (x )·g (x )>0的解集是__________.

3.(★★★★★)已知关于x 的方程sin 2

x +2cos x +a =0有解,则a 的取值范围是__________. 三、解答题

4.(★★★★★)已知适合不等式|x 2

-4x +p |+|x -3|≤5的x 的最大值为3. (1)求p 的值; (2)若f (x )=

1

1+-x

x p

p ,解关于x 的不等式f --1(x )>k

x

p

+1log

(k ∈R +)

5.(★★★★★)设f (x )=ax 2+bx +c ,若f (1)=2

7,问是否存在a 、b 、c ∈R ,使得不等式:

x 2+

2

1≤f (x )≤2x 2+2x +

2

3对一切实数x 都成立,证明你的结论.

6.(★★★★★)已知函数f (x )=x 2

+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)≥2.

(1)求p 、q 之间的关系式; (2)求p 的取值范围;

(3)如果f (sin θ+2)的最大值是14,求p 的值.并求此时f (sin θ)的最小值. 7.(★★★★)解不等式log a (x -

x

1)>1

8.(★★★★★)设函数f (x )=a x

满足条件:当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围.

参考答案

难点磁场

解:原不等式可化为:

2

)

2()1(--+-x a x a >0,

即[(a -1)x +(2-a )](x -2)>0. 当a >1时,原不等式与(x -1

2--a a )(x -2)>0同解.

1

2--a a ≥2,即0≤a <1时,原不等式无解;若

1

2--a a <2,即a <0或a >1,于是a

>1时原不等式的解为(-∞,1

2--a a )∪(2,+∞).

当a <1时,若a <0,解集为(1

2--a a ,2);若0<a <1,解集为(2,

1

2--a a )

综上所述:当a >1时解集为(-∞,1

2--a a )∪(2,+∞);当0<a <1时,解集为(2,

1

2--a a );

当a =0时,解集为?;当a <0时,解集为(

1

2--a a ,2).

歼灭难点训练

一、1.解析:由f (x )及f (a )>1可得:

???>+-≤1)1(12

a a ① 或???>+<<-12211a a ② 或???

??>-≥1111a

a ③ 解①得a <-2,解②得-

2

1<a <1,解③得x ∈?

∴a 的取值范围是(-∞,-2)∪(-2

1,1)

答案:C 二、

2.解析:由已知b >a 2∵f (x ),g (x )均为奇函数,∴f (x )<0的解集是(-b ,-a 2),g (x )<0的解集是(-2

,22

a

b

-

).由f (x )·g (x )>0可得:

???

??-

<<--<<-?????<<<>2222

,0)(0)(0)(0)(22

22a x b a x b b x a b x a x g x f x g x f 或即或 ∴x ∈(a 2,

2

b )∪(-

2

b ,-a 2)

答案:(a 2,

2

b )∪(-

2

b ,-a 2)

3.解析:原方程可化为cos 2x -2cos x -a -1=0,令t =cos x ,得t 2-2t -a -1=0,原问题转化为方程t 2

-2t -a -1=0在[-1,1]上至少有一个实根.令f (t )=t 2

-2t -a -1,对称轴t =1,画图象分析可得??

?≤≥-0

)1(0)1(f f 解得a ∈[-2,2].

答案:[-2,2]

三、

4.解:(1)∵适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3,

∴x -3≤0,∴|x -3|=3-x .

若|x 2-4x +p |=-x 2+4x -p ,则原不等式为x 2

-3x +p +2≥0,其解集不可能为{x |x ≤3}的子集,∴|x 2-4x +p |=x 2-4x +p .

∴原不等式为x 2-4x +p +3-x ≤0,即x 2-5x +p -2≤0,令x 2

-5x +p -2=(x -3)(x -m ),可得m =2,p =8.

(2)f (x )=

1

818+-x x

,∴f

--1

(x )=log 8

x

x -+11 (-1<x <1),

∴有log 8

x

x -+11>log 8k

x +1,∴log 8(1-x )<log 8k ,∴1-x <k ,∴x >1-k .

∵-1<x <1,k ∈R +

,∴当0<k <2时,原不等式解集为{x |1-k <x <1};当k ≥2时,原不等式的解集为{x |-1<x <1}.

5.解:由f (1)=2

7得a +b +c =

2

7,令x 2+

2

1=2x 2+2x +

2

3x ?=-1,由f (x )≤2x 2+2x +

2

3推得

f (-1)≤

2

3.

由f (x )≥x 2+

2

1推得f (-1)≥

2

3,∴f (-1)=

23,∴a -b +c =2

3,故

2(a +c )=5,a +c =

2

5且b =1,∴f (x )=ax 2+x +(

2

5-a ).

依题意:ax 2+x +(2

5-a )≥x 2+

2

1对一切x ∈R 成立,

∴a ≠1且Δ=1-4(a -1)(2-a )≤0,得(2a -3)2≤0, ∴f (x )=

2

3x 2+x +1

易验证:

2

3x 2+x +1≤2x 2+2x +

2

3对x ∈R 都成立.

∴存在实数a =2

3,b =1,c =1,使得不等式:x 2+2

1≤f (x )≤2x 2+2x +

2

3对一切x ∈R 都成

立.

6.解:(1)∵-1≤sin θ≤1,1≤sin θ+2≤3,即当x ∈[-1,1]时,f (x )≤0,当x ∈[1,3]时,f (x )≥0,∴当x =1时f (x )=0.∴1+p +q =0,∴q =-(1+p )

(2)f (x )=x 2+px -(1+p ),

当sin θ=-1时f (-1)≤0,∴1-p -1-p ≤0,∴p ≥0

(3)注意到f (x )在[1,3]上递增,∴x =3时f (x )有最大值.即9+3p +q =14,9+3p -1-p =14,∴p =3.

此时,f (x )=x 2+3x -4,即求x ∈[-1,1]时f (x )的最小值.又f (x )=(x +2

3)2-

4

25,显然

此函数在[-1,1]上递增.

∴当x =-1时f (x )有最小值f (-1)=1-3-4=-6.

7.解:(1)当a >1时,原不等式等价于不等式组???

?

??

?>->-a

x x 110

11

由此得1-a >

x

1.因为1-a <0,所以x <0,∴

a

-11<x <0.

(2)当0<a <1时,原不等式等价于不等式组:???

?

??

?<->-a

x

x 110

11

由 ①得x >1或x <0,由②得0 <x <a -11,∴1<x <a

-11.

综上,当a >1时,不等式的解集是{x |a

-11

<x <0},当0<a <1时,不等式的解集为

{x |1<x <

a

-11}.

8.解:由已知得0<a <1,由f (3mx -1)>f (1+mx -x 2

)>f (m +2),x ∈(0,1]恒成立.

?????+<-+-+<-?2

11132

2

m x mx x mx mx 在x ∈(0,1]恒成立.

整理,当x ∈(0,1)时,?????+<--<1)1(1222x x m x x 恒成立,即当x ∈(0,1]时,???

????-+>

-<11212

2

x x m x

x

m 恒

成立,且x =1时,?????+<--<1

)1(122

2

x x m x

mx 恒成立,

2

121212

-

=

-x

x

x 在x ∈(0,1]上为减函数,∴

x

x 212

-<-1,

∴m <x

x 212

-恒成立?m <0.

又∵

21

12)1(1

12

+-+

-=-+x x x x ,在x ∈(0,1]上是减函数,

1

12

-+x x <-1.

∴m >112-+x x 恒成立?m >-1当x ∈(0,1)时,???

????-+>-<112122

x x m x

x

m 恒成立?m ∈(-1,0)①

当x =1时,?????+<--<1

)1(122

2

x x m x

mx ,即是???<<100m ∴m <0 ②

∴①、②两式求交集m ∈(-1,0),使x ∈(0,1]时,f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,m 的取值范围是(-1,0)

(完整版)高中数学不等式归纳讲解

第三章不等式 定义:用不等号将两个解析式连结起来所成的式子。 3-1 不等式的最基本性质 ①对称性:如果x>y,那么y<x;如果y<x,那么x>y; ②传递性:如果x>y,y>z;那么x>z; ③加法性质;如果x>y,而z为任意实数,那么x+z>y +z; ④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则) 3-2 不等式的同解原理 ①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。 ③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。 ④不等式F (x )G (x )>0与不等式 0)x (G 0)x (F >>或0)x (G 0)x (F <<同解 不等式解集表示方式 F(x)>0的解集为x 大于大的或x 小于小的 F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式

3-3-1 均值不等式 1、调和平均数: )a 1...a 1a 1(n H n 21n +++= 2、几何平均数: n 1 n 21n )a ...a a (G = 3、算术平均数: n )a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++= 这四种平均数满足Hn ≤Gn ≤An ≤Qn a1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号 3-3-1-1均值不等式的变形 (1)对正实数a,b ,有2ab b a 22≥+ (当且仅当a=b 时 取“=”号)

【人教A版】高中数学重点难点突破:简单的三角恒等变换 同步讲义

【人教A 版】高中数学重点难点突破:简单的三角恒等变换 同步讲义 (学生版) 【重难点知识点网络】: 1 同角三角函数的基本关系式 :22sin cos 1θθ+=,tan θ=θ θ cos sin , 2 正弦、余弦的诱导公式(奇变偶不变,符号看象限) 3 和角与差角公式 sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ ±±= .ααααcos sin 21)cos (sin 2 ±=± ?由点(,)a b 的象限决定,tan b a ?= ). 3 二倍角公式及降幂公式 sin 22sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=- 22tan tan 21tan α αα = -. 221cos 21cos 2sin ,cos 22 αα αα-+= = 4 三角函数的周期公式 函数sin()y x ω?=+,(A,ω,?为常数,且A ≠0)的周期2|| T π ω= ; 函数tan()y x ω?=+,,2 x k k Z π π≠+ ∈(A,ω,?为常数,且A ≠0)的周期|| T πω= .

三角函数的图像: 【重难点题型突破】: 一、和差公式的化简及求值 例1.(1)(2019·山东高一期末)10208020cos cos cos sin ?-??=( ) A . 2 B . C . 12 D .12 - (2).(2018·广东高一期末)sin 49sin19cos19sin 41??+??=() A . 1 2 B .12 - C D . 【变式训练1-1】、(1).(2019·兰州市第五中学高一期末)sin15 =( ) A . 4 B . 4 C . 24 + D . 4 (2).已知()2tan 5αβ+= ,1tan 44πβ??-= ???,那么tan 4πα? ?+= ?? ?( ) A . 1318 B . 13 22 C . 322 D . 518 例2.(2020届甘肃省高三第一次高考诊断)已知tan 3α=,则sin 22πα? ? + = ?? ? ( ) A .45 - B . 35 C . 35 D . 45

高二会考数学重点知识点梳理五篇

高二会考数学重点知识点梳理五篇 高二会考数学知识点1 空间中的平行问题 (1)直线与平面平行的判定及其性质 线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 线线平行线面平行 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 那么这条直线和交线平行.线面平行线线平行 (2)平面与平面平行的判定及其性质 两个平面平行的判定定理 (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行), (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行. (线线平行→面面平行), (3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理 (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行) (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行) 高二会考数学知识点2 导数是微积分中的重要基础概念。当函数y=f(x)的自变量x 在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的

线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x?f(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也****于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 高二会考数学知识点3 第一章:集合和函数的基本概念,错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,的方法是写在笔记本上,每天至少看上一遍。

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

高中数学基本不等式的解法十例

高中数学基本不等式问题求解十例 一、基本不等式的基础形式 1.222a b a b +≥,其中,a b R ∈,当且仅当a b =时等号成立。 2.2a b a b +≥,其中[),0,a b ∈+∞,当且仅当a b =时等号成立。 3.常考不等式: 2 2 2 2112 2a b a b a b a b ++??≥≥≥ ??? + ,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。 二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路: (1)积定和最小:若a b 是定值,那么当且仅当a b =时,()m in 2a b a b +=。其中[),0,a b ∈+∞ (2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2 m a x 2a b a b +??= ??? ,其中,a b R ∈。 例题1:若实数,a b 满足221a b +=,则a b +的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得:2 2 222 221222 4 a b a b a b a b -++?= ??≤≤? ??+≤-? ? ,当且 仅当1a b ==-时取等号。 变式:函数1 (0,1)x y a a a -=>≠的图象恒过定点A ,若点在直线1m x n y +=上,则m n 的最大值为______。 解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1m x n y +=中可得1m n +=,明显,和为 定,根据和定积最大法则可得:2 124m n m n +?? ≤= ? ?? ,当且仅当12m n ==时取等号。 例题2:已知函数()2 122 x x f x +=+ ,则()f x 取最小值时对应的x 的值为__________. 解析:很明显,积为定,根据积定和最小法则可得:2 2 1122212 2 x x x x +++≥? =,当且仅当2 12 12 x x x += ?=-时 取等号。 变式:已知2x >-,则12 x x + +的最小值为 。 解析:由题意可得()120,2 12 x x x +>+ ?= +,明显,积为定,根据和定积最大法则可得: ()1122 222 2 x x x x ++≥+?=++,当且仅当122112 x x x x += ?+=?=- +时取等号,此时可得

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高一数学下难题突破

选择题难题突破 一、选择题(题型注释) 1.函数6(3)3,7, (),7. x a x x f x a x ---≤?=?>?若数列{}n a 满足()()n a f n n N *=∈,且{}n a 是递 增数列,则实数a 的取值范围是( ) A .9,34?????? B .9,34?? ??? C .()2,3 D .()1,3 试题分析:因为()()n a f n n N *=∈,{}n a 是递增数列,所以函数 6 (3)3,7(),7.x a x x f x a x ---≤?=?>?为增函数,需满足三个条件 () ()30 178 a a f f ?->? >??

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 考点不等式的解法 1不等式ax>b 若a>0,解集为 ? ? ? ? ? ? x| x> b a;若a<0,解集为?? ? ? ? ? x| x< b a;若a=0,当b≥0时,解集为?,当b<0时,解集为R. 2一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集,可归纳为: 判别式 Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a≠0)的根 有两相异实根 x=x1或x=x2 有两相同实根 x=x1=x2 无实根 一元 二次 不等 式的 解集 ax2+bx+ c>0(a>0) {x|xx2} { x∈R| x≠ - ? ? ? b 2a R ax2+bx+ c<0(a>0) {x|x10(a0≠0,n∈N*,n≥3)可以转化为a0(x-x1)(x-x2)…(x-x n)>0(其中x10时,由于f(x)=a0(x-x1)(x-x2)…(x-x n)的值的符号在上述区间自右至左依次为+、-、+、-、…,所以正值区间为f(x)>0的解集. 4分式不等式的解法 (1) f(x) g(x) >0(<0)?f(x)·g(x)>0(<0); (2) f(x) g(x) ≥0(≤0)? ?? ? ??f(x)·g(x)≥0(≤0), g(x)≠0.

高三数学知识点重难点梳理最新5篇

高三数学知识点重难点梳理最新5篇 与高一高二不同之处在于,高三复习知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。 高三数学知识点总结1 1.等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. 3.等差中项 如果A=(a+b)/2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,m∈N_. (2)若{an}为等差数列,且m+n=p+q, 则am+an=ap+aq(m,n,p,q∈N_. (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_是公差为md的等差数列. (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

(5)S2n-1=(2n-1)an. (6)若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中(中间项). 注意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+…+an,① Sn=an+an-1+…+a1,② ①+②得:Sn=n(a1+an)/2 两个技巧 已知三个或四个数组成等差数列的一类问题,要善于设元. (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…. (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元. 四种方法 等差数列的判断方法 (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数; (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_都成立; (3)通项公式法:验证an=pn+q; (4)前n项和公式法:验证Sn=An2+Bn. 注:后两种方法只能用来判断是否为等差数列,而不能用来证明

高中数学解不等式解答

第二讲 解不等式(一) 一、知识梳理 (一)考点目标定位 高考中解不等式主要涉及到一元一次不等式(组)、一元二次不等式(组)、分式不等式(组)、绝对值不等式(组)、指数不等式(组)、对数不等式(组)、三角不等式(组)以及含参数的不等式等。其中尤以一元二次不等式、分式不等式、对数不等式、三角不等式为热门。 解不等式在高考中的题型主要是在综合题中作为解题的一个步骤有所涉及,在填空题中和集合结合为简单题型。 (二)复习方略指南 熟悉各种不等式的解题方法,特别是要注意分式不等式、对数不等式和三角不等式的定义域情况以及一元二次不等式的判别式情况。 二、知识回顾 1、不等式|2x 2-1|≤1的解集为 {x |-1≤x ≤1} 2、已知全集U R =,集合{}240M x x =-≤,则U M e= {} ()()+∞-∞--<>,22,22 或或x x x 3、不等式09 311421 2≥-x x 的解集为______(,3][2,)-∞-+∞_________ 4、不等式3 2-+x x x )(<0的解集为 ()(),20,3-∞- 5、不等式()210ax ab x b +++>的解集为{}12x x <<,则a b +=___- 23或-3____. 解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2}, ∴???? ?????==+-<.2310a b a ab a ,,解得?????-=-=121b a ,或???-=-=.21b a , ∴a +b =-23或-3. 6、不等式||52||1 x x ->-+的解集是 (1)(1-???,, . 三、典型例题 例1、解不等式:()R a x a ax ∈+<+2 1 解:原不等式化为()112-<-a x a 当1,1+<>a x a 有时; 当11+>-x x 解一:原不等式可化为??????<<-?∈<<-?∈-<-222223022x R x x R x x

最新高中数学难点突破_难点28__求空间距离

1 难点28 关于求空间距离 2 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到3 面的距离为基础,求其他几种距离一般化归为这三种距离. 4 ●难点磁场 5 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q 6 是PA的中点. 7 8 求:(1)Q到BD的距离; 9 (2)P到平面BQD的距离. 10 ●案例探究 11 [例1]把正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、12 BC的中点,点O是原正方形的中心,求: 13 (1)EF的长; 14 (2)折起后∠EOF的大小. 15 命题意图:考查利用空间向量的坐标运算来解决 16 立体几何问题,属★★★★级题目. 17

知识依托:空间向量的坐标运算及数量积公式. 18 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两19 两互相垂直. 20 技巧与方法:建系方式有多种,其中以O 点为原点,以、、的方21 向分别为x 轴、y 轴、z 轴的正方向最为简单. 22 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长23 为a ,则A (0,- 22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 2 2a ),E (0,-24 42a , a ),F (42a , 4 2a ,0) 25 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=>=<== - =?+-+?=?=-==∴=-+++-=OF OE a a a a a a a a a a a a EF a a a a a 26 ∴∠EOF =120° 27 [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 28 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 29 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线30 面距离,或面面距离,亦可由最值法求得. 31 错解分析:本题容易错误认为O 1B 是A 1C 与AB 1的距离,这主要是对异面直32 线定义不熟悉,异面直线的距离是与两条异面直线垂直相交的直线上垂足间的33 距离. 34

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

高中必修二数学知识点全面总结

第1章 空间几何体1 1 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则: 长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2 r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积2 4R S π= (二)空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底31 3台体的体积 h S S S S V ?++=)31 下下上上( 4球体的体积 33 4 R V π= 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 222r rl S ππ+=

2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形, 锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2 作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: D C B A α L A · α C · B · A · α P · α L β 共面直线 =>a ∥c 2

(完整)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

高考数学难点突破__函数中的综合问题含答案

高考数学难点突破 函数中的综合问题 函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力. ●难点磁场 (★★★★★)设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=-4. (1)求证:f (x )为奇函数; (2)在区间[-9,9]上,求f (x )的最值. ●案例探究 [例1]设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,2 1 ],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0. (1)求f ( 21)、f (4 1); (2)证明f (x )是周期函数; (3)记a n =f (n +n 21 ),求).(ln lim n n a ∞→ 命题意图:本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力. 知识依托:认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)=f (x 1)·f (x 2)找到问题的突破口. 错解分析:不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形. 技巧与方法:由f (x 1+x 2)=f (x 1)·f (x 2)变形为) 2 ()2()2()22()(x f x f x f x x f x f ??=+=是解决问题的关键. (1) 解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=)2 ()22(x f x x f =+≥ 0, x ∈[0,1] 又因为f (1)=f (21+21)=f (21)·f (21)=[f (2 1 )]2 f (21)=f (41+41)=f (41)·f (41)=[f (41)]2 又f (1)=a >0 ∴f (21)=a 21 ,f (4 1)=a 41 (2)证明:依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R . 又由f (x )是偶函数知f (-x )=f (x ),x ∈R ∴f (-x )=f (2-x ),x ∈R .

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 若a<0时,可以先将二次项系数化为正数,对照上表求解. 3高次不等式的解法 如果一元 n 次不等式 a o x n + a 1X n 1+ …+ a n >0(a o 工 0, n € N *, n > 3)可以转化为 a °(x — X 1)(x — X 2)…(X — X n )>0(其中X 10时,由于f(x) = a o (x — X 1)(X — X 2)…(X — X n )的值的符号在上述区间自右至 左依次为+、一、+、一、…,所以正值区间为 f(x)>0的解集. 4分式不等式的解法 f x (1) g T>0(<0) ? f(x) g(x)>0(<0); y x f x f x g x > 0 < 0, (2严> 0( < 0)? g x g x 工 0. 总基础点重难点 1 不等式ax>b 若a>0,解集为x | x>-;若a<0,解集为 x | xv-;若a = 0,当b > 0时,解集为?,当b<0 a a — 时,解集为R. 2 一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式 集,可归纳为: ax 2 + bx + c>0 与 ax 2 + bx + c<0 的解 判别式 △= b 2 — 4ac 二次函数 y = ax 2 + bx + c (a>0)的图象 元二次方程 ax 2 + bx + c = 0 有两相异实根 有两相同实根 无实根 二次 不等 式的 解集 (a ^ 0)的根 ax 2 + bx + c>0(a>0) ax 2+ bx + c<0(a>0) X = X 1 或 X = X 2 X = X 1= X 2 {xxX 2} {X|X 1VX

全国百强名校 ”2020-2021学年高三数学重难点训练 (91)

第一讲 等差数列、等比数列 [高考导航] 1.对等差、等比数列基本量的考查,常以客观题的形式出现,考查利用通项公式、前n 项和公式建立方程组求解. 2.对等差、等比数列性质的考查主要以客观题出现,具有“新、巧、活”的特点,考查利用性质解决有关计算问题. 3.对等差、等比数列的判断与证明,主要出现在解答题的第一问,是为求数列的通项公式而准备的,因此是解决问题的关键环节. 考点一 等差、等比数列的基本运算 1.等差数列的通项公式及前n 项和公式 a n =a 1+(n -1)d ; S n =n (a 1+a n )2 =na 1+n (n -1)2d . 2.等比数列的通项公式及前n 项和公式 a n =a 1q n -1(q ≠0); S n =????? na 1(q =1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).

1.(2019·大连模拟)记S n 为等差数列{a n }的前n 项和.若a 4+a 5 =24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4 D .8 [解析] 由已知条件和等差数列的通项公式与前n 项和公式可列 方程组,得????? 2a 1+7d =24, 6a 1+6×5 2d =48, 即?? ? 2a 1+7d =24,2a 1+5d =16, 解得?? ? a 1=-2,d =4, 故选C . [答案] C 2.(2019·济南一中1月检测)在各项为正数的等比数列{a n }中,S 2=9,S 3=21,则a 5+a 6=( ) A .144 B .121 C .169 D .148 [解析] 由题意可知, ?? ? a 1+a 2=9,a 1+a 2+a 3=21,即?? ? a 1(1+q )=9,a 1(1+q +q 2)=21, 解得?? ? q =2,a 1=3 或????? q =-23, a 1=27 (舍). ∴a 5+a 6=a 1q 4(1+q )=144.故选A . [答案] A 3.(2019·广东珠海3月联考)等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 9=15,则S 8-S 3=( ) A .30 B .25

相关文档
相关文档 最新文档