文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计各章重点与公式

概率论与数理统计各章重点与公式

概率论与数理统计各章重点与公式
概率论与数理统计各章重点与公式

第一章随机事件和概率

(1)排列组合公式从m个人中挑出n个人进行排列的可能数。从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n

某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n

某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)

顺序问题

(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:

①每进行一次试验,必须发生且只能发生这一组中的一个事件;

②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用来表示。

基本事件的全体,称为试验的样本空间,用表示。

一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。

为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:

如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。

A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。

-A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。

②运算:

结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C

分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)

德摩根率:,

(7)概率的公理化定义设为样本空间,为事件,对每一个事件都有一个实数P(A),若满足下列三个条件:

1°0≤P(A)≤1,

2°P(Ω) =1

3°对于两两互不相容的事件,,…有

常称为可列(完全)可加性。

则称P(A)为事件的概率。

(8)古典概型1°,

2°。

设任一事件,它是由组成的,则有P(A)= =

(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,

。其中L为几何度量(长度、面积、体积)。

(10)加法公式P(A+B)=P(A)+P(B)-P(AB)

当P(AB)=0时,P(A+B)=P(A)+P(B)

(11)减法公式P(A-B)=P(A)-P(AB)

当B A时,P(A-B)=P(A)-P(B) 当A=Ω时,P( )=1- P(B)

(12)条件概率定义设A、B是两个事件,且P(A)>0,则称为事件A发生条件下,事件B发生的条件概率,记为。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1 P( /A)=1-P(B/A)

(13)乘法公式乘法公式:

更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有…………。

(14)独立性①两个事件的独立性

设事件、满足,则称事件、是相互独立的。

若事件、相互独立,且,则有

若事件、相互独立,则可得到与、与、与也都相互独立。必然事件和不可能事件?与任何事件都相互独立。

?与任何事件都互斥。

②多个事件的独立性

设ABC是三个事件,如果满足两两独立的条件,

P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)

并且同时满足P(ABC)=P(A)P(B)P(C)

那么A、B、C相互独立。

对于n个事件类似。

(15)全概公式设事件满足

1°两两互不相容,,2°,

则有

(16)贝叶斯公式设事件,,…,及满足

1°,,…,两两互不相容, >0, 1,2,…,,

2°,,

,i=1,2,…n。

此公式即为贝叶斯公式。

,(,,…,),通常叫先验概率。,(,,…,),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努利概型我们作了次试验,且满足

u 每次试验只有两种可能结果,发生或不发生;

u 次试验是重复进行的,即发生的概率每次均一样;

u 每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。

这种试验称为伯努利概型,或称为重伯努利试验。

用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率,

,。

第二章随机变量及其分布

(1)离散型随机变量的分布律设离散型随机变量的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为

P(X=xk)=pk,k=1,2,…,

则称上式为离散型随机变量的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:

(1),,(2)。

(2)连续型随机变量的分布密度设是随机变量的分布函数,若存在非负函数,对任意实数,有

则称为连续型随机变量。称为的概率密度函数或密度函数,简称概率密度。密度函数具有下面4个性质:

1°。

2°。

(3)

离散与连续型随机变量的关系积分元在连续型随机变量理论中所起的作用与在离散型随机变量理论中所起的作用相类似。

(4)分布函数设为随机变量,是任意实数,则函数

称为随机变量X的分布函数,本质上是一个累积函数。

可以得到X落入区间的概率。分布函数表示随机变量落入区间(–∞,x]内的概率。分布函数具有如下性质:

1°;

2°是单调不减的函数,即时,有;

3°,;

4°,即是右连续的;

5°。

对于离散型随机变量,;

对于连续型随机变量,。

(5)八大分布0-1

P(X=1)=p, P(X=0)=q

在重贝努里试验中,设事件发生的概率为。事件发生的次数是随机变量,设为,则可能取值为。

,其中,

则称随机变量服从参数为,的二项分布。记为。

当时,,,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。

设随机变量的分布律为

,,,

则称随机变量服从参数为的泊松分布,记为或者P( )。

泊松分布为二项分布的极限分布(np=λ,n→∞)。

随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。

,其中p≥0,q=1-p。

随机变量X服从参数为p的几何分布,记为G(p)。

设随机变量的值只落在[a,b]内,其密度函数在[a,b]上为常数,即

a≤x≤b

其他,

则称随机变量在[a,b]上服从均匀分布,记为X~U(a,b)。

分布函数为

a≤x≤b

0, x

1, x>b。

当a≤x1

,

0, ,

其中,则称随机变量X服从参数为的指数分布。

X的分布函数为

,

x<0。

记住积分公式:

正态分布设随机变量的密度函数为

,,

其中、为常数,则称随机变量服从参数为、的正态分布或高斯(Gauss)分布,记为。

具有如下性质:

1°的图形是关于对称的;

2°当时,为最大值;

若,则的分布函数为

。。

参数、时的正态分布称为标准正态分布,记为,其密度函数记为,,

分布函数为

是不可求积函数,其函数值,已编制成表可供查用。

Φ(-x)=1-Φ(x)且Φ(0)=。

如果 ~ ,则 ~ 。

(6)分位数下分位表:;上分位表:。

(7)函数分布离

已知的分布列为

的分布列(互不相等)如下:

若有某些相等,则应将对应的相加作为的概率。

先利用X的概率密度fX(x)写出Y的分布函数FY(y)=P(g(X)≤y),再利用变上下限积分的求导公式求出fY(y)。

第三章二维随机变量及其分布

(1)联合分布离散型如果二维随机向量(X,Y)的所有可能取值为至多可

列个有序对(x,y),则称为离散型随机量。

设 =(X,Y)的所有可能取值为,且事件{ = }的概率

为pij,,称

为 =(X,Y)的分布律或称为X和Y的联合分布律。

联合分布有时也用下面的概率分布表来表示:

Y

X

y1 y2 …yj …

x1 p11 p12 …p1j …

x2 p21 p22 …p2j …

xi pi1 ……

这里pij具有下面两个性质:

(1)pij≥0(i,j=1,2,…);

(2)

连续型对于二维随机向量,如果存在非负函数,使对任意一

个其邻边分别平行于坐标轴的矩形区域D,即

D={(X,Y)|a

则称为连续型随机向量;并称f(x,y)为 =(X,Y)的

分布密度或称为X和Y的联合分布密度。

分布密度f(x,y)具有下面两个性质:

(1)f(x,y)≥0;

(2)

(2)二维

随机变量

的本质

(3)联合

分布函数

设(X,Y)为二维随机变量,对于任意实数x,y,二元函数

称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函

数。

分布函数是一个以全平面为其定义域,以事件的概率为函数值的一个实值函

数。分布函数F(x,y)具有以下的基本性质:

(1)

(2)F(x,y)分别对x和y是非减的,即

当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2) ≥F(x,y1);

(3)F(x,y)分别对x和y是右连续的,即

(4)

(5)对于

.

(4)离散

型与连续

型的关系

(5)边缘分布离散型X的边缘分布为

Y的边缘分布为

连续型X的边缘分布密度为

Y的边缘分布密度为

(6)条件

分布

离散型在已知X=xi的条件下,Y取值的条件分布为

在已知Y=yj的条件下,X取值的条件分布为

连续型在已知Y=y的条件下,X的条件分布密度为

在已知X=x的条件下,Y的条件分布密度为

(7)独立性一般型F(X,Y)=FX(x)FY(y)

离散型

有零不独立

连续型f(x,y)=fX(x)fY(y)

直接判断,充要条件:

①可分离变量

②正概率密度区间为矩形

二维正态分布

=0

随机变量的函数若X1,X2,…Xm,Xm+1,…Xn相互独立, h,g为连续函

数,则:

h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。

特例:若X与Y独立,则:h(X)和g(Y)独立。

例如:若X与Y独立,则:3X+1和5Y-2独立。

(8)二维

均匀分布

设随机向量(X,Y)的分布密度函数为

其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~

U(D)。

例如图3.1、图3.2和图3.3。

y

1

D1

O 1 x

图3.1

y

D2

1

1

O 2 x

图3.2

y

D3

d

c

O a b x

图3.3

(9)二维

正态分布

设随机向量(X,Y)的分布密度函数为

其中是5个参数,则称(X,Y)服从二维正态分布,

记为(X,Y)~N(

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,

即X~N(

但是若X~N(,(X,Y)未必是二维正态分布。

(10)函数分布Z=X+Y 根据定义计算:

对于连续型,fZ(z)=

两个独立的正态分布的和仍为正态分布()。

n个相互独立的正态分布的线性组合,仍服从正态分

布。

Z=max,min(X1,X2,…Xn)若相互独立,其分布函数分别为,则

Z=max,min(X1,X2,…Xn)的分布函数为:

分布设n个随机变量相互独立,且服从标准正态分布,可

以证明它们的平方和

的分布密度为

我们称随机变量W服从自由度为n的分布,记为

W~,其中

所谓自由度是指独立正态随机变量的个数,它是随机

变量分布中的一个重要参数。

分布满足可加性:设

t分布设X,Y是两个相互独立的随机变量,且

可以证明函数

的概率密度为

我们称随机变量T服从自由度为n的t分布,记为T~

t(n)。

F分布设,且X与Y独立,可以证明的概率密度函数为

我们称随机变量F服从第一个自由度为n1,第二个自

由度为n2的F分布,记为F~f(n1, n2).

第四章随机变量的数字特征

(1)一维随机变量的数字特征

离散型连续型

期望

期望就是平均值

设X是离散型随机变量,其分

布律为P( )=pk,k=1,2,…,n,

(要求绝对收敛)

设X是连续型随机变量,其

概率密度为f(x),

(要求绝对收敛)

函数的期望Y=g(X) Y=g(X)

方差

D(X)=E[X-E(X)]2,

标准差

矩①对于正整数k,称随机变量

X的k次幂的数学期望为X的

k阶原点矩,记为vk,即

νk=E(Xk)= , k=1,2, ….

②对于正整数k,称随机变量

X与E(X)差的k次幂的数

学期望为X的k阶中心矩,记

为,即

= , k=1,2, ….

①对于正整数k,称随机变

量X的k次幂的数学期望为

X的k阶原点矩,记为vk,

νk=E(Xk)=

k=1,2, ….

②对于正整数k,称随机变

量X与E(X)差的k次幂

的数学期望为X的k阶中心

矩,记为,即

=

k=1,2, ….

切比雪夫不等式设随机变量X具有数学期望E(X)=μ,方差D(X)=σ2,

则对于任意正数ε,有下列切比雪夫不等式

切比雪夫不等式给出了在未知X的分布的情况下,对概率

的一种估计,它在理论上有重要意义。

(2)期望的性质(1) E(C)=C

(2) E(CX)=CE(X)

(3) E(X+Y)=E(X)+E(Y),

(4) E(XY)=E(X) E(Y),充分条件:X和Y独立;

充要条件:X和Y不相关。

(3)方差的性质(1) D(C)=0;E(C)=C

(2) D(aX)=a2D(X); E(aX)=aE(X)

(3) D(aX+b)= a2D(X); E(aX+b)=aE(X)+b

(4) D(X)=E(X2)-E2(X)

(5) D(X±Y)=D(X)+D(Y),充分条件:X和Y独立;

充要条件:X和Y不相关。

D(X±Y)=D(X)+D(Y) ±2E[(X-E(X))(Y-E(Y))],无条件成立。而E(X+Y)=E(X)+E(Y),无条件成立。

(4)常见分布的期望和方差

期望方差0-1分布p

二项分布np

泊松分布

几何分布

超几何分布

均匀分布

指数分布

正态分布

n 2n

t分布0 (n>2)

(5)二维随机变量的数字特征期望

函数的期望==

方差

协方差对于随机变量X与Y,称它们的二阶混合中心矩为X与

Y的协方差或相关矩,记为,即

与记号相对应,X与Y的方差D(X)与D(Y)也可分

别记为与。

相关系数对于随机变量X与Y,如果D(X)>0, D(Y)>0,则称

为X与Y的相关系数,记作(有时可简记为)。

| |≤1,当| |=1时,称X与Y完全相关:

完全相关

而当时,称X与Y不相关。

以下五个命题是等价的:

①;

②cov(X,Y)=0;

③E(XY)=E(X)E(Y);

④D(X+Y)=D(X)+D(Y);

⑤D(X-Y)=D(X)+D(Y).

协方差矩阵

混合矩对于随机变量X与Y,如果有存在,则称之为X与Y的

k+l阶混合原点矩,记为;k+l阶混合中心矩记为:

(6)协方差的性质(i) cov (X, Y)=cov (Y, X);

(ii) cov(aX,bY)=ab cov(X,Y);

(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y); (iv) cov(X,Y)=E(XY)-E(X)E(Y).

(7)独立和不相关(i)若随机变量X与Y相互独立,则;反之不真。(ii)若(X,Y)~N(),

则X与Y相互独立的充要条件是X和Y不相关。

第五章大数定律和中心极限定理

(1)大数定律切比雪

夫大数

定律设随机变量X1,X2,…相互独立,均具有有限方差,且被同一常数C所界:D(Xi)

特殊情形:若X1,X2,…具有相同的数学期望E(XI)=μ,则上式成为

伯努利大数定律设μ是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数ε,有

伯努利大数定律说明,当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,即

这就以严格的数学形式描述了频率的稳定性。

辛钦大数定律设X1,X2,…,Xn,…是相互独立同分布的随机变量序列,且E(Xn)=μ,则对于任意的正数ε有

(2)中心极限定理列维-

林德伯

格定理设随机变量X1,X2,…相互独立,服从同一分布,且具有相同的数学期望和方差:,则随机变量

的分布函数Fn(x)对任意的实数x,有

此定理也称为独立同分布的中心极限定理。

棣莫弗-拉普拉斯定理设随机变量为具有参数n, p(0

(3)二项定理若当,则

超几何分布的极限分布为二项分布。(4)泊松定理若当,则

其中k=0,1,2,…,n,…。

二项分布的极限分布为泊松分布。第六章样本及抽样分布

(1)数理统计的基本概念总体在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母体)。我们总是把总体看成一个具有分布的随

机变量(或随机向量)。

个体总体中的每一个单元称为样品(或个体)。

样本我们把从总体中抽取的部分样品称为样本。样本中所含的样品数称为样本容量,一般用n表示。在一般情况下,总是把样本

看成是n个相互独立的且与总体有相同分布的随机变量,这样

的样本称为简单随机样本。在泛指任一次抽取的结果时,表示

n个随机变量(样本);在具体的一次抽取之后,表示n个具体

的数值(样本值)。我们称之为样本的两重性。

样本函数和统

计量

设为总体的一个样本,称

()

为样本函数,其中为一个连续函数。如果中不包含任何未知参

数,则称()为一个统计量。

常见统计量及

其性质

样本均值

样本方差

样本标准差

样本k阶原点矩

样本k阶中心矩

,,

, ,

其中,为二阶中心矩。

(2)正态总体下的四大分布正态分布设为来自正态总体的一个样本,则样本函数

t分布设为来自正态总体的一个样本,则样本函数

其中t(n-1)表示自由度为n-1的t分布。

设为来自正态总体的一个样本,则样本函数

其中表示自由度为n-1的分布。

F分布设为来自正态总体的一个样本,而为来自正态总体的一个样本,则样本函数

其中

表示第一自由度为,第二自由度为的F分布。(3)正态总

体下分布的

性质

与独立。

第七章参数估计

(1)点估计矩估计设总体X的分布中包含有未知数,则其分布函数可以表成它的k阶原点矩中也包含了未知参数,即。又设为总体X的n个样本值,其样

本的k阶原点矩为

这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”

的原则建立方程,即有

由上面的m个方程中,解出的m个未知参数即为参数()的矩估计量。

若为的矩估计,为连续函数,则为的矩估计。

极大似然

估计

当总体X为连续型随机变量时,设其分布密度为,其中为未知参数。

又设为总体的一个样本,称

为样本的似然函数,简记为Ln.

当总体X为离型随机变量时,设其分布律为,则称

为样本的似然函数。

若似然函数在处取到最大值,则称分别为的最大似然估计值,相应的统计量称为最大似然估计量。

若为的极大似然估计,为单调函数,则为的极大似然估计。

(2)估计量的评选标准无偏性设为未知参数的估计量。若E ()= ,则称为的无偏估计量。

E()=E(X), E(S2)=D(X)

有效性设和是未知参数的两个无偏估计量。若,则称有效。

一致性设是的一串估计量,如果对于任意的正数,都有

则称为的一致估计量(或相合估计量)。

若为的无偏估计,且则为的一致估计。

只要总体的E(X)和D(X)存在,一切样本矩和样本矩的连续函数都是相

应总体的一致估计量。

(3)区间估计置信区间

和置信度

设总体X含有一个待估的未知参数。如果我们从样本出发,找出两个

统计量与,使得区间以的概率包含这个待估参数,即

那么称区间为的置信区间,为该区间的置信度(或置信水平)。

单正态总体的期望和方差的区间估计设为总体的一个样本,在置信度为下,我们来确定的置信区间。具体步骤如下:

(i)选择样本函数;

(ii)由置信度,查表找分位数;

(iii)导出置信区间。

已知方差,估计均值(i)选择样本函数

(ii) 查表找分位数

(iii)导出置信区间

未知方差,估计均值(i)选择样本函数

(ii)查表找分位数

(iii)导出置信区间

方差的区间估计(i)选择样本函数

(ii)查表找分位数

(iii)导出的置信区间

第八章假设检验

基本思想假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。

为了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个

假定导致了一个不合理的事件发生,那就表明原来的假定H0是不正确的,我

们拒绝接受H0;如果由此没有导出不合理的现象,则不能拒绝接受H0,我们

称H0是相容的。与H0相对的假设称为备择假设,用H1表示。

这里所说的小概率事件就是事件,其概率就是检验水平α,通常我们取

α=0.05,有时也取0.01或0.10。

基本步骤假设检验的基本步骤如下:

(i) 提出零假设H0;

(ii) 选择统计量K;

(iii) 对于检验水平α查表找分位数λ;

(iv) 由样本值计算统计量之值K;

将进行比较,作出判断:当时否定H0,否则认为H0相容。

两类错误第一类错误当H0为真时,而样本值却落入了否定域,按照我们规定的

检验法则,应当否定H0。这时,我们把客观上H0成立判为

H0为不成立(即否定了真实的假设),称这种错误为“以真

当假”的错误或第一类错误,记为犯此类错误的概率,即

P{否定H0|H0为真}= ;

此处的α恰好为检验水平。

第二类错误当H1为真时,而样本值却落入了相容域,按照我们规定的

检验法则,应当接受H0。这时,我们把客观上H0。不成立

判为H0成立(即接受了不真实的假设),称这种错误为“以

假当真”的错误或第二类错误,记为犯此类错误的概率,即

P{接受H0|H1为真}= 。

两类错误的关系人们当然希望犯两类错误的概率同时都很小。但是,当容量

n一定时,变小,则变大;相反地,变小,则变大。取定要

想使变小,则必须增加样本容量。

在实际使用时,通常人们只能控制犯第一类错误的概率,即

给定显著性水平α。α大小的选取应根据实际情况而定。当

我们宁可“以假为真”、而不愿“以真当假”时,则应把α取得

很小,如0.01,甚至0.001。反之,则应把α取得大些。

单正态总体均值和方差的假设检验

条件零假设统计量对应样本

函数分布

否定域

已知N(0,1)未知

未知

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12(34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论与数理统计第二版_课后答案_科学出版社_参考答案_

习题2参考答案 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 解:根据 1)(0 ==∑∞ =k k X P ,得10 =∑∞ =-k k ae ,即111 1 =---e ae 。 故 1-=e a 解:用X 表示甲在两次投篮中所投中的次数,X~B(2, 用Y 表示乙在两次投篮中所投中的次数, Y~B(2, (1)两人投中的次数相同 P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}= 1 1 2 2 020********* 2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ?+?+?=(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}= 1 2 2 1 110220022011222222 0.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ?+?+?=解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155 ++= (2)P{

解:(1)P{X=2,4,6,…}=246211112222k +++L =11[1()] 14 41314 k k lim →∞-=- (2)P{X ≥3}=1―P{X<3}=1―P{X=1}- P{X=2}=111 1244 --= 解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,2 12341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719 ???= 1123412342341234{1}{}{}{}{} 2181716182171618182161817162322019181720191817201918172019181795 P X P A A A A P A A A A P A A A A P A A A A ==+++=???+???+???+???= 12323 {2}1{0}{1}1199595 P X P X P X ==-=-==- -= 解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4, 34 314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5, 3 4 5 324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++= (1)X ~P(λ)=P ×3)= P 0 1.51.5{0}0! P X e -=== 1.5 e - (2)X ~P(λ)=P ×4)= P(2) 0122 222{2}1{0}{1}1130!1! P X P X P X e e e ---≥=-=-==--=-

概率论与数理统计(经管类)公式

概率论与数理统计必考知识点 一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 A B B A +=+ BA AB = 结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()( 分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+ 德摩根律 B A B A =+ B A AB += 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+ 条件概率公式 ) () ()(A P AB P A B P = 乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P = 全概率公式 ∑== n i i i A B P A P B P 1 )()()( 贝叶斯公式 (逆概率公式) ∑∞ == 1 ) ()() ()()(i i j j j j A B P A P A B P A P B A P 伯努利概型公式 n k p p C k P k n k k n n ,1,0,)1()(=-=- 两件事件相互独立相应 公式 )()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P 二、随机变量及其分布 1、分布函数性质 )()(b F b X P =≤ )()()(a F b F b X a P -=≤< 2、离散型随机变量 分布名称 分布律 0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k 二项分布),(p n B n k p p C k X P k n k k n ,,1,0,)1()( =-==-

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第六章 随机变量数字特征 一.填空题 1. 若随机变量X 的概率函数为 1 .03.03.01.02.04 3211p X -,则 =≤)2(X P ;=>)3(X P ;=>=)04(X X P . 2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413 ≈--e . 3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=?==-k c k X P k 则=c 15 16 . 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.( 13 ) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.( 12 ) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __. (k 3 3(=,0,1,2k! P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为1 40000 λ=的指数分布,则此种电器的平 均使用寿命为____________小时.(40000) 10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为 11.若随机变量X 的概率密度为)(,1)(2 +∞<<-∞+= x x a x f ,则=a π1 ;=>)0(X P ;==)0(X P 0 . 12.若随机变量)1,1(~-U X ,则X 的概率密度为 1 (1,1) ()2 x f x ?∈-? =???其它

天津理工大学概率论与数理统计同步练习册标准答案详解

天津理工大学概率论与数理统计同步练习册答案详解

————————————————————————————————作者:————————————————————————————————日期: 2

第一章 随机变量 习题一 1、写出下列随机试验的样本空间 (1)同时掷三颗骰子,记录三颗骰子点数之和 Ω= { }1843,,,Λ (2)生产产品直到有10件正品为止,记录生产产品的总件数 Ω= { }Λ,,1110 (3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”, 如连续查出2个次品就停止,或检查4个产品就停止检查,记录检查的结果。用“0”表示次品,用“1”表示正品。 Ω={111111101101011110111010110001100101010010000,,,,,,,,,,,} (4)在单位圆内任意取一点,记录它的坐标 Ω= }|),{(122<+y x y x (5)将一尺长的木棍折成三段,观察各段的长度 Ω=},,,|),,{(1000=++>>>z y x z y x z y x 其中z y x ,,分别表示第一、二、三段的长度 (6 ) .10只产品中有3只次品 ,每次从其中取一只(取后不放回) ,直到将3只次品都取出 , 写出抽取次数的基本空间U = “在 ( 6 ) 中 ,改写有放回抽取” 写出抽取次数的基本空间U = 解: ( 1 ) U = { e3 , e4 ,… e10 。} 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 …、 10 ( 2 ) U = { e3 , e4 ,… } 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 … 2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系 (1)δ<-||a x 与δ≥-||a x 互不相容 (2)20>x 与20≤x 对立事件 (3)20>x 与18x 与22≤x 相容事件 (5)20个产品全是合格品与20个产品中只有一个废品 互不相容 (6)20个产品全是合格品与20个产品中至少有一个废品 对立事件

概率论与数理统计公式定理整理汇编

概率论与数理统计公式集锦 一、随机事件与概率

二、随机变量及其分布 1、分布函数性质 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt 2、离散型随机变量及其分布 3、连续型随机变量及其分布

4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j i i j g x y P Y y p i L , 连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y 单调 三、多维随机变量及其分布 1、离散型二维随机变量及其分布 分布律:(,),,1,2,i j ij P X x Y y p i j L 分布函数(,)i i ij x x y y F X Y p 边缘分布律:()i i ij j p P X x p ()j j ij i p P Y y p 条件分布律:(),1,2,ij i j j p P X x Y y i p L ,(),1,2,ij j i i p P Y y X x j p L 2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数: x y dudv v u f y x F ),(),( 性质:2(,) (,)1,(,),F x y F f x y x y ((,))(,)G P x y G f x y dxdy ②边缘分布函数与边缘密度函数 分布函数: x X dvdu v u f x F ),()(密度函数: dv v x f x f X ),()( y Y dudv v u f y F ),()( du y u f y f Y ),()( ③条件概率密度 y x f y x f x y f X X Y ,)(),()(, x y f y x f y x f Y Y X ,) () ,()(

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计教程(魏宗舒)第七章答案

. 第七章 假设检验 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设: (1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=. 解:(1)是简单假设,其余位复合假设 设1225,,,ξξξL 取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题0010:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c μ=-≥L ,试决定常数c ,使检验的显着性水平为 解:因为(,9)N ξμ~,故9 (,)25 N ξμ~ 在0H 成立的条件下, 000 53(||)(||)53 521()0.05 3c P c P c ξμξμ-≥=-≥? ?=-Φ=??? ? 55( )0.975,1.9633 c c Φ==,所以c =。 设子样1225,,,ξξξL 取自正态总体2 (,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>L , (1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系; (2)设0μ=,20σ=,α=,n=9,求μ=时不犯第二类错误的概率。 解:(1)在0H 成立的条件下,2 00(, )n N σξμ~,此时 00000()P c P ξαξ=≥=

10 αμ-= ,由此式解出010c αμμ-= + 在1H 成立的条件下,2 0(, )n N σξμ~,此时 1010 10 ()(P c P αξβξμ-=<==Φ=Φ=Φ- 由此可知,当α增加时,1αμ-减小,从而β减小;反之当α减少时,则β增加。 (2)不犯第二类错误的概率为 10 0.9511(0.650.51(3) 0.2 1(0.605)(0.605)0.7274αβμμ--=-Φ-=-Φ- =-Φ-=Φ= 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设: 0011101 201 :():()00x x x H f x H f x ≤≤≤≤??==? ??? 其他其他 试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。 解 设检验函数为 1()0x c x φ∈?=?? 其他(c 为检验的拒绝域)

《概率论与数理统计》袁荫棠 中国人民大学出版社 课后答案 概率论第一章

概论论与数理统计 习题参考解答 习题一 8.掷3枚硬币,求出现3个正面的概率. 解:设事件A ={出现3个正面} 基本事件总数n =23,有利于A 的基本事件数n A =1,即A 为一基本事件, 则.125.08 121)(3====n n A P A 9.10把钥匙中有3把能打开门,今任取两把,求能打开门的概率. 解:设事件A ={能打开门},则为不能打开门 A 基本事件总数,有利于的基本事件数,210C n =A 27C n A =467.0157910212167)(21027==××?××==C C A P 因此,.533.0467.01(1)(=?=?=A P A P 10.一部四卷的文集随便放在书架上,问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解:设A ={能打开门},基本事件总数,2412344=×××==P n 有利于A 的基本事件数为,2=A n 因此,.0833.012 1)(===n n A P A 11.100个产品中有3个次品,任取5个,求其次品数分别为0,1,2,3的概率. 解:设A i 为取到i 个次品,i =0,1,2,3, 基本事件总数,有利于A i 的基本事件数为5100C n =3 ,2,1,0,5973==?i C C n i i i 则w w w .k h d a w .c o m 课后答案网

00006.098 33512196979697989910054321)(006.0983359532195969739697989910054321)(138.098 33209495432194959697396979899100543213)(856.033 4920314719969798991009394959697)(5100297335100 39723225100 49711510059700=××==××?××××××××====××= ×××××?××××××××====×××=×××××××?××××××××=×===××××=××××××××===C C n n A P C C C n n A P C C n n A P C C n n A P 12.N 个产品中有N 1个次品,从中任取n 个(1≤n ≤N 1≤N ),求其中有k (k ≤n )个次品的概率.解:设A k 为有k 个次品的概率,k =0,1,2,…,n ,基本事件总数,有利于事件A k 的基本事件数,k =0,1,2,…,n ,n N C m =k n N N k N k C C m ??=11因此,n k C C C m m A P n N k n N N k N k k ,,1,0,)(11?===??13.一个袋内有5个红球,3个白球,2个黑球,计算任取3个球恰为一红,一白,一黑的概率.解:设A 为任取三个球恰为一红一白一黑的事件, 则基本事件总数,有利于A 的基本事件数为, 310C n =121315C C C n A =则25.04 12358910321)(310121315==×××××××===C C C C n n A P A 14.两封信随机地投入四个邮筒,求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解:设A 为前两个邮筒没有信的事件,B 为第一个邮筒内只有一封信的事件,则基本事件总数,1644=×=n 有利于A 的基本事件数,422=×=A n 有利于B 的基本事件数, 632=×=B n 则25.041164)(====n n A P A .375.083166)(====n n B P B w w w .k h d a w .c o m 课后答案网

概率论与数理统计 重要公式

一、随机事件与概率 公式名称 公式表达式 德摩根公式 B A B A =,B A B A = 古典概型 ()m A P A n = =包含的基本事件数基本事件总数 几何概型 () ()()A P A μμ= Ω,其中μ为几何度量(长度、面积、体积) 求逆公式 )(1)(A P A P -= 加法公式 P(A ∪B)= P(A+B)=P(A)+P(B)-P(AB) 当P(AB)=0(A 、B 互斥)时,P(A ∪B)=P(A)+P(B) 减法公式 P(A-B)=P(A)-P(AB),B A ?时P(A-B)=P(A)-P(B) 条件概率公式 乘法公式 )() ()(A P AB P A B P = ()()()()()P AB P A P B A P B P A B == ()()()()P ABC P A P B A P C AB = 全概率公式 1 ()()()n i i i P A P B P A B ==∑ 从原因计算结果 贝叶斯公式 (逆概率公式) 1 ()() ()()() i i i n i i i P B P A B P B A P B P A B == ∑ 从结果找原因 两个事件 相互独立 ()()()P AB P A P B =;()()P B A P B =;)()(A B P A B P =;

二、随机变量及其分布 1、分布函数 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt ≤-∞ ?=?=≤=<≤=-???∑? 概率密度函数 计算概率: 2、离散型随机变量及其分布 分布名称 分布律 0-1分布 X ~b(1,p) 1,0,)1()(1=-==-k p p k X P k k 二项分布(贝努利分布) X ~B(n,p) n k p p C k X P k n k k n ,,1,0,)1()( =-==- 泊松分布 X ~p(λ) (),0,1,2,! k P X k e k k λλ-== = 3、续型型随机变量及其分布 分布名称 密度函数 分布函数 均匀分布 x ~U(a,b) ?? ?? ?<<-=其他,0,1 )(b x a a b x f 0, (),1, =-0 , 00,)(x x e x f x λλ ???? ?≤>-=-0 , 00 , 1)(x x e x F x λ 正态分布 x ~N(2,σμ) 2 2 ()21()2μσπσ -- = -∞<<+∞ x f x e x 22 ()21 ()d 2μσπσ -- -∞ = ?t x F x e t 标准正态分布 x ~N(0,1) 2 2 1()2?π - = -∞<<+∞ x x e x 212 1 ()2t x x e dt π --∞ Φ= ? 1 )(=? +∞ ∞ -dx x f ?=≤≤b a dx x f b X a P )()(

概率论与数理统计教程(茆诗松)

2004年7月第1版 2008年4月第10次印刷 第一章 随机事件与概率 1.1 随机事件及其运算 1.1.1 随机现象 在一定的条件下,并不总是出现相同结果的现象称为随机现象.在相同条件下可以重复的随机现象又称为随机试验. 1.1.2 样本空间 随机现象的一切可能基本结果组成的集合称为样本空间,记为Ω={ω},其中ω表示基本结果,又称为样本点.样本点是今后抽样的最基本单元. 1.1.3 随机事件 随机现象的某些样本点组成的集合称为随机事件,简称事件. 1.1.4 随机变量 用来表示随机现象结果的变量称为随机变量. 1.1.7 事件域 定义1.1.1 设Ω为一样本空间,?为Ω的某些子集所组成的集合类.如果?满足: (1) Ω∈?; (2)若A ∈?,则对立事件A ∈?; (3)若A n ∈?,n =1,2,…,则可列并 A n ∞n =1∈?. 则称?为一个事件域,又称为σ代数. 在概率论中,又称(Ω,?)为可测空间. 1.2 概率的定义及其确定方法 1.2.1 概率的公理化定义 定义1.2.1设Ω为一样本空间,?为Ω的某些子集所组成的一个事件域.若对任一事件A ∈?,定义在?上的一个实值函数P (A )满足: (1)非负性公理 若A ∈?,则P A ≥0; (2)正则性公理 P Ω =1; (3)可列可加性公理 若A 1,A 2,…,A n 互不相容,有 P A i ∞i =1 = P A i ∞ i =1 则称P (A )为事件A 的概率,称三元素(Ω,?,P )为概率空间. 第二章 随机变量及其分布 2.1 随机变量及其分布 2.1.1 随机变量的概念 定义2.1.1 定义在样本空间Ω上的实值函数X =X (ω)称为随机变量. 2.1.2 随机变量的分布函数 定义2.1.2 设X 是一个随机变量,对任意实数x ,称

概率论与数理统计知识点汇总(详细)

概率论与数理统计知识点汇总(详细)

————————————————————————————————作者:————————————————————————————————日期:

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计同步习题册3.1版参考答案(2015) (1)

《概率论与数理统计》同步习题册参考答案 第一章 1.1节 1. (1) {|0,1,2, ,},k k n n n =为小班人数; (2) }10|),{(2 2 ≤+≤y x y x ; 2. (1) C B A ; (2) C AB ; (3) C B A C B A C B A ++; (4) C B A ??; (5) ABC BC A C B A C AB +++; (6) ABC -Ω.(7) ABC 3. (1) (3) (4) (5) 成立. 1.2节 1. 0.1. 2. 85. 3. 8 3 ,61,21. 4. 0.2. 1.3节 1. !13!2!2!2!3. 2. 21 13. 3. 43,407 4.161,169,166. 5. 43 . 1.4节 1. 4/1,3/1. 2. 13. 3. 300209,209 64. 4. 9548 ,3019. 1.5节 1. 0.48. 2. 10.90.950.80.316-??=. 3. 0.896. 4. 7 3,74. 第一章 自测题 一. 1. 52. 2. )(1,0q p +-. 3. 21,32. 4. 31; 5. 32 . 6. 4. 7. 2711. 8. 52. 9. 8.0. 10. 0.94. 11. 30 11. 二. 1. A. 2. C. 3. B. 3. A. 4. A. 5. A. 三. 1. 6612111-,62461211?C ,6 246121112??C . 2. 53,43,103,53. 3. 49 40. 4. 999.004.01>-n ,n=3. 5. 0.253, 94/253. 6. 1/4. 7. 0.24, 0.424. 第二章 2.1节 1. ) 12(21100-, 31. 2. 101)2(==X P ,10 9 )3(==X P . 3. 3185(),0,1,2,3k k A P X k k A +===. 4. (1)1,21=-=b a ,(2)161. 5. 2=a ,0,4 9 22,41-. 6. 3 32?? ? ??. 2.2节 1. (1) 523,212, (2) 6133. 2. 44.64*4=178.26. 3. 256 . 4. 34. 5. 3 1. 2.3节 1. 20 119192021818207.03.07.03.07.0++C C . 2. 20=n , 3.0=p .

概率论与数理统计学习知识资料要点

知识要点 一 概念: 1 随机事件:用,,A B C 等表示 互不相容: AB =Φ 互逆: AB =Φ且A B ?=Ω ,此时,B A = 互逆 ?互不相容 ,反之不行 相互独立: ()()P A B P A =或()()()P AB P A P B = 2 随机事件的运算律: (1) 交换律 :,A B B A AB BA ?=?= (2) 结合律 :()(),()()A B C A B C AB C A BC ??=??= (3) 分配律 : (),()()()A B C AB AC A BC A B A C ?=??=?? (4 ) De Morgen 律(对偶律) B A B A =? B A AB ?= 推广: 11 n n i i i i A A ===U I 1 1 n n i i i i A A ===I U 3 随机事件的概率:()P A 有界性 0()1P A ≤≤ 若A B ? 则()()P A P B ≤ 条件概率 () ()() P AB P A B P B = 4 随机变量: 用大写,,X Y Z 表示 . 若X 与Y 相互独立的充分必要条件是)()(),(y F x F y x F Y X = 若X 与Y 是连续随机变量且相互独立的充分必要条件是(,)()()X Y f x y f x f y = 若X 与Y 是离散随机变量且相互独立的充分必要条件是(,)()()X Y p x y p x p y =

若X 与Y 不相关,则cov(,)0X Y = 或 (,)0R X Y = 独立?不相关 反之不成立 但当X 与Y 服从正态分布时 ,则相互独立 ?不相关 相关系数:1),(≤Y X R 且当且仅当bX a Y +=时1),(=Y X R ,并且 ???<->=0,10 ,1),(b b Y X R 二 两种概率模型 古典概型 :()M P A N = :M A 所包含的基本事件的个数 ;:N 总的基本事件的个数 伯努利概型 : n 次独立试验序列中事件A 恰好发生m 次的概率 ()m m n m n n P m C p q -= n 次独立试验序列中事件A 发生的次数为1m 到2m 之间的概率 2 1 12()()m n m m P m m m P m =≤≤= ∑ n 次独立试验序列中事件A 至少发生r 次的概率 1 ()()1()n r n n m r m P m r P m P m -==≥==-∑∑ 特别的 ,至少发生一次的概率 (1)1(1)n P m p ≥=-- 三 概率的计算公式: 加法公式:()()()()P A B P A P B P AB ?=+- 若B A ,互不相容 ,则)()()(B P A P B A P +=+ 推论:)()(A P A P -=1 推广: )()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=?? 若B A ,,C 互不相容,则()()()()P A B C P A P B P C ++=++ 乘法公式:)()()(A B P A P AB P =或()()P B P A B = 若,A B 相互独立 ,()()()P AB P A P B = 推广:)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P ΛΛΛΛΛΛ 若它们相互独立,则1212()()()()n n P A A A P A P A P A =L L L L

概率论与数理统计教程习题

习题10(切比雪夫不等式) 一.填空题 1. 设随机变量X 的数学期望μ=)(X E ,方差2 )(σ=X D ,则由切比雪夫不等式,得 ≤≥-)3(σμX P . 2. 随机掷6枚骰子,用X 表示6枚骰子点数之和,则由切比雪夫不等式,得 ≥<<)2715(X P . 3. 若二维随机变量),(Y X 满足,2)(-=X E ,2)(=Y E ,1)(=X D ,4)(=Y D , 5.0),(-=Y X R ,则由切比雪夫不等式,得≤≥+)6(Y X P . 4. 设ΛΛ,,,,21n X X X 是相互独立、同分布的随机变量序列,且0)(=i X E ,)(i X D 一致有界),,,2,1(ΛΛn i =,则=<∑=∞ →)( lim 1 n X P n i i n . 二.选择题 1. 若随机变量X 的数学期望与方差都存在,对b a <,在以下概率中,( )可以由切比雪夫不等式进行取值大小的估计。 ① )(b X a P <<; ② ))((b X E X a P <-<; ③ )(a X a P <<-; ④ ))((a b X E X P -≥-. 2. 随机变量X 服从指数分布)(λe ,用切比雪夫不等式估计≤≥ -)1 (λ λX P ( ). ① λ; ② 2 λ ③ 4 λ; ④ λ 1 .

三.解答题 1. 已知正常男性成年人的血液里,每毫升中白细胞含量X 是一个随机变量,若7300)(=X E , 2700)(=X D ,利用切比雪夫不等式估计每毫升血液中白细胞含量在5200至9400之间的概率。 2. 如果n X X X ,,,21Λ是相互独立、同分布的随机变量序列,μ=)(i X E , 8)(=i X D ),,2,1(n i Λ=.记∑==n i i X n X 1 1,由切比雪夫不等式估计概率)4(<-μX p . 3. 设ΛΛ,,,,21n X X X 是相互独立、同分布的随机变量序列,0)(=i X E ,2 )(σ=i X D , )(4i X E 存在,且一致有界),,,2,1(ΛΛn i =.对任意实数0>ε,证明 1)1(lim 1 22 =<-∑=∞→εσn i i n X n P .

相关文档
相关文档 最新文档