文档库 最新最全的文档下载
当前位置:文档库 › 离子交换膜与电渗析

离子交换膜与电渗析

离子交换膜与电渗析
离子交换膜与电渗析

第七章离子交换膜与电渗析

电渗析的研究始于上世纪初的德国。1952年美国Ionics公司制成了世界上第一台电渗析装置,用于苦咸水淡化。至今苦咸水淡化仍是电渗析最主要的应用领域。在锅炉进水的制备、电镀工业废水的处理、乳清脱盐和果汁脱酸等领域,电渗析都达到了工业规模。另外,在上世纪50年代末,由日本开发的海水浓缩制食盐的应用,虽仅限于日本和科威特等国,但也是电渗析的一大市场。目前,电渗析以其能量消耗低,装置设计与系统应用灵活,操作维修方便,工艺过程洁净、无污染,原水回收率高,装置使用寿命长等明显优势而被越来越广泛地用于食品、医药、化工、工业及城市废水处理等领域。我国的电渗析技术的研究始于1958年。1965年在成昆铁

路上安装了第一台电渗析法苦咸水淡化装置。1981年我国在西沙永兴岛建成日产200吨饮用水的电渗析海水淡化装置。几十年来,在离子交换膜、隔板、电极等主要部件方面不断创新,电渗析装置不断向定型化、标准化方向发展。

第一节、电渗析基本原理

一、电渗析的工作原理

电渗析是在直流电场作用下,溶液中的带电离子选择性地通过离子交换膜的过程。主要用于溶液中电解质的分离。图7-1是电渗析工作原理示意图。

流程说明:在淡化室中通入含盐水,接上电源,溶液中带正电荷的阳离子,在电场的作用下,向阴极方向移动到阳膜,受到膜上带负电荷的基团的异性相吸引的作用而穿过膜,进入右侧的浓缩室。带负电荷的阴离子,向阳极方向移动到阴膜,受到膜上带正电荷的基团的异性相吸引的作用而穿过膜,进入左侧的浓缩室。淡化室盐水中的氯化钠被不断除去,得到淡水,氯化钠在浓缩室中浓集。

图7-1 电渗析工作原理示意图

电渗析过程除我们希望的反离子迁移外,还可能发生如图7-2所示的其它迁移过程:

(1) 同名离子迁移

同名离子指与膜的固定活性基所带电荷相同的离子。根据唐南(Donnan)平衡理论,离子交换膜的选择透过性不可能达到100%,再加上膜外溶液浓度过高的影响,在阳膜中也会进入个别阴离子,阴膜中也会进入个别阳离子,从而发生同名离子迁移。

(2) 电解质的浓差扩散

也称为渗析,指电解质离子透过膜的现象。由于膜两侧溶液浓度不同,受浓度差的推动作用,电解质由浓水室向淡水室扩散,其扩散速度随两室浓度差的提高而增加。

(3) 水的渗透

淡水室的水,由于渗透压的作用向浓缩室渗透,渗透量随浓度差的提高而增加。

1

图7-2 电渗析工作时发生的各种过程

(4) 水的电渗透

反离子和同名离子,实际上都是水合离子,由于离子的水合作用,在反离子和同名离子迁移的同时,将携带一定数量的水分子迁移。

(5) 压差渗漏

溶液透过膜的现象。当膜的两侧存在压差时,溶液由压力大的一侧向压力小的一侧渗漏。因此在操作中,应使膜两侧压力趋向平衡,以减小压差渗漏损失。

(6) 水的解离

也称为极化。是指在一定电压作用下,溶液中离子未能及时补充到膜表面时,膜表面的水分子解离成H+和OH—的现象。当中性的水解离成H+和OH—以后,它们会透过膜发生迁移,从而扰乱浓、淡水流的中性性质。这是电渗析装置的非正常运行方式,应尽力避免。

二、离子交换膜的选择透过性

离子交换膜对离子选择性透过机理和离子在膜中的迁移历程可以由膜的孔隙作用、静电作用和扩散作用加以说明。

1. 孔隙作用离子交换膜具有贯穿膜体内部的弯曲孔隙,其孔径多为几十纳米至几百纳米,这些孔隙形成的通道可以使被选择吸附的离子从膜的一侧移动到另一侧。孔隙作用的强弱主要取决于孔隙度的大小与均匀程度。而且只有当被选择的离子的水合半径小于孔隙半径时,才有可能使离子透过膜。

2. 静电作用离子交换膜上分布着大量带电荷的基团。因此,膜内构成强烈的电场:阳膜为负电场;阴膜为正电场。根据静电效应的原理,膜与带电离子将发生同电性相斥,异电性相吸的静电作用。结果是阳膜只能选择吸附阳离子,阴膜只能选择吸附阴离子。它们都分别排斥与各自电场性质相同的同名离子。对于两性膜,因为它们同时存在正、负电场,对阴、阳离子选择透过能力就取决于正负电场之间强度的大小。

3. 扩散作用膜对溶解离子所具有的传递迁移能力,称为扩散作用。它依赖于膜内活性离子交换基和孔隙的存在,而离子的定向迁移则是外加电场力推动的结果。离子交换膜的透过现象,可以分为选择吸附、交换解吸、传递转移三个阶段。由膜孔穴形成的通道口和内壁上分布着活性离子交换基,对进入膜相的溶解离子继续进行着鉴别选择。这种吸附-解吸-迁移的方式,把离子从膜的一端输送到另一端,完成了膜对溶解离子定向扩散的全过程。

三、电渗析过程的基本传质方程

电渗析的传质过程主要由对流传质、扩散传质和电迁移传质等部分组成。离子在隔室主体溶液和扩散边界层之间的传递,主要靠流体微团的对流传质。离子在膜两侧的扩散边界层中主要靠

扩散传质。离子通过离子交换膜是靠电迁移传质。其中扩散传质

2

3

是控制电渗析传质速率的主要因素。

1.对流传质 包括因浓度差、温度差以及重力场作用引起的 自然对流和机械搅拌引起的强制对流传质。若只考虑强制对流,离子i 在x 方向,即垂直于膜面方向上的对流传质速率为:

J i(c) = C i V x (7-1)

式中 J i(c)——离子i 在x 方向上的对流传质速率,mol/cm 2

.s ;

C i ——溶液中离子i 的浓度,mol/cm 3

; V x ——流体在x 方向上的平均流速,cm/s 。

2.扩散传质 若溶液中某一组分存在着浓度梯度时,必然存在着化学位梯度。在该化学位梯度的作用下离子i 在x 方向上的扩散速率为:

J i(d) = - C i U i

dx

d i

μ (7-2) 式中 J i(d)——离子i 在x 方向上的扩散速率,mol/cm 2

.s ;

U i ——溶液中离子i 的淌度,mol.cm 2

/J.s ;

dx

d i

μ——离子i 在x 方向上的化学位梯度,J/ mol.cm 。 根据实际溶液离子i 的化学位以及能斯特-爱因斯坦方程, 由式(7-2)可以得到式(7-3)。

J i(d) = - D i )ln (

dx

f d dx dC i

i + (7-3) 式中i f 是离子i 的活度系数,对于理想溶液i f = 1式(7-3)扩散速率则转变为Fick 第一定律的形式:

J i(d) = - D i dx

dC i

(7-4)

3.电迁移传质 当存在电位梯度时,离子在电场力的作用下发生迁移,由于正负离子带相反符号的电荷,其运动方向相

反。因此,正负离子在x 方向上的迁移速率分别为:

dx

d U C J ?

+++'-= (7-5) dx

d U C J ?

-

--'= (7-6) 式中 C +、C -——正负离子的浓度,mol/cm 3

+'U 、-'U ——正负离子的化学淌度,cm 2/V.s ;

?——电位,V 。

对于理想溶液,淌度与扩散系数之间的关系可以用能斯特-爱

因斯坦方程来描述:

+

'U ++=Z RT

F

D (7-7) -

'U --=Z RT

F

D (7-8) 式中 D +、D -——正负离子的扩散系数,cm 2

/s ;

+z 、-z ——正负离子的价数;

F ——法拉第常数。

将式(7-7)、(7-8)代入式(7-5)、(7-6),得

J ++++-=Z RT F D C dx

d ?

(7-9) J --

--

=Z RT F D C dx

d ?

(7-10)

若以i Z 表示正负离子的代数价,以上两式可以写成:

J i(e) =-Z i C i

RT F D i

dx

d ?

(7-11)

4.Nemst-planck 离子渗透流率方程

对于离子通过离子交换膜的传质过程,可以近似认为是垂

4

直于膜面x 方向上的传质。描述离子在流体对流、化学位梯度、电位梯度影响下,离子在电渗析过程中一维的Nemst-planck 方程,即离子x 方向上的传质速率为:

J i = J i (c)+ J i (d) + J i (e) (7-12) = C i

V

x

- D i (

dx dC i + Z i C i RT F dx d + C i dx

f d i

ln ) (7-13) 式中 J i ——离子i 在膜内的传质速率,mol/cm 2

.s ;

Di ——离子

i 在膜内的扩散系数,cm 2

.s ;

C i ——离子i 在膜相中的浓度,mol/cm 3

; f i ——离子i 在膜相中的活度系数,mol/cm 3

V i ——在离子交换膜微孔中,液体重心的运动速度,cm/s 。

电渗析过程一般不发生化学反应,在稳态条件下,Δ? = 0 在离子交换膜中,各种离子满足电中性条件,即

ΣZ i C i +ωC = 0 (7-14)

式中 z i ——离子i 的代数价;

C i ——离子i 在膜内的浓度,mol/cm 3

; C ——膜中固定活性基团的浓度,mol/cm 3

; f i ——膜中固定活性基团的电荷数。

第二节 离子交换膜的分类及组成

一、离子交换膜的分类

离子交换膜是电渗析器的核心部件,是一种膜状的离子交换树脂。但必须指出,在电渗析中使用的离子交换膜,实际上并不是起离子交换作用,而是起离子选择透过作用,更确切地应称为离子选择性透过膜。

由阳离子交换材料组成的膜含有酸性活性基团,可解离出阳离子,它对阳离子具有选择透过性,称为阳离子交换膜,简称为阳膜;

由阴离子交换材料组成的膜含有碱性活性基团,可解离出阴离子,它对阴离子具有选择透过性,称为阴离子交换膜,简称为阴膜。图7-3是离子交换膜的分类。

强酸型:磺酸型

阳离子交换膜 中酸型:磷酸型、膦酸型

弱酸型:羧酸型、酚型 混合型:苯酚磺酸

强碱型:季胺型、吡啶季胺型

离子交换膜 阴离子交换膜 中、弱碱酸型:伯胺型、仲胺型、叔胺型

混合型:混合胺型 表面涂层膜 双极膜

特殊离子交换膜 两性膜

镶嵌膜 其它膜

图7-3 离子交换膜的分类

二、离子交换膜的组成

在宏观形态上离子交换膜是片状薄膜,而离子交换树脂是颗粒状的,但微观结构基本相同。离子交换膜的组成见图7-4。

高分子骨架结构部分

固定部分 离子交换基团(固定荷电基团)

膜的主体

反离子(对立离子)

离子交换膜 活动部分 唐纳渗透离子(同名离子)

溶剂(如水)

增强材料

图7-4 离子交换膜的组成

膜主体的固定部分由体型或线型长链高分子材料组成,在高分

子链上锚有离子交换基团,当膜投入水中时,发生吸水溶胀,使活性基团离解。

如磺酸型阳膜的活性基团一SO3H可以离解为:

H+

季胺型阴膜的活性基团一N(CH3)3OH可以离解为:

产生的H+ 和OH—进入水溶液中,膜上留下一定电荷的固定基团,它可吸附溶液中的正离子和负离子,这些离子是可移动的。

第三节离子交换膜的制备

离子交换膜中的主体组分是树脂相,根据需要还可加入粘结剂、增塑剂、着色剂、防老剂、抗氧化剂、脱膜剂等。按照离子交换膜的主体组分可以将其分为均相膜和异相膜。在均相膜的主体组分中,各成分以分子状态均匀分布,不存在相界面;而异相膜是通过粘结剂把粉状树脂制成片状膜,树脂与粘结剂等组分间存在相界面。为保证离子交换膜的强度和尺寸稳定性,一般还需要网布作为增强材料。

一、异相膜的制备

异相膜是把粉状树脂与粘结剂混合后制成的片状膜。粘结剂可以采用热塑性的线性聚烯烃及其衍生物,也可以采用聚氯乙烯、聚过氯乙烯、聚乙烯醇等可溶于溶剂的聚合物,还可以采用天然或合成橡胶。根据粘结剂的性能,异相膜的制备方法有以下几种:

1. 延压和模压法成膜

将粉状离子交换树脂和粘结剂及其它辅料混合后通过延压和模压方式成膜。表7-1是典型的异相膜配方。

表7-1中的聚乙烯是粘合剂,树脂粉是膜的基体,聚异丁烯起粘合、增柔作用,赋予膜弹性,硬脂酸钙为脱模剂和稳定剂,酞菁蓝是染料,使阴膜带上天蓝色,以区别于阳膜的本色。还可以根据使用要求,适当添加防老剂、抗氧化剂等成分。

异相膜制备的工艺流程如下:

将聚乙烯放人双辊混炼机中,在110—120℃下混炼,塑化完全后,加入聚异丁烯进行机械接枝。混合均匀后加入硬脂酸钙,然后加进树脂粉,反复混炼均匀。将其在延压机上拉成所需厚度的膜片。再将两张尼龙网分别覆盖在膜片的上下,送入热压机中,于10.0-15.0 MPa压力下热压约45min,即成实用的异相膜。

2. 溶液型粘合剂法成膜

先将线型高聚物粘合剂溶解在溶剂中,制成粘合剂溶液,再将粉状离子交换树脂分散在粘结剂溶液中,浇铸后,将溶剂蒸发掉成膜。

3. 将粉状离子交换树脂分散在仅部分聚合的成膜聚合物中,浇铸成膜后,再完成聚合过程。

5

由于异相膜树脂与粘结剂仅是机械结合,在使用过程中树脂容易发生脱落。

二、半均相膜的制备

首先用粘合剂吸浸单体进行聚合,然后导入活性交换基团制成含粘合剂的热塑性离子交换树脂,最后像上述异相膜那样的工艺加工成膜。

这种方法可以使离子交换树脂非常均匀地分散在粘合剂中,形成互相缠绕的结构,不易脱落,另一方面,可以省去磨粉工序,简化制膜工艺,而且可以避免粉尘对环境的污染和树脂的损失。图7-5是制备聚氯乙烯半均相膜工艺流程示意图。

二氯乙烷

溶胀

悬浮聚合

∣H2SO4∣氯甲醚

磺化氯化

混炼

拉片

加网热压

图7-5 制备聚氯乙烯半均相膜工艺流程示意图。

三、均相膜的制备

均相离子交换膜的制造方法,实际上就是直接使离子交换树脂

薄膜化。即使离子交换树脂的合成与成膜工艺相结合。均相膜的制

造大致分为四个过程:膜材料的合成反应过程、成膜过程、引入可

反应基团、与反应基团发生作用形成荷电基团。均相膜有以下几种

制备方法。

1.从聚合反应开始制膜

例如,可以将苯酚磺酸与苯酚、甲醛先进行部分缩聚反应,

然后将其吸浸于多孔支撑材料中或涂布于网布上,再进一步缩

聚形成阳离子交换膜。

还可以将含有环氧反应基团的料液刮于尼龙网上,上下衬

以涤纶纸,在油压机上加热聚合形成基膜,把聚合反应过程、

成膜过程、引入反应基团过程三步合成—步,制成的基膜浸入

三甲胺溶液,得到甲基丙烯酸环氧丙酯阴膜。

2.制成基膜后导入离子交换基团

对于含有反应基团的高聚物可以先将其制成基膜后,再经活化

反应导入离子交换基团,制成离子交换膜。如含有多羟基的纤维素、

聚乙烯醇基膜,都能进行酰化和酯化反应,使离子交换基团直接导

人膜内。这类的高聚物材料很多,如聚苯乙烯、聚氯乙烯、氯化聚

醚、聚乙烯亚胺、丁苯乳胶、氯醇橡胶等都可以先制成聚合物薄膜,

再导入离子交换基团,成为离子交换膜。

3.高聚物中导入离子交换基团后再成膜

如聚砜或聚醚砜经磺化后制成磺化聚砜和磺化聚醚砜,把磺化

后聚醚砜溶于二甲基甲酰胺中,涂于网布上,待溶剂挥发后即成阳

膜。

四、新型离子交换膜

早期的离子交换膜主要用于电渗析和电化学工艺过程中,随着

科学研究的深入和技术进步,离子交换膜的种类不断增加的同时,

6

应用领域也在不断扩大。

1.双极膜

双极膜是一种复合膜,它由具有两种相反电荷的离子交换层紧密相邻或结合而成的新型离子交换膜。在直流电场的作用下,双极膜可以将水离解,在膜两侧分别得到H+ 和OH- ,它可以形成一种新型的膜过程。双极膜已有商品问世。

双极膜的制备方法有:将阴膜、阳膜加热、加压使其成型的方法;在阴膜、阳膜中间涂敷黏合剂使之相互黏合的方法;在同一基膜两侧分别引入阳离子和阴离子交换基团的方法;使阳离子层在阴离子交换膜上流延的方法等。

在实验室,由双极膜和阳膜组成的二室模型,可以使葡萄糖酸钠、古龙酸钠等有机酸盐向葡萄糖酸、古龙酸等有机酸转化,同时得到碱液。在环保方面,双极膜和阳膜的组合可以使NaHSO3转化为Na2SO3,而Na2SO3又可重新与烟道气中SO2反应生成NaHSO3,达到除硫的目的。

一般离子交换膜对同性离子的分离效果不太理想,采用双极膜则大大改善分离效果。如分离1、2价阳离子时,采用在阳膜表面覆涂一层阴膜薄层的复合膜,由于它的固定荷电基团带正电,对二价离子的排斥力比一价离子强,因此在电场作用下使一价离子更容易穿过阻挡层进入阳膜,达到分离不同价态同性离子的目的。

双极膜的研究重点是降低膜电阻、提高选择性、化学稳定性和膜强度;另外还希望双极膜除了具有由阴离子交换层和阳离子交换层组成的两层结构外,在两层之间加入第三层物质以促进水的解离。

2.螯合膜

螯合膜上具有两个或两个以上对金属离子有很大亲和力的功能基团,如磺酸-羧酸、磺酸-磷酸、膦酸-羧酸等功能基团都属于螯合型膜。这类膜一般对特定离子具有选择性透过或吸附的能力。如对聚丙烯-聚苯乙烯微孔膜进行氯甲基化、胺化及氯醋酸处理,可以得到对Cu2+、Hg2+及Cd2+有选择性的螯合膜等。

新型离子交换膜还有同时带有阳离子交换基团和阴离子交换基团的两性膜,它们大多具有生物膜的功能;利用阳离子高聚物电解质同阴离子高聚物电解质相互交错、组合而成的镶嵌离子交换膜。抗污染膜、抗极化膜、无机离子交换膜等也是近年新型离子交换膜的研究领域。

第四节离子交换膜的主要性能

一、交换容量

交换容量是表征离子交换膜质量的基本指标。交换容量的定义为每克干膜所含活性基团的毫克当量数,其单位为meq/g。一般交换容量高的膜,选择透过性好,导电能力强。但是由于活性基团一般具有亲水性,因此活性基团含量越高,膜的溶胀度越大,从而影响膜的强度。有时也会因膜体结构过于疏松,而使膜的选择性下降。一般膜的交换容量约为2—3meq/g。

不同类型的离子交换膜所含的活性基团不同,交换容量的测试体系也各有所异。下面仅举两例。

1.磺酸阳膜磺酸氢型阳膜能与等量的NaCl交换,可以对其释放出的H+ 用0.1mol/L NaOH标准溶液滴定,然后计算交换容量。

步骤:对经过处理转为磺酸氢型的阳膜样品,用滤纸拭去表面附着的水分,精确称取样品1.5 g,放入250 ml的三角瓶中,加入约1 mol/L NaCl溶液约50 ml,间断振摇,使膜沉入水溶液中,放置过夜。以酚酞为指示剂,用0.1mol/L NaOH标准溶液滴定,至粉红色为终点。交换容量按下式计算。

交换容量(meq/g) =

含水率

样品质量

当量浓度

毫升数

%

1-

?

?NaOH

NaOH

7-15

2.季铵氯型阴膜该膜能与NaNO3或Na2SO4进行等量交换,对其释放出的氯离子用0.1mol/L AgNO3标准溶液滴定,然后计算交换容量。

步骤:对经过预处理的季铵氯型阴膜样品,用滤纸拭去表面附着的水分,精确称取样品1.5 g,放入250 ml的三角瓶中,加入约1

7

8

mol/L NaNO 3或Na 2SO 4溶液约50 ml ,间断振摇,使膜沉入水溶液中,放置过夜。以10%酚铬酸钾溶液为指示剂,用0.1mol/L AgNO 3标准溶液滴定,至橙红色不变为终点。交换容量按下式计算。 交换容量(meq/g) =

含水率(样品质量当量浓度

毫升数%133-??AgNO AgNO 7-16

二、含水量

含水量指膜内与活性基团结合的内在水,以每克干膜所含水的克数表示(%)。膜的含水量与其交换容量和交联度有关,随着交换容量提高、交联度下降,膜的含水量增加。提高膜内含水量,可使膜的导电能力增加,但由于膜的溶胀会使膜的选择透过性下降。 一般膜的含水率约为20%—40%左右。

含水率 =

%100?-湿膜重量

干膜重量

湿膜重量 7-17 三、膜电阻

膜电阻对电渗析器工作时所需要的电压和电能消耗有直接影响。在实际应用中,膜电阻常用面电阻表示,其单位为Ω?cm 2。也

可以用电阻率(Ω?cm)或电导率(Ω—l ·cm —

1)来表示。一般在不影响其他性能的情况下电阻越小越好,以降低电能消耗。

通常规定在25℃下,于0.1mol /L KCl 溶液或0.1mol /L NaCI 溶液中测定的膜电导作为比较标准。

四、选择透过度

常用反离子迁移数和膜的透过度来表示膜的离子选择透过性。 膜内离子迁移数即某一种离子在膜内的迁移量与全部离子在膜内迁移量的比值。可以用离子迁移所携带电量之比来表示。例如,在阴膜-NaCI 溶液体系中膜内离子的迁移数为: 同名离子迁移数 t

Na+ = Q Na+ / Q Na+ +Q CI -

7-18

反离子迁移数 t

CI - = Q CI - / Q Na+ +Q CI - 7-19

式中 Q Na+ ——Na +离子所负载的电量

Q CI - ——CI —

离子所负载的电量

某种离子在膜中的迁移数可由膜电位计算:

t g = (E m 十E m 0) /2 E m 0 7-20

式中 E m 0——在一定条件(一般是25℃,膜两侧溶液分别为0.1mol

/L KCI 和0.2mol /L KCl)下,理想膜的膜电位, 可由奈恩斯特公式计算;

E m ——在以上条件下的实测膜电位。

膜的选择透过度为反离子在膜内迁移数实际增值与理想增值之比。

g

g g g

g g g t t t t t t t p --=

--=

10

7-21

式中 t g ——反离子在膜中迁移数;

t g ——反离子在溶液中的迁移数,可从有关手册查

到;

t

g

0——反离子在理想膜中的迁移数,即100%。

用以上方法计算所得到的反离子迁移数和选择透过度,在一定程度上能客观地反映离子交换膜选择透过性的好坏。 一般要求离子交换膜选择透过度大于85%,反离子迁移数大于0.9,并希望膜在高浓度电解质中仍有良好的选择透过性。 另外对离子交换膜的机械强度、化学稳定性等也应有一定的指标要求,以满足正常使用。

第五节 电渗析器

一、 电渗析器的主要结构

电渗析器的主要由膜堆、级区及夹紧装置组成,见图7-6。

图7- 6 电渗析器的基本结构及组装形式

1-压紧板;2-垫板;3-电极;4-垫圈;5-导水、极水板;6-阳膜;7-淡水隔板框;

8-阴膜;9-浓水隔板框—极水;—浓水;……淡水

在电渗析器中“膜对”是最小电渗析工作单元,它由阴膜、淡水隔板、阳膜和浓水隔板组成。由若干个膜对组成的总体称为“膜

堆”。置于电渗析器夹紧装置内侧的电极称为“端电极”。在电渗析器膜堆内,前后两极共同的电极称为“共电极”。

电渗析器的组装方式有串联、并联及串-并联相结合的几种形式。常用“级”和“段”来表示。“级”是指电极对的数目。“段”是指水流方向,水流通过一个膜堆后,改变方向进入后一个膜堆,即增加一段。电渗析器的组装方式有一级一段、一级多段、多级多段等。图7-7是电渗析器的组装方式示意图。

一级一段电渗析器即一台电渗析器仅含一段膜堆,由于只有一对端电极,通过每个膜对的电流强度相等。水流通过膜堆时,是平行地向同一方向通过各膜对,实际上这样的膜堆是以并联的形式组成一段。这种电渗析器的产水量大,整台脱盐率就是1张隔板流程长度的脱盐率,多用于大、中型制水场地。国内一级一段电渗析器一般含有200~360个膜对。

一级多段电渗析器通常含有2~3段,使用一对电极,膜堆中通过每个膜对的电流强度相等。这类电渗析器段与段之间的水流方向

图7-7 电渗析器的“级”和“段”示意图

相反,内部必须装有用来改变水流方向的导向隔板,使水流从一段出来改变方向流入另一段,这种方式实际是串联组装。在级内分段是为了增加脱盐流程长度,以提高脱盐率。这种形式的电渗析器单台产水量较小,压降较大,脱盐率较高,适用于中、小型制水场地。

多级多段电渗析器使用共电极使膜堆分级。一台电渗析器含有2~3级、4~6段。将一台电渗析器分成多级多段进行组装,是为了获得更高的脱盐率,多用于小型海水淡化器和小型纯水装置。

二、电渗析器的性能指标

1.淡水产量

Q d = 0.0036nvdb 7-22

式中Q d——单台电渗析器在单位时间内的淡水产量,m3/h;

n ——并联的膜对数;

9

v ——除盐室中的流速,cm/s;

d ——隔板厚度,cm;

b ——隔板流水道宽度,cm;

2.脱盐率:

f = (C j-C d) / C j×100% 7-23

式中 f ——脱盐率,%;

C j ——进水含盐量,mmol/L;

C d——出水含盐量,mmol/L;

3.电流效率

电流效率= 理论耗电量/ 实际耗电量×100%

= 26.8×Q d (C j-C d) /(In)×100% 7-24 式中I——电流,A;

其它符号同前。

4.电能消耗

电能消耗= 动力电耗+ 电渗析本体电耗

= 0.00272 H d m / η动+ UI×103 (Q dη电) 7-25式中U ——操作电压,V;

I——电流,A;

H ——水泵总扬程,m;

d ——原水比重,t/m3;

η动——水泵总效率;

η电——整流器的效率,一般为0.95;

m——水泵供给的总水量Q与淡水产量Q d的比值。

第六节电渗析的脱盐过程

常用的电渗析脱盐流程主要有连续式和循环式两大类。

一、连续式脱盐过程

1.一级多段一次脱盐

使用单台电渗析器就能达到制水产量和质量要求。系统可以连续供水,辅助设备少,动力消耗低。膜堆采用一级多段。这种流程对产水量和脱盐率的调节能力小,多在产水量小而脱盐率要求较高的情况下使用。

对于一级一段的电渗析器,可以由给定的产水量计算所需膜对数N。

N = 1000Q / t w v 7-26 式中Q ——淡水流量,L/s;

t ——隔室水流道厚度,cm;

w——隔室水流道宽度,cm;

v ——除盐室中的流速,cm/s;

2.多级多段一次脱盐

原水经过多台电渗析器后,一次达到脱盐要求,直接得到成品水,如图7-8所示。具有连续出水、管道简单等优点,但操作弹性小,原水含盐量变化时适应性差。适应于中、大型脱盐场地。

10

11

图7-8 一次连续式脱盐流程示意图

( ED 为电渗析器 )

当串联的一级一段电渗析器的膜对数相等,隔室流速相同,则在极限电流下每级的脱盐率基本不变,系统的总脱盐率f 为:

n p f f )1(1--= 7-27

式中 p f ——单级电渗析器脱盐率,%;

n ——电渗析器的串联级数。

二、 循环式脱盐过程

1. 循环式间歇脱盐

浓水和淡水分别通过体外循环槽进行循环,当循环脱盐达到成品水质指标后,输送至成品水槽,如图7-9所示。该流程适应性强,适用于脱盐深度大,特别是给水水质经常变化,并要求成品水质稳定的的场合,如流动式野外淡水车、船用脱盐装置和小批量工业产品料液的浓缩、提纯、分离和精制。但该流程需要较多的辅助设备,动力消耗大,且只能间歇供水。

图7-9 循环式间歇脱盐流程示意图

1- 淡水槽;2-浓水槽

在循环式脱盐过程中,系统的工艺参数将随淡水循环槽浓度的变化而变化。

2. 循环式连续脱盐

这种过程也称为部分循环式脱盐,如图7-10所示。在电渗析系 统出口的成品水中,有一部分要返回到系统的淡水进水槽,使淡水浓度降低,以减少电渗析器的串联级数或段数。

图7-10 部分循环式连续脱盐流程示意图

部分循环式脱盐过程的淡水流量不等于产水量,一部分淡水要参加回流。操作过程比较灵活,但配管复杂、动力消耗较大。

12

根据物料平衡可以得到以下几个关系式: 电渗析器进水浓度 di C

=

G

Q G C Q C do R ++

7-28

流量

)

1(f f f f Q

G p p --=

7-29

水量

)

(1

/1

/Q G C C C C Q do R do di +--=

7-30

式中 C di ——电渗析器进水浓度,mol / L ;

C R ——原水浓度,mol / L ; C do ——淡水出口浓度,mol / L ; Q ——产水量,L /

s ;

G ——回流量,L / s 。

第七节 新型电渗析过程

一、填充混合离子交换树脂电渗析过程制高纯水 1983年Kedem .提出了填充混合离子交换树脂的电渗析过程制

图7-11 填充离子交换树脂的电渗析过程

去离子水。1987年推出产品。这是一种将电渗析和离子交换优点巧 妙结合的脱盐方法,如图7-11所示。在该过程中,离子交换树脂颗

粒填充在电渗析器的淡化室内,被离子交换树脂吸附的离子在电场

力作用下不断迁移入浓水室,这样离子交换树脂不需要再生,而原

料液中的离子几乎可完全被除去。这种过程与传统的电渗析-离子交换系统相比,阴、阳离子交换树脂所吸附的溶液中的阴、阳离子,

由电渗析极化过程的OH —

、H + 连续再生,可以连续地脱除离子,不间断地生产纯水、超纯水。为了降低膜堆电阻,可以填充离子导电网。

二、含离子交换膜的唐南渗析

一张阳离子交换膜将CuSO 4与H 2SO 4的混合液分成两相,相I 的pH =1,而相Ⅱ的pH=7。由于浓差扩散,H + 将由相I 扩散到相Ⅱ,而SO 4= 将受到阳膜的阻挡不能随H + 由相I 扩散到相Ⅱ,这就造成了相I 与相Ⅱ之间的电势差。在该电场力的作用下,Cu ++ 将由

相Ⅱ逆浓度差迁移到相I 。可见只要两相中H + 浓度差保持在一个常

数,Cu ++ 将以恒速从相Ⅱ迁移到相I ,直至两者浓度差相当。这就是唐南(Donnan )渗析的原理,见图7-12。同理,阴离子也可通过阴膜进行类似的过程。应用实例——为柠檬汁加甜。利用Donnan 渗析使碱性溶液中的OH —

取代了果汁中的柠檬酸根离子,增加了果汁的甜度。

第六节 电渗析的应用

一、水的纯化

电渗析法是海水、苦咸水、自来水制备初级纯水和高级纯水的重要方法之一。由于能耗与脱盐量成正比,电渗析法更适合含盐低的苦咸水淡化。但当原水中盐浓度过低时,溶液电阻大,不够经济,因此一般采用电渗析与离子交换树脂组合工艺。电渗析在流程中起

前级脱盐作用,离子交换树脂起保证水质作用。组合工艺与只采用离子交换树脂相比,不仅可以减少离子交换树脂的频繁再生,而且对原水浓度波动适应性强,出水水质稳定,同时投资少、占地面积

小。但是要注意电渗析法不能除去非电解质杂质。

图7-12 唐南渗析的原理

13

下面是制备初级纯水的几种典型流程:

下面是制备高级纯水的几种典型流程:

二、海水、盐泉卤水制盐

电渗析浓缩海水-蒸发结晶制取食盐,在电渗析应用中占第二位。与常规盐田法比较,该工艺占地面积少,基建投资省,节省劳动力,不受地理气候限制,易于实现自动化操作和工业化生产,且产品纯度高。日本第一个采用此法制盐,当前,年产量为1.5×106t ,其他国家为4.0×10

5t 。随着技术的不断进步,卤水浓度已可达200g/L,吨盐耗电量降至150kW ·h 。

下面是制备高级纯水的典型流程

:

三、废水处理

电渗析用于废水处理,兼有开发水源、防止环境污染、回收有用成分等多种意义。在电渗析应用中占第三位。电渗析用于废水处理,是以处理电镀废水为代表的无机系废水为开端,逐步向城市污水、造纸废水等无机系废水发展。如从电镀废水中回收铜、锌、镍、铬,从金属酸洗废水中回收酸与金属,从碱性溶液中回收NaOH 等。

四、脱除有机物中的盐分

电渗析在医药、食品工业领域脱除有机物中的盐分方面也有较多应用。如医药工业中,葡萄糖、甘露醇、氨基酸、维生素C 等溶液的脱盐;食品工业中,牛乳、乳清的脱盐,酒类产品中脱除酒石酸钾等。

另外,电渗析还可以脱除或中和有机物中酸;可以从蛋白质水解液和发酵液中分离氨基酸等。

膜过滤技术及其应用范围介绍

膜过滤技术及其应用范围介绍 北京陶普森膜应用工程技术有限公司孙永杰 过滤是分离液体中固体性颗粒的常用方法之一。我们熟悉的土壤就是一个天然过滤器,池塘、湖泊和河流中的地表水在通过不同类型的土壤之后,渗透聚积成相对洁净的地下水,土壤让水透过的时候截留了其它成分,如颗粒物和污染物等,而渗透到深处的地下水得到了净化。 过滤是实验室常用的物料分离技术。从筛网、滤纸到膜滤器等技术手段的延伸、发展,促进了产品提纯技术的提高,净化效果明显,分离精度大大提高。在能量消耗,过滤效果和操作简便方面,相比于传统的分离方法如蒸馏或结晶,膜过滤技术的表现优于其他分离过程。在许多分离领域,膜过滤克服了传统技术局限性,尤其对生化或药物的加工应用过程,膜技术的应用提高了产品品质和收率,因为其中的蛋白质和有效成分大多是热敏感的。因膜过滤为物理过滤方式,膜材质稳定性强,经验证的实验室过滤工艺,很容易被放大和改进,更易成功应用到实际的大规模生产中。 在生物和制药技术行业的许多领域,包括食品和饮料行业,生物技术和饮用水处理行业,都普遍使用过滤膜用于过滤。 过滤膜的工作原理:膜过滤器的原理类似于上面提到的地下水渗透过程,人工制备的膜相当于地表土层,待过滤的溶液中一部分的小分子物质可以通过薄膜的微孔,其渗透性取决于孔的大小。比滤膜孔更小的颗粒可透过滤膜,而比滤膜孔大的颗粒就被截留下来。

一般情况下,膜的孔径决定了应用,根据孔径的大小,将不同的过滤膜技术分为四类:微滤,超滤和纳滤以及反渗透。 1. 微滤膜技术 过滤膜的孔径一般在5μm和0.1μm之间。在微生物实验中经常被使用孔径为0.1μm至0.2μm的膜,可以分离出酵母菌和细菌,是一种温和快速的杀菌方法。在工业化生产上,这种滤膜技术通常为过滤器的滤芯,广泛应用在医药,食品和饮料工业生产线中。例如,生物制药厂用于生物反应器中微生物生长阶段之后的“收获”和细菌菌体的分离,废水处理或浑浊液的油水分离等。 2. 超滤膜技术 超滤技术常常用于大分子的浓缩和脱水,超滤膜过滤“孔径”在0.1μm和0.01μm之间。由于该技术主要用于分离或浓缩蛋白质分子,所以膜的过滤孔径被定义为“分子量切断”(MWCO)或“标称分子量切断”(NMWC),单位为道尔顿(质量单位,等于一氧原子的1/16)。MWCO值表示可被膜截留的球状分子的小分子量。为了安全起见,应总是选择MWCO值至少比要分离的大分子的分子量高20%。这种膜过滤技术的应用操作压力,通常在2-10巴之间。 3.纳滤技术 是纳米级过滤技术的简称,纳米级过滤的膜过滤器,其孔径小于0.005μm,可截留更小的有机分子和大部分盐类物质,以及重金属离子等。陶普森纳米级过滤需要更高的外部压力,过滤压力一般在10-80巴之间。

电渗析水处理技术的优点和不足

电渗析水处理技术的优点和不足 1、能量消耗少: 电渗析器在运行中,不发生相的变化,只是用电能来迁移水中已解离的离子。它耗用的电能一般是与水中含盐量成正比的。大多数人认为,对含盐量4000~5000mg/L以下的苦咸水的变化,电渗析技术是耗能少的较经济的技术。 2、药剂耗量少,环境污染小: 离子交换技术在树脂交换失效后要用大量酸、碱进行再生,水洗时有大量废酸、碱排放,而电渗析系统仅酸洗时需要少量酸。 3、设备简单,操作方便: 电渗析器是用塑料隔板与离子交换膜剂电极板组装而成的,它的主体配套设备都比较简单,而且膜和隔板都是高分子材料制成,因此,抗化学污染和抗腐蚀性能均较好。在运行时通电即可得淡水,不需要用酸碱进行繁复的再生处理。 4、设备规模和除盐浓度适应性大: 电渗析水处理设备可以从每日几吨的小型生活饮用水淡化水站到几千吨的大、中型淡化水站。 5、用电较易解决、运行成本较低:电渗析技术也存在以下不足:

1、对离解度小的盐类及不离解的物质难以去除,例如,对水中的硅酸和不离解的有机物就不能去除掉,对碳酸根的迁移率就小一些。 2、电渗析器是由几到几百张较薄的隔板和膜组成。部件多,组装要求较高,组装不好,会影响配水均匀。 3、电渗析设备是使水流在电场中流过,当施加一定电压后,靠近膜面的滞留层中电解质的盐类含量较少。此时,水的离解度增大,易产生极化结垢和中性扰乱现象,这是电渗析水处理技术中较难掌握又必须重视的问题。 4、电渗析器本身耗水量还是较大的。虽然采取极水全部回收,浓水部分回收或降低浓水进水比例等措施,但本身的耗水量仍达20%~40%。因此,缺水地区,应用电渗析水处理技术会受到一定限制。 5、电渗析水处理对原水净化处理要求较高,需增加精密过滤设备。

高考中有关离子交换膜的电化学试题

高考中有关离子交换膜的电化学试题 离子交换膜是一种对溶液里的离子具有选择透过能力的高分子膜。因在应用时主要是利用它的离子选择透过性,又称为离子选择透过性膜.离子交换膜法在电化学工业中应用十分广泛。教材中并未专门介绍,一般是在讲解氯碱工业时介绍阳离子交换膜的应用,但在近年考试中涉及离子交换膜原理的考题屡见不鲜.一、交换膜的功能: 使离子选择性定向迁移(目的是平衡整个溶液的离子浓度或电荷)。 二、交换膜在中学电化学中的作用: 1.防止副反应的发生,避免影响所制取产品的质量;防止引发不安全因素。(如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的氯气进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的氢气混合发生爆炸)。 2.用于物质的制备、分离、提纯等。 三、离子交换膜的类型: 常见的离子交换膜为:阳离子交换膜、阴离子交换膜、特殊离子交换膜等。 四、试题赏析: 1.某同学按如图所示装置进行试验,A、B为常见金属,它们的硫酸盐可溶于水。当K闭合时,SO42-从右向左通过阴离子交换膜移向A极.下列分析正确的是 A.溶液中c(A2+)减小 B.B极的电极反应:B-2e-= B2+ C.Y电极上有H2产生,发生还原反应

D.反应初期,X电极周围出现白色胶状沉淀,不久沉淀溶解 2.(2014·全国大纲版理综化学卷,T9)右图是在航天用高压氢镍电池基础上发展起来的一种金属氢化物镍电池(MH-Ni电池)。下列有关说法不正确的是 A.放电时正极反应为:NiOOH+H 2O+e-→Ni(OH) 2 +OH- B.电池的电解液可为KOH溶液 C.充电时负极反应为:MH+OH-→M+H 2 O+e- D.MH是一类储氢材料,其氢密度越大,电池的能量密度 越高 3.(2014·福建理综化学卷,T11)某原电池装置如右图所示,电池总反应为 2Ag+Cl 2 =2AgCl。下列说法正确的是 A.正极反应为AgCl +e-=Ag +Cl- B.放电时,交换膜右侧溶液中有大量白色沉淀生成 C.若用NaCl溶液代替盐酸,则电池总反应随之改变 D.当电路中转移0.01 mol e-时,交换膜左侧溶液中约减少0.02 mol离子4.(2013·浙江高考·11)电解装置如图所示,电解槽内装有KI及淀粉溶液,中间用阴离子交换膜隔开。在一定的电压下通电,发现左侧溶液变蓝色,一段时间后, 蓝色逐渐变浅。已知:3I 2+6OH-=I+5I-+3H 2 O 下列说法不正确的是( ) A.右侧发生的电极反应式:2H 2O+2e-=H 2 ↑+2OH-

电渗析知识

电渗析知识 电渗析利用半透膜的选择透过性来分离不同的溶质粒子(如离子)的方法称为渗析。在电场作用下进行渗析时,溶液中的带电的溶质粒子(如离子)通过膜而迁移的现象称为电渗析。利用电渗析进行提纯和分离物质的技术称为电渗析法,它是20世纪50年代发展起来的一种新技术,最初用于海水淡化,现在广泛用于化工、轻工、冶金、造纸、医药工业,尤以制备纯水和在环境保护中处理三废最受重视,例如用于酸碱回收、电镀废液处理以及从工业废水中回收有用物质等。 电渗析与近年引进的另一种膜分离技术反渗透相比,它的价格便宜,但脱盐率低。当前国产离子交换膜质量亦很稳定,运行管理也很方便,自动控制频繁倒极电渗析(EDR),运行管理更加方便。原水利用率可达80%,一般原水回收率在45-70%之间。电渗析主要用于水的初级脱盐,脱盐率在45-90%之间。它广泛被用于海水与苦咸水淡化;制备纯水时的初级脱盐以及锅炉、动力设备给水的脱盐软化等。 实质上,电渗析可以说是一种除盐技术,因为各种不同的水(包括天然水、自来水、工业废水)中都有一定量的盐分,而组成这些盐的阴、阳离子在直流电场的作用下会分别向相反方向的电极移动。如果在一个电渗析器中插入阴、阳离子交换膜各一个,由于离子交换膜具有选择透过性,即阳离子交换膜只允许阳离子自由通过,阴离子交换膜只允许阴离子以通过,这样在两个膜的

中间隔室中,盐的浓度就会因为离子的定向迁移而降低,而靠近电极的两个隔室则分别为阴、阳离子的浓缩室,最后在中间的淡化室内达到脱盐的目的。 实际应用中,一台电渗析器并非由一对阴、阳离子交换膜所组成(因为这样做效率很低),而是采用一百对,甚至几百对交换膜,因而大大提高效率。 一、应用范围 目前电渗析器应用范围广泛,它在水的淡化除盐、海水浓缩制盐精制乳制品,果汁脱酸精和提纯,制取化工产品等方面,还可以用于食品,轻工等行业制取纯水、电子、医药等工业制取高纯水的前处理。锅炉给水的初级软化脱盐,将苦咸水淡化为饮用水。 电渗析器适用于电子、医药、化工、火力发电、食品、啤酒、饮料、印染及涂装等行业的给水处理。也可用于物料的浓缩、提纯、分离等物理化学过程。 电渗析还可以用于废水、废液的处理与贵重金属的回收,如从电镀废液中回收镍。 二、基本性能 (1)操作压力0.5─3.0kg /cm2左右 (2)操作电压、电流100─250V,1─3A (3)本体耗电量每吨淡水约0.2─2.0度 三、电渗析法的特点为

膜分离技术

水的深度处理工艺综述 人类对膜的认识是从自然界中存在的膜开始的,到现在,各种人工合成膜已成为了我们生活中不可或缺的一部分。其种类繁多,作用也千差万别,但他们具有一个共同的特点-选择透过性。 水的膜技术的应用开始于20世纪60年代,最早使用反渗透膜进行海水淡化。其后膜技术得到了迅速发展,并被众多领域应用。自用于反渗透脱盐后,又开发出纳滤、超滤和微滤技术,这些不同的膜都有其独特的性能,可满足不同的处理要求。 1定义 膜从广义上可以定义为两相之间的一个具有选择透过性的薄层屏障。 膜分离是指在某种推动力作用下,利用膜的选择透过性能,达到分类混合物(如溶液)中离子、分子以及某些微粒的过程。与传统过滤器的最大不同是,膜可以在离子或分子范围内进行分离,并且该过程是一种物理过程,不需发生相变化和添加助剂。在某种推动力的作用下,利用某种隔膜特定的透过性能,使溶质或溶剂分离的方法,称为膜分离。 膜分离是用天然或人工合成膜,以外界能量或化学位差作推动力,对双组份或多组分溶质和溶剂进行分离、分级、提纯和富集的方法。膜分离可以用于液相和气相分离,可以用于水溶液体系、非水溶液体系、水溶胶体系以及含有其他微粒的水溶液体系等。 分离溶质时一般叫渗析,分离溶剂时一般叫渗透。 2分类与特点 膜可以是固态的,也可以是液体甚至是气态的。膜可以是均相的或非均相的,对称的或非对称的,可以是带电的或中性的,而带电膜又可以是带正电或带负电的,或二者兼而有之。膜可以是具有渗透性的,也可以是具有半渗透性的,但不能是完全不透过性的。目前使用的分离膜绝大多数是固相膜。由于膜材料的种类非常丰富,制备条件也多种多样,一般来说膜的分类有以下几种: (1)按分离机理:反应膜、离子交换膜、渗透膜等; (2)按膜的形态:均质膜和非对称膜;

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

膜分离技术及其应用_童汉清

膜分离技术及其应用 童汉清 海金萍 (蚌埠高等专科学校食品系,蚌埠市233030) 摘 要 针对膜分离技术的一系列独特优点,介绍了工业中常用的各种分离膜的性能、材料及其各自的应用,并简述了世界上最新的膜分离技术及其发展方向。 关键词 膜分离技术 反渗透膜 超滤膜 微滤膜 0 前言 膜分离是用半透膜分离均相混合物中不同组分的一种方法。由于膜分离技术在生产中物料无相变过程,因而无需再沸器、冷凝器等设备,与蒸发、精馏等分离技术相比具有显著的节能、高效等特点,特别是对于食品工业,膜分离技术可以完好地保留食品原有色、香、味,而其营养成分又不会被高温破坏。因而膜技术在世界范围内引起人们极大关注,被誉为重大的新技术革命之一。 现代膜技术的开发还仅仅是近三十年的事情,虽然近年来有了较大的发展,但目前仍处于发展和完善的过程中。国内外膜分离技术已在许多不同行业得到应用,并取得了良好效果。 1 反渗透膜及其应用 1.1 反渗透膜的性能 反渗透膜的孔径在0.3~2nm之间,通常为非对称的微孔结构膜,压差作为操作推动力,工作压力可高达7.0~7.5M Pa,膜通量一般为0.5m3/(m2d)。 反渗透膜能截留住除水分子、氢离子、氢氧根离子以外的其它物质,因而主要用于水和其它物质的分离。 1.2 膜材料 最先开发并成功应用的反渗透膜材料是醋酸纤维素,70年代以来逐渐开发出一些新型反渗透膜材料,如芳香族聚酰胺、聚苯并咪唑、磺化聚苯撑氧、磺化聚磺酸盐、聚酰胺羧酸、聚乙烯亚胺、聚甲苯二异氰酸酯和等离子处理聚丙烯腈等。醋酸纤维素在强酸和弱碱条件下易发生水解且不耐高温,易受微生物和酶的作用,在正常使用时还会发生蠕变使透水速率降低。尽管存在这些缺点,但目前工业上最广泛使用的两种反渗透膜材料,还是首选醋酸纤维素,其次为聚酰胺。 1.3 反渗透膜的应用 1.3.1 海水淡化 反渗透膜分离技术被广泛应用于海水淡化。在全世界海水淡化装置中,约有30%用反渗透方式来实现。反渗透膜由极薄致密表层和多孔支撑层构成,具有高透水率及高脱盐率,可脱去海水中99%以上的盐离子。 1.3.2 果汁、果酒等产品的浓缩 膜浓缩是在常温下进行的。用反渗透膜对果汁、果酒进行浓缩,可保证维生素等营养成分不受破坏以及挥发质不损失,并可保留其原有的风味,这是其它浓缩技术难以做到的。另外,反渗透膜可以完全除去细菌和病毒,使产品不加任何防腐剂而延长储存期,食用更加卫生可靠。 19 《化工装备技术》第20卷第2期1999年

高考化学复习 专题7-离子交换膜在电化学装置中的应用 (2)

专题7 离子交换膜在电化学装置中的应用 日期:2019年11月10日 学号姓名 1.(2018年11月浙江选考17题)最近,科学家研发了“全氢电池”,其工作原理如图所示。 下列说法不正确 ...的是() A.右边吸附层中发生了还原反应 B.负极的电极反应是H2-2e-+2OH-=2H2O C.电池的总反应是2H2 +O2=2H2O D.电解质溶液中Na+向右移动,ClO4-向左移动 2.(2019年高考天津卷6题)我国科学家研制了一种新型的高比能量锌--碘溴液流电池,其工作原理示意图如下。图中贮液器可储存电解质溶液,提高电池的容量。下列叙述不正确的是 A.放电时,a电极反应为I2Br-+ 2e-=2I-+ Br- B.放电时,溶液中离子的数目增大

C.充电时,b 电极每增重0.65 g ,溶液中有0.02mol I - 被氧化 D.充电时,a 电极接外电源负极 3.(2019 年全国卷 I 12) 利用生物燃料电池原理研究室温下氨的合成,电池工作时MV 2+/MV +在电极与酶之间传递电子,下列说法错误的是 A .相比现有工业合成氨,该方法条件温和,同时还可提供电能 B .阴极区,在氢化酶作用下发生反应H 2 + 2MV 2+ = 2H + + 2MV + C .正极区,固氮酶为催化剂,N 2发生还原反应生成NH 3 D .电池工作时,质子通过交换膜由负极区向正极区移动 4.(2016年全国卷 I 11)三室式电渗析法处理含 Na 2SO 4 废水的原理如图3所示,采用惰性电极,ab 、cd 均为离子交换膜,在直流电场的作用下,两膜中间的Na +和SO 42- 可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室.下列叙述正确的是(B ) A .通电后中间隔室的SO 42-向正极迁移,正极区溶液pH 增大 B .该法在处理含Na 2SO 4。废水时可以得到NaOH 和H 2SO 4产品 C .负极反应为2H 2O - 4e - = O 2+ 4H +,负极区溶液pH 降低 D .当电路中通过1mol 电子的电量时,会有0.5 mol 的O 2生成 5.(2018年全国卷Ⅰ 27节选)焦亚硫酸钠(Na 2S 2O 5)在医药、橡胶、印染、食品等方面应有广泛,加答下列问题: MV + MV 2+ N 2 NH 3 H 2 H + MV + MV 2+ 电 极 电 极 氢化酶 固氮酶 2SO 4负极区正极区 浓Na 2SO 4溶液a b c d +-

离子交换法应用总结

离子交换法的发展趋势及应用 1、离子交换分离法的发展 离子交换技术有相当长的历史,早在1850 年就发现了土壤吸收铵盐时的离子交换现象,但离子交换作为一种现代分离手段,是在20 世纪40 年代人工合成了离子交换树脂以后的事。而某些经过磺化制得的天然产物都可用作离子交换剂。随着技术的发展研究制成了许多种性能优良的离子交换树脂,离子交换树脂是应用最广泛的离子交换剂。离子交换的选择性较高,适用于高纯度的分离和净化。 70 多年来离子交换分离法取得了突飞猛进的进展,随着近现代有机合成工业技术的迅速发展,开发了多种新的应用方法,应用范围日益扩大,已经由最初的水处理工业发展到当前的化工、电力、环境科学、食品加工和医疗药物等领域,特别是高新科技产业和科研领域中应用更加广泛。 2、离子交换分离法的应用 1)重金属污水处理工业 近年来,一种将传统的离子交换与电渗析有机结合的技术——电去离子技术引起了人们的注意。电去离子技术是在电场的作用下将离子交换膜和离子交换树脂相结合,实现离子的深度脱除与浓缩的新型离子分离过程。将离子交换与电渗析有机的结合起来,具有离子交换深度除盐和电渗析连续除盐的优点,同时弥补了电渗析的浓差极化所造成的不良影响,而且避免了离子交换树脂酸碱再生所造成的二次污染。此外,在超纯水生产领域,目前将电去离子技术置于反渗透之后以取代传统的离子交换混床,已成为新一代清洁生产工艺的核心技术。随着研究的不断深入,电去离子技术将成为具有很大发展潜力的重金属废水处理技术,实现废水“零排放”。 2)食品工业 离子交换树脂是食品和发酵工业产物中提纯、分离、浓缩、催化的良好材料。它广泛的应用于糖液的脱色、脱盐、软化,副产物的回收、分离、异构体拆分和 ,调节pH,葡萄糖与果糖的分离等。(1)在制酒工业中对酒类的去浊去酸去碱去SO 2 提取酒糟中的柠檬酸以及调节控制酿酒用水的水质;(2)在乳制品工业中提高乳制品的稳定性,调整乳制品中钙的含量,去除乳清中盐的含量;(3)其他方面的应用如油脂中脱酸脱咖啡因去金属离子;(4)食品添加剂的纯化、食品调味剂如

高考化学专项突破 离子交换膜在电化学装置中的应用

高考化学专项突破----离子交换膜在电化学装置中的应用 一、离子交换膜的功能:使离子有选择性的定向迁移(目的是平衡整个溶液的离子浓度或电荷)。 二、离子交换膜在电化学中的作用 (1)能将两极区隔离,阻止两极区产生的物质接触。 防止副反应的发生,避免影响所制取产品的质量; 防止引发不安全因素。(如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的Cl2进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的H2混合发生爆炸)。 (2)能选择性地通过离子,起到平衡电荷、形成闭合回路的作用。 (3)用于物质的制备、分离、提纯等。 三、离子交换膜的类型 根据透过的微粒,离子交换膜可以分为多种,在高考试题中主要出现阳离子交换膜、阴离子交换膜和质子交换膜三种。阳离子交换膜,简称阳膜,只允许阳离子通过,阻止阴离子和气体通过;阴离子交换膜,简称阴膜,只允许阴离子通过,质子交换膜只允许质子(H+)通过,不允许其他阳离子和阴离子通过。可见离子交换膜的功能在于选择性地通过某些离子和阻止某些离子来隔离某些物质。 注意:①反应物相同,不同的交换膜,迁移的离子种类不同。②同种交换膜,转移相同的电子数,如果离子所带电荷数不同,迁移离子数不同。③离子迁移依据电荷平衡,而离子数目变化量可能不相等。 四、离子交换膜类型的判断

根据电解质溶液呈中性的原则,判断膜的类型。判断时首先写出阴、阳两极上的电极反应,依据电极反应式确定该电极附近哪种离子剩余,因该电极附近溶液呈电中性,从而判断出离子移动的方向,进而确定离子交换膜的类型,如电解饱和食盐水时,阴极反应式为2H++2e-=H2↑,则阴极区域破坏水的电离平衡,OH-有剩余,阳极区域的Na+穿过离子交换膜进入阴极室,与OH-结合生成NaOH,故电解食盐水中的离子交换膜是阳离子交换膜。 五、真题再现 1、(2019·全国卷Ⅰ)利用生物燃料电池原理研究室温下氨的合成,电池工作时MV2+/MV+ 在电极与酶之间传递电子,示意图如下所示。下列说法错误的是 A.相比现有工业合成氨,该方法条件温和,同时还可提供电能 B.阴极区,在氢化酶作用下发生反应H 2+2MV2+2H++2MV+ C.正极区,固氮酶为催化剂,N2发生还原反应生成NH3 D.电池工作时质子通过交换膜由负极区向正极区移动 【答案】B 【解析】 【分析】由生物燃料电池的示意图可知,左室电极为燃料电池的负极,MV+在负极失电子发生氧化反应生成MV2+,电极反应式为MV+?e?= MV2+,放电生成的MV2+在氢化酶的作用下与H2反应生成H+和MV+,反应的方程式为H2+2MV2+=2H++2MV+;右室电极为燃料电池

电渗析法综述

电渗析技术综述 摘要:电渗析技术属于膜分离技术,广泛应用于食品、化工、废水处理等行业的分离纯化的生产过程中,有效率高、经济节能等优点。本文重点介绍电渗析技术的原理和分类,还有电渗析技术在食品行业中的应用及对其发展的展望。 关键词:电渗析原理分类应用展望 1、电渗析 电渗析是在直流电场作用下,利用离子交换膜的选择透过性,带电离子透过离子交换膜定向迁移,从水溶液和其他不带电组分中分离出来,从而实现对溶液的浓缩、淡化、精制和提纯的目的。目前电渗折技术己发展成一个大规模的化工单元过程,在膜分离领域占有重要地位。广泛应用于化工脱盐,海水淡化,食品医药和废水处理等领域,在某些地区已成为饮用水的主要生产方法,具有能量消耗少,经济效益显著;装置设计与系统应用灵活,操作维修方便,不污染环境,装置使用寿命长,原水的回收率高等优点。[1] 2、电渗析技术的发展简介 电渗析技术的研究始于20世纪初的德国,1903年,Morse和Pierce把两根电极分别置于透析袋内部和外部的溶液中发现带点杂质能迅速地从凝胶中除去;1924年,Pauli采用化工设计的原理,改进了Morse的试验装置,力图减轻极化,增加传质速率,直至20世纪50年代离子交换膜的制造进入工业化生产后,电渗析技术才进入实用阶段。其中经历了三大革新:一是具有选择性离子交换膜的应用,二是设计出多层电渗析的组件,三是采用倒换电极的操作式。目前电渗析技术已发展成一个大规模的化工单元过程,在膜分离领域占有重要地位。电渗析技术的分类 3.1、倒极电渗析 倒极电渗析就是根据电渗析原理,每隔一定时间(一般为15~20min),正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。在20世纪80年代后期,倒极电渗析器的使用,大大提高了电渗析操作电流和水回收率,延长了运行周期。EDR在废水处理方面尤其有独到之处,其浓水循环、水回收率最高可达95%。 3.2、液膜电渗析 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。例如,固体离子交换膜对铂族金属(锇、钌等)的盐溶液进行电渗析时,会在膜上形成金属二氧化物沉淀,这将引起膜的过早损耗,并破坏整个工艺过程,应用液膜则无此弊端。 3.3、填充床电渗析 填充床电渗析是将电渗析与离子交换法结合起来的一种新型水处理方法,它的最大特点是利用水解离产生的H+和OH-自动再生填充在电渗析器淡水室中的混床离子交换树脂,从而实现了持续深度脱盐。它集中了电渗析和离子交换法的优点,提高了极限电流密度和电流效率。1983年Ke2dem.o.及其同事们提出了填充混合离子交换树脂电渗析过程除去离子的思想,1987年,Mlillpore公司推出了这一产品。填充床电渗析技术具有高度先进性和实用性,在电子、医药、能源等领域具有广阔的应用前景,可望成为纯水制造的主流技术。 3.4、双极性膜电渗析

分离技术

1.简述分离技术的分类及其分离原理? (一)机械分离对象是由两相或两相以上所组成的混合物,其目的是简单地将各相加以分离,过程中间不涉及传质过程。 名称分离因子分离原理举例 沉降重力密度差水处理 离心离心力密度差油精制、牛乳脱脂 旋风分离惯性流动力密度差喷雾干燥 过滤过滤介质粒子大小除菌、喷雾干燥/果汁澄清、 颗粒分离 压榨机械力压力下液体流动油脂生产 (二)传质分离是指在分离过程中,有物质传递过程的发生,传质分离的原料,可以是均相体系,也可以是非均相体系。分为两大类:平衡分离过程和速率控制分离过程1平衡分离过程为借助分离媒介(如热能、溶剂、吸附剂等)使均相混合物系统变为两相系统,再以混合物中各组分在处于相平衡的两相中不等同的分配为依据而实现分离。2速率控制分离过程是指借助某种推动力,如浓度差、压力差、温度差、电位差等的作用,某些情况下在选择性透过膜的配合下,利用各组分扩散速度的差异而实现混合物的分离操作。分为膜分离和场分离(三)其他物理场辅助分离技术1.超声波萃取 2.微波辅助萃取 3.超声微波协同萃取 2食品为什么要分离?1获得需要的产品①农作物中非食用物质与食用物质的分离。②多层次、多样化产品的需求。2食品安全性的要求①农药残留。②工业“三废”进入食物链危害人体健康。③天然食品在生长过程中次生代谢产生多种微量的有毒成分。 3食品分离过程的特点:分离对象种类多,性质复杂。产品质量与分离过程密切相关。产品要求食用安全。分离对象在分离过程中易腐败。 4食品分离技术的选择原则:先要确定分离的目的,了解待分离混合物中各组分的物理,化学,生物学方面的性质,并要充分关注分离的目标成分。对目标成分,要了解目标成分的性质,它的相对分子质量,化学结构,理化性质,电荷性,热敏性以及生物活性等基础性资料对确定分离方法的选择起决定性作用。 5食品分离技术的考虑因素:产品纯度,回收率(主要)产品价格目标产物的特性混合物中的分子性质经济因素安全与环保 6食品分离技术在食品工业中的地位与作用 1. 是重要的食品工艺过程之一2. 提高农作物综合利用程度,生产高附加值的产品。3.改进食品的营养与风味。4. 符合卫生,安全要求。5. 改变生产面貌。 膜分离技术 1按膜的性质分:⒈天然膜⒉合成膜.按膜的结构分:⒈多孔膜⒉致密膜 3.液膜.按膜的作用机理分:1.吸附性膜2.扩散性膜 3.离子交换膜4.选择渗透膜5.非选择性膜 2膜分离技术的原理:膜分离概念:用天然的或人工合成的膜,以外加压力或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离,分级,提纯或富集的方法,统称膜分离法。 3膜分离技术特点:在常温下进行,不发生相变化,能耗低,在密闭容器中进行,不用添加化学试剂、添加剂,选择性好,使用范围广,操作简便,易自动化操作 4膜分离的特点1.不发生相变,能耗低。2.一般在常温下操作不需加热,适应于热敏性物质 3.应用范围广。4.以压力为推动力,装置简单、体积小、操作容易、

离子交换与膜处理技术作业(给排)

1、硬度的分类及特点?硬度的单位?什么是碱度? 2、书本P420第2题? 3、石灰软化处理后水质有何变化?为什么不能将水中硬度降为零? 4、实现逆流再生的关键是什么? 5、离子交换树脂的基本性能? 6、强酸、强碱离子交换树脂进行交换反应时的影响因素是什么? 7、简述Na离子交换法、H离子交换法、H—Na离子交换法? 8、弱酸、弱碱树脂的工艺特性? 9、请描述复床、混合床、双层床除盐系统? 10、何为电渗析?说明电渗析的极化与沉淀现象,它有何危害?应如何防止? 11、何为反渗透? 12、何为超滤? 13、何为除盐?除盐的常用方法?什么是除盐的水质预处理?

1、硬度的分类及特点?硬度的单位?什么是碱度? 碳酸盐硬度(Hc):由于水中含有Ca(HCO3)2和Mg(HCO3)2而形成的硬度,经煮沸后可把硬度去掉,这种硬度称为碳酸盐硬度,亦称暂时硬度。 非碳酸盐硬度(Hn):由于水中含有CaSO4和MgSO4等盐类物质而形成的硬度,经煮沸后也不能去除,这种硬度称为非碳酸盐硬度,亦称永久硬度。 ? 硬度的习惯单位为meq/L ,是当量浓度(Ca2+和Mg2+的毫克当量数/体 积) ? 法定计量单位是物质的量浓度(摩尔浓度mol/L 或mmol/L ),基本单元 选用1/2Ca2+和1/2Mg2+(当量粒子),此时, meq/L= mmol/L ,当然基本单元也可用Ca2+和Mg2+ ? 10mgCaO/L 为1度(德国度) ? mgCaCO3/L (美国,日本) CaCO3的质量/体积 ? 1 meq/L =2.8德国度=50 mgCaCO3/L ? 碱度的概念:水解时能直接产生OH-或直接接受质子H+的物质 ? 强碱:NaOH ,微量强碱的存在PH>10 ? 弱碱:NH3; ? 强碱弱酸盐:各种碳酸盐、重碳酸盐、硅酸盐、磷酸盐、硫化物、腐殖 酸盐等。 ? 天然水中,碱度主要是碳酸盐、重碳酸盐 2、书本P420第2题? 答:n=m/M B ,m=n ×M B ,n 为摩尔数,与基本粒子多少有关,M B 为摩尔质量, 二者刚好同步反向变化,所以质量(包括质量浓度)与基本粒子的形式无关。如相同质量的Ca2+,基本单元选Ca2+,则摩尔质量为40,摩尔数为n ,基本单元选1/2Ca2+,摩尔质量为20,摩尔数为2n ,质量不变。 3、石灰软化处理后水质有何变化?为什么不能将水中硬度降为零? 石灰软化的实际过程: +↓→++↓→+2 32232 322O 2H 2CaCO Ca(OH))Ca(HCO (6)O H CaCO Ca(OH)CO (5)

电渗析水处理技术的优点和不足

电渗析水处理技术的优点和不足 [2014-04-29] 电渗析是以电位差为推动力,利用离子交换膜的选择透过性,将带电组分的盐类与非带电组分的水分离的薄膜分离技术,这种技术利用离子交换膜的特性,使水得到淡化除盐。电渗析水处理技术首先被用于苦咸水的化,而后逐步扩大到海水淡化和制取工业纯水的应用中。 电渗析技术与离子交换技术相比,具有以下优点: 1、能量消耗少: 电渗析器在运行中,不发生相的变化,只是用电能来迁移水中已解离的离子。它耗用的电能一般是与水中含盐量成正比的。大多数人认为,对含盐量4000~5000mg/L以下的苦咸水的变化,电渗析技术是耗能少的较经济的技术。 2、药剂耗量少,环境污染小: 离子交换技术在树脂交换失效后要用大量酸、碱进行再生,水洗时有大量废酸、碱排放,而电渗析系统仅酸洗时需要少量酸。 3、设备简单,操作方便: 电渗析器是用塑料隔板与离子交换膜剂电极板组装而成的,它的主体配套设备都比较简单,而且膜和隔板都是高分子材料制成,因此,抗化学污染和抗腐蚀性能均较好。在运行时通电即可得淡水,不需要用酸碱进行繁复的再生处理。 4、设备规模和除盐浓度适应性大: 电渗析水处理设备可以从每日几十吨的小型生活饮用水淡化水站到几千吨的大、中型淡化水站。 5、用电较易解决、运行成本较低: 电渗析技术也存在以下不足: 1、对离解度小的盐类及不离解的物质难以去除,例如,对水中的硅酸和不离解的有机物就不能去除掉,对碳酸根的迁移率就小一些。 2、电渗析器是由几十到几百张较薄的隔板和膜组成。部件多,组装要求较高,组装不好,会影响配水均匀。 3、电渗析设备是使水流在电场中流过,当施加一定电压后,靠近膜面的滞留层中电解质的盐类含量较少。此时,水的离解度增大,易产生极化结垢和中性扰乱现象,这是电渗析水处理技术中较难掌握又必须重视的问题。

电渗析课件

电渗析过程原理及应用 一、电渗析过程原理 电渗析是指在直流电场作用下,溶液中的荷电离子选择性的定向迁移,透过离子交换膜并得以去除的一种膜分离技术。 电渗析过程的原理如图所示,在正负两电极之间交替地平行放置阳离子和阴离子交换膜,依次构成浓缩室和淡化室,当两膜形成的隔室中充入含离子的溶液并接上直流电源后,溶液中带正电荷的阳离子在电场力作用下向阴极方向迁移,穿过带负电荷的阳离子交换膜,而被带正电荷的阳离子交换膜所挡住,这种与膜所带电荷相反的离子透过膜的现象被称为反离子迁移。同理,溶液中带负电荷阴离子在电场力作用下向阳极运动,透过带正电荷的阴离子交换膜,而被阻于阳离子交换膜。其结果是使第2、4浓缩室的水中离子浓度增加;而与其相间的第3淡化室的浓 在实际的电渗析系统中,电渗析器通常由100-200对阴、阳离子交换膜与特制的隔板等组装而成,具有相应数量的浓缩室和淡化室。含盐溶液从淡化室计入,在直流电场的作用下,溶液中荷电离子分别定向迁移并透过相应离子交换膜,使淡化室溶液脱盐淡化并引出,而透过离子在浓缩室中增浓排出。由此可知,采用电渗析过程脱除溶液中的离子基于两个基本条件:直流电场的作用,使溶液中正负离子分别向阴极和阳极做定向迁移;离子交换膜的选择透过性,使溶液中的荷电离子在膜上实现反离子迁移。 电渗析器, 就是利用多层隔室中的电渗析过程达到除盐的目的,电渗析器由 隔板、离子交换膜、电极、夹紧装置等主要部件组成。 电渗析器中,阴阳离子交换膜交替排列是最常见的一种形式,事实上,对一定的分离要求,电渗析器也可单独由阴离子或阳离子交换膜组成。 电渗析脱盐过程与离子交换膜的性能有关,具有高选择性渗透率、低电阻力、优良的化学和热稳定性以及一定的机械强度是离子交换膜的关键。

膜分离的发展及其工业应用

膜分离技术的发展及其工业应用 摘要:膜分离技术作为新型高科技分离技术之一,倍受众多工业的关注。综述了膜分离技术的发展,及今后的发展趋势,对其在石化行业、水处理、食品行业主要工业应用进行较为详细的阐述。 关键词:膜分离技术;膜发展;膜应用 分离技术的发展与人类的生产实践密切相关,伴随着生产力的发展,科学技术的进步,分离的方法也从简到繁,从低级到高级,工艺从一种方法到多种联用。已由过去简单的蒸馏分离技术发展到现在复杂的超临界萃取技术,膜分离技术等。 膜分离技术[1],顾名思义,是利用一张特殊制造的,有选择透过性能的薄膜,在外力推动下对混合物进行分离、提纯、浓缩的一种新型分离技术。实践证明,当不能经济地用常规的分离方法得到较好的分离时,膜分离作为一种分离技术往往是非常有用的,并且膜分离技术还可以和常规的分离方法结合起来使用,使分离技术投资更为经济。表1是几种主要的膜分离过程及其传递机理,推动力,透过物,膜类型的比较。 表1几种主要的膜分离过程 1发展史 膜分离在生物体内广泛存在,而人们对其的认识、利用、模拟,及至目前的人工合成的过程却是极其漫长而曲折的。膜分离技术发展大致可分为3个阶段: ——50年代,奠定基础的阶段,主要是对膜分离科学的基础理论研究和膜分离技术的初期工业开发; ——60年代~80年代,发展阶段,主要是使一些膜分离技术实现工业化生产,同时又开发研制了几种重要膜分离过程; ——90年代~至今,发展深化阶段,主要是不断提高已实现工业化的膜分离水平,扩大使用范一些难度较大的膜分离技术的开发得到突飞猛进的发展,并开拓了新的膜分离技术。

1.1膜分离技术的起源 200多年前,Abbe Nollet在1748年观察到水可以通过覆盖在盛有酒精溶液瓶口的猪膀胱进入瓶中,发现了渗透现象。但是,直到19世纪中叶Gra-ham发现了透析(Dialysis)现象,人们才开始对膜分离现象重视起来,并开始研究。最初,许多生理学家使用的膜主要是动物膜。1867年Moritz Taube制成了人类历史上第一张合成膜——亚铁氰化钠膜,并以近代的观点予以论述。随后,Preffer用这种膜在蔗糖和其他溶液进行试验,把渗透压和温度及溶液浓度联系起来。接下来Van′t Hoff以Preffer的结论为出发点,建立了完整的稀溶液理论。1911年Donnan研究了荷电体传递中的平衡现象。1920年,Gibbs从热力学角度提供了认识渗透压现象和它与其他热力学性能关系的理论。1925年世界上第一个滤膜公司(Sartorius)在德国Gottingen公司成立。1930年Treorell Meyer,Sievers等对膜电动势的研究,为电渗析和膜电极的发明打下了基础。1950年W.Juda等试制成功第一张具有实用价值的离子交换膜,电渗析过程得到迅速发展。 1.2膜分离技术的发展 60年代末期,加利福尼亚大学的Yuster、Loeb、Sourirajan等对膜材料进行了广泛的筛选工作,结果发现乙酸纤维素也具有特殊的半透性质。为了改进乙酸纤维素的透水性能,他们采用过氯酸镁水溶液为添加剂,经过反复试验,终于在1960年首次制成世界上具有历史意义的高性能非对称的乙酸纤维素反渗透膜,这使得Allied-Singned公司开创了RO工业应用的时代。随后,制膜技术不断机械化、自动化,膜的形式也从平板膜发展到管式膜及中空膜等。1971年Du Pont化学公司也推出三醋酸纤维素中空纤维透过器。微滤、反渗透、超滤、透析及气体分离等膜分离技术都在60~80年代相继得到迅速发展。 1.3发展趋势 近10多年来世界各国对膜分离技术的重视,极大地促进膜技术的发展,90年代Get Gmb H公司推出了渗透蒸发。中科院近来开发的某种新型渗透汽化膜及其工艺过程,将变革MTBE 的生产工艺,产生可观的经济效益。近几年开发的纳滤膜分离技术,其膜的孔径比反渗透膜稍大,截留粒子的直径为几个nm,分子量为200~500,允许通过单价离子,低分子量有机溶剂。我国对纳滤技术的开发和应用也相当广泛。 随着新型膜材料的开发和膜过程的改进,膜分离技术将不仅可以替代某些单元操作,而且可以与许多单元操作相结合,以取得更好的分离效果。例如将膜分离技术与催化反应结合起来形成膜反应器 1 膜分离技术概述 随着纳滤分离技术越来越广泛地应用于食品、医药、生化行业的各种分离、精制和浓缩过程,纳滤膜分离机理的研究也成为当今膜科学领域的研究热点之一。 1.1 微滤 微滤主要是根据筛分原理以压力差作为推动力的膜分离过程。在给定压力下[(50~100) kPa],溶剂、盐类及大分子物质均能透过孔径为(0.1~20)Lm的对称微孔膜,只有直径大于50nm的微细颗粒和超大分子物质被截留,从而使溶液或水得到净化。微滤技术是目前所有膜技术中应用最广、经济价值最大的技术。主要用于悬浮物分离、制药行业的无菌过滤等。在微滤方面今后应着重研究开发廉价膜组件;耐高温抗溶剂的膜及组件;不污染,易清洗的长寿命膜。 1.2 超滤 超滤和微滤一样,也是利用筛分原理以压力差为推动力的膜分离过程。同微滤过程相比超滤的分离技术,可用于传统分离手段较难处理的恒沸物、近沸物系的分离,微量水的脱除及水中微量有机物的去除。渗透蒸发是利用溶液的吸附扩散原理,以膜两侧的蒸汽压差[(0~100)kPa])做为推动力,使一些组分首先选择性地溶解在膜料液的侧表面,再扩散透过膜,最

对比供应室水处理设备混床和电渗析优点

对比供应室水处理设备混床和电渗析优点 电去离子简称EDI是离子交换混合床和电渗析相结合的一种新型膜分离技术。医院中央纯水设备公司中医院水处理体现了混床和电渗析的优点,并克服了它们各自的缺点,无需酸碱,而能连续制取高品质纯水,因而又称连续去离子简称CDI,是一种具有革命性意义的水处理技术。 一、工作原理 1.离子交换除盐过程:所谓离子交换就是水中的离子和离子交换树脂上的功能基团所进行的等电荷反应。它利用阴、阳离子交换树脂上的活性基团对水中阴、阳离子的不同选择性吸附特性,在水与离子交换树脂接触的过程中,阴离子交换树脂中的氢氧根离子(OH-)同溶解在水中的阴离子(例如CI-等)交换,阳离子交换树脂中的氢离子(H+)同溶解在水中的阳离子(例如Na+等)交换。从而使溶解在水中的阴、阳离子被去除,达到纯化的目的。 2.电渗析脱盐过程:电渗析技术利用多组交替排列的阴、阳离子交换膜,这种膜具有很高的离子选择透过性,阳膜排斥水中阴离子而吸附阳离子,阴膜排斥水中的阳离子,而吸附阴离子。在外直流电场的作用下,淡水室中的离子做定向迁移,阳离子穿过阳膜向负极方向运行,并被阴膜阻拦于浓水室中。阴离子穿过阴膜而向正极方向运动,并被阳膜阻拦于浓水室中。从而达到脱盐的目的。 3.EDI的脱盐过程:EDI的核心实际上就是在电渗析的淡水室填装了阴、阳离子交换树脂,使淡水室的脱盐过程发生了质的变化,它在运行过程中能同时进行着三个主要过程:(1)在直流电场作用下,水中电解质通过离子交换膜发生选择性迁移;(2)阴阳离子交换树脂对水中电解质进行着离子交换,并构成“离子通道”;(3)离子交换树脂界面水发生极化所产生的H+和OH-对交换树脂进行着电化学再生。EDI对离子的脱除顺序与离子交换树脂对离子的吸附顺序相同,在EDI组件中的离子交换树脂,沿淡水流向按其工作状态可以分为三个层面,第一层为饱和树脂层,第二层为混合树脂层,第三层为保护树脂层。 二、EDI装置的进水水质要求 EDI装置的进水必须经过前期处理,使其符合以下所列标准才能保证进水不含有对EDI 装置的膜和树脂有害的成分。(1)进水总盐量(CaCO3计):<25ppm或50μs/cm(2)TOC: <0.5ppm(3)PH值:5.0~9.0(4)余氯:<0.05ppm(5)硬度(CaCO 3 计):<2.0ppm(6)Fe、Mn、H2S:<0.01ppm(7)可溶硅:<0.5ppmEDI水处理设备 三、主要技术特点与性能指标 1)脱盐率大于99.9%,效率远远高于两级反渗透和单纯的离子交换;(2)较传统的离子交换法脱盐节约树脂95%以上;(3)离子交换树脂不需用酸碱再生,节约大量酸碱和清洗用水,降低劳动强度;(4)清洁生产,无废水处理问题,利于环保;(5)自动化程度高,易维护,可设计成完善的膜技术高纯水生产线;(6)产水电阻率15~18MΩ·cm,pH6.5~7.0,硅<1.0ppb,彻底无菌;(7)占地面积小,单一系统连续运转,不需建设备用系统。

相关文档
相关文档 最新文档