文档库 最新最全的文档下载
当前位置:文档库 › 微电子制造技术

微电子制造技术

题库---微电子工艺原理

微电子工艺原理复习知识点与题库 一、绪论微电子工艺的概述 知识点:集成度、摩尔定律、微电子系统的概念 1集成电路的制作可以分成三个阶段:①硅晶圆片的制作;②集成电路的制作;③集成电路的封装。 2评价发展水平:最小线宽,硅晶圆片直径,DRAM容量 二、晶体结构和晶体生长 知识点: 5金刚石结构特点:共价四面体,内部存在着相当大的“空隙” 6面心立方晶体结构是立方密堆积,(111)面是密排面。 7金刚石结构可有两套面心立方结构套购而成,面心立方晶格又称为立方密排晶格。 8双层密排面的特点:在晶面内原子结合力强,晶面与晶面之间距离较大,结合薄弱。两个双层面间,间距很大,而且共价键稀少,平均两个原子才有一个共价键,致使双层密排面之间结合脆弱 9金刚石晶格晶面的性质:由于{111}双层密排面本身结合牢固,而双层密排面之间相互结合脆弱,在外力作用下,晶体很容易沿着{111}晶面劈裂。 由{111}双层密排面结合牢固,化学腐蚀就比较困难和缓慢,所以腐蚀后容易暴露在表面上。因{111}双层密排面之间距离很大,结合弱,晶格缺陷容易在这里形成和扩展。 {111}双层密排面结合牢固,表明这样的晶面能量低。由于这个原因,在晶体生长中有一种使晶体表面为{111}晶面的趋势。 10肖特基缺陷:如果一个晶格正常位置上的原子跑到表面,在体内产生一个晶格空位,称肖特基缺陷。 11弗伦克尔缺陷:如果一个晶格原子进入间隙,并产生一个空位,间隙原子和空位是同时产生的,这种缺陷为弗伦克尔缺陷。 12堆垛层错:在密堆积的晶体结构中,由于堆积次序发生错乱 13固溶体:当把一种元素B(溶质)引入到另一种元素A(溶剂)的晶体中时,在达到一定浓度之前,不会有新相产生,而仍保持原来晶体A的晶体结构,这样的晶体称为固溶体。 14固溶度:在一定温度和平衡态下,元素B能够溶解到晶体A内的最大浓度,称为这种杂质在晶体中的最大溶解度 15固溶体分类:替位式固溶体,间隙式固溶体 16某种元素能否作为扩散杂质的一个重要标准:看这种杂质的最大固溶度是否大于所要求的表面浓度,如果表面浓度大于杂质的最大固溶度,那么选用这种杂质就无法获得所希望的分布。 题目 三扩散工艺 知识点:

微电子工艺学试卷(A卷)及参考答案

华中科技大学2010—2011学年第二学期 电子科学与技术专业《微电子工艺学》试卷(A 卷) 一、判断下列说法的正误,正确的在后面括号中划“√”,错误的在后面括号中划“×”(本大题共12小题,每小题2分,共24分) 1、用来制造MOS 器件最常用的是(100)面的硅片,这是因为(100)面的表面状态更有利于控制MOS 器件开态和关态所要求的阈值电压。(√) 2、在热氧化过程的初始阶段,二氧化硅的生长速率由氧化剂通过二氧化硅层的扩散速率决定,处于线性氧化阶段。( × ) 3、在一个化学气相淀积工艺中,如果淀积速率是反应速率控制的,则为了显著增大淀积速率,应该增大反应气体流量。( × ) 4、LPCVD 紧随PECVD 的发展而发展。由660℃降为450℃,采用增强的等离子体,增加淀积能量,即低压和低温。(×) 5、蒸发最大的缺点是不能产生均匀的台阶覆盖,但是可以比较容易的调整淀积合金的组分。(×) 6、化学机械抛光(CMP)带来的一个显著的质量问题是表面微擦痕。小而难以发现的微擦痕导致淀积的金属中存在隐藏区,可能引起同一层金属之间的断路。(√) 7、曝光波长的缩短可以使光刻分辨率线性提高,但同时会使焦深线性减小。如果增大投影物镜的数值孔径,那么在提高光刻分辨率的同时,投影物镜的焦深也会急剧减小,因此在分辨率和焦深之间必须折衷。( √ ) 8、外延生长过程中杂质的对流扩散效应,特别是高浓度一侧向异侧端的扩散,不仅使界面附近浓 度分布偏离了理想情况下的突变分布而形成缓变,且只有在离界面稍远处才保持理想状态下的均匀分布,使外延层有效厚度变窄。( × ) 9、在各向同性刻蚀时,薄膜的厚度应该大致大于或等于所要求分辨率的三分之一。如果图形所要求的分辨率远小于薄膜厚度,则必须采用各向异性刻蚀。( × ) 10、热扩散中的横向扩散通常是纵向结深的75%~85%。先进的MOS 电路不希望发生横向扩散, 因为它会导致沟道长度的减小,影响器件的集成度和性能。(√) 11、离子注入能够重复控制杂质的浓度和深度,因而在几乎所有应用中都优于扩散。( ×) 12、侧墙用来环绕多晶硅栅,防止更大剂量的源漏注入过于接近沟道以致可能发生源漏穿通。(√) 二、选择填空。 (本大题共8小题,每小题2分,共16分。在每小题给出的四个选项 中,有的只有一个选项正确,有的有多个选项正确,全部选对得2分,选对但不全的得1分,有选错的得0分) 1、微电子器件对加工环境的空气洁净度有着严格的要求。我国洁净室及洁净区空气中悬浮粒子洁净度标准GB50073-2001中,100级的含义是:每立方米空气中大于等于0.1 m 的悬浮粒子的最大允许个数为( B ) A 、35; B 、100; C 、102; D 、237。 2、采用二氧化硅薄膜作为栅极氧化层,是利用其具有的( A 、D ) A 、高电阻率; B 、高化学稳定性; C 、低介电常数; D 、高介电强度。 3、如果淀积的膜在台阶上过度地变薄,就容易导致高的膜应力、电短路或者在器件中产生不希望的(A )。 A. 诱生电荷 B. 鸟嘴效应 C. 陷阱电荷 D. 可移动电荷 4、浸入式光刻技术可以使193 nm 光刻工艺的最小线宽减小到45 nm 以下。它通过采用折射率高的 一、密封线内不准答题。 二、姓名、学号不许涂改,否则试卷无效。 三、考生在答题前应先将姓名、学号、年级和班级填写在指定的方框内。 四、试卷印刷不清楚。可举手向监考教师询问。 注意

微电子技术及其发展

微电子技术及其发展 1200240227 杨晓东21世纪是高新技术时代的高速发展时期,随着科技不断进步与创新,电子行业逐渐占据重要地位。科学家们逐渐发现了微电子行业的巨大作用。那么什么是微电子呢?微电子在现代化进程中有哪些应用呢?它对一些科技发展是否起着不可或缺的作用呢?我们国家对于微电子的发展到了哪一步呢?国家又采用了什么政策呢?微电子是否和我们大学生青年息息相关呢?带着这些疑问,我们一同去探讨。 首先,到底什么是微电子呢?微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支。尽管只是作为电子学的分支学科,它主要研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子学又是信息领域的重要基础学科,在这一领域上,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息获取的科学,构成了信息科学的基石,其发展直接影响着整个信息技术的发展。微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。微电子学是一门综合性很强的边缘学科,其中包括了半导体器件物理、集成电路工艺和集成电路及系统的设计、测试等多方面的内容;涉及了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试和加工、图论、化学等多个领域。 可见微电子是一门极其复杂的电子科学。因为其广泛的应用,近年来在军事科技,通信及太空探索等方面得到迅速发展。微电子技术是高科技和信息产业的核心技术。微电子产业是基础性产业,之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。另外,现代战争将是以集成电路为关键技术、以电子战和信息战为特点的高技术战争。几乎所有的传统产业只要与微电子技术结合,用集成电路芯片进行智能改造,就会使传统产业重新焕发青春。例如微机控制的数控机床己不再是传统的机床;又如汽车的电子化导致汽车工业的革命,目前先进的现代化汽车,其电子装备已占其总成本的70%。进入信息化社会,集成电路成为武器的-个组成单元,于是电子战、智能武器应

微电子工艺原理习题

微电子工艺原理习题 一、填空题 1.传统集成电路制造工艺的发展以的出现作为大致的分界线,现代集成电路制造工艺进入超大规模集成电路后又以工艺的作为划分标志。 2.能提供多余空穴的杂质称为,P型半导体中的多子是。 3.多晶硅转变成单晶硅的实质是。 4.单晶硅拉制过程中引晶阶段的温度选择非常重要,温度过高时会造成,温度过低时会形成。 5.SiO 2 网络中氧的存在有两种形式,其中原子浓度越高,网络的强度越强;原子浓度越高,网络的强度越弱。 6.目前常用的两种掺杂技术是和。 7.完整的光刻工艺应包括和两部分,随着集成电路生产在微细加工中的进一步细分,后者又可独立成为一个工序。 8.伴随刻蚀工艺实现的图形转换发生在和之间。 9.按照功能和用途进行分类,集成电路可以分为和两类。 10.能提供多余电子的杂质称为,N型半导体中的少子是。11.固溶体分为替位式固溶体和间隙式固溶体,两类大部分施主和受主杂质都与硅形成 固溶体。 12.单晶硅的性能测试涉及到的测试、的测试和缺陷检验等多个方面。 13.SiO 2中掺入杂质的种类对SiO 2 网络强度的影响表现在:掺入Ⅲ族元素如硼时,网络强 度;掺入Ⅴ族元素如磷时,网络强度。 14.常用的芯片封装方法有、和陶瓷封装。 15.光刻胶又叫,常用的光刻胶分为和两类。

1.下列有关集成电路发展趋势的描述中,不正确的是。 (A)特征尺寸越来越小(B)晶圆尺寸越来越小 (C)电源电压越来越低(D)时钟频率越来越高 2.下面几种薄膜中,不属于半导体膜的是。 (A)SiO 2 膜(B)单晶硅膜(C)多晶硅膜(D)GaAs膜 3.下列有关芯片封装的描述中不正确是。 (A)金属封装热阻小有良好的散热性能(B)塑料封装机械性能差,导热能力弱(C)金属封装成本低,塑料封装成本高(D)陶瓷封装的气密性好,但脆性较高4.下列选项中属于光刻工艺三要素之一的是。 (A)曝光(B)光刻胶(C)显影(D)刻蚀 5.下列有关扩散的几种描述中不正确的是。 (A)扩散是一种掺杂技术。(B)扩散有气态扩散、液态扩散和固态扩散三种。(C)替位型杂质在硅中的扩散方式有替代扩散、空位扩散以及间隙扩散三种。(D)替位型杂质的掺入不会改变材料的电学性质。 6.下列关于光刻胶的描述中正确的是。 (A)负胶具有较高的固有分辨率(B)正胶成本低,适合大批量生产(C)正胶的分辨率高,抗干法腐蚀能力强(D)负胶粘附性差,抗湿法腐蚀能力弱7.硅片中同时有浅施主和浅受主时,导电类型和载流子浓度由决定。 (A)杂质浓度差(B)施主杂质(C)受主杂质(D)杂质浓度和 8.下面几种材料的薄膜中,不属于介质膜的是。 (A)SiO 2膜(B)Si 3 N 4 膜(C)多晶硅膜(D)Al 2 O 3 膜 9.下列因素中对扩散系数大小不会造成影响的是。 (A)温度(B)杂质种类(C)扩散环境(D)杂质浓度变化率10.关于干法刻蚀的正确描述是。 (A)化学性刻蚀选择比高且是各向异性刻蚀; (B)反应离子刻蚀(RIE)兼具各向异性与高选择比等优点; (C)化学性刻蚀方向性好,可获得接近垂直的刻蚀侧墙; (D)物理性刻蚀的选择性好。

微电子工艺技术-复习要点答案

第四章晶圆制造 1.CZ法提单晶的工艺流程。说明CZ法和FZ法。比较单晶硅锭CZ、MCZ和FZ三种生长方法的优缺点。 答:1、溶硅2、引晶3、收颈4、放肩5、等径生长6、收晶。CZ法:使用射频或电阻加热线圈,置于慢速转动的石英坩埚内的高纯度电子级硅在1415度融化(需要注意的是熔硅的时间不宜过长)。将一个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。使其沿着籽晶晶体的方向凝固。籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。 FZ法:即悬浮区融法。将一条长度50-100cm 的多晶硅棒垂直放在高温炉反应室。加热将多晶硅棒的低端熔化,然后把籽晶溶入已经熔化的区域。熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。 CZ法优点:①所生长的单晶的直径较大,成本相对较低;②通过热场调整及晶转,坩埚等工艺参数的优化,可以较好的控制电阻率径向均匀性。缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶。 FZ法优点:①可重复生长,提纯单晶,单晶纯度较CZ法高。②无需坩埚、石墨托,污染少③高纯度、高电阻率、低氧、低碳④悬浮区熔法主要用于制造分离式功率元器件所需要的晶圆。缺点:直径不如CZ法,熔体与晶体界面复杂,很难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。 MCZ:改进直拉法优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀性 2.晶圆的制造步骤【填空】 答:1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。 2、切片 3、磨片和倒角 4、刻蚀 5、化学机械抛光 3. 列出单晶硅最常使用的两种晶向。【填空】 答:111和100. 4. 说明外延工艺的目的。说明外延硅淀积的工艺流程。 答:在单晶硅的衬底上生长一层薄的单晶层。 5. 氢离子注入键合SOI晶圆的方法 答:1、对晶圆A清洗并生成一定厚度的SO2层。2、注入一定的H形成富含H的薄膜。3、晶圆A翻转并和晶圆B键合,在热反应中晶圆A的H脱离A和B键合。4、经过CMP和晶圆清洗就形成键合SOI晶圆 6. 列出三种外延硅的原材料,三种外延硅掺杂物【填空】 7、名词解释:CZ法提拉工艺、FZ法工艺、SOI、HOT(混合晶向)、应变硅 答:CZ法:直拉单晶制造法。FZ法:悬浮区融法。SOI:在绝缘层衬底上异质外延硅获得的外延材料。HOT:使用选择性外延技术,可以在晶圆上实现110和100混合晶向材料。应变硅:通过向单晶硅施加应力,硅的晶格原子将会被拉长或者压缩不同与其通常原子的距离。 第五章热处理工艺 1. 列举IC芯片制造过程中热氧化SiO2的用途?

你该知道的微电子技术知识

你该知道的微电子技术知识 二大爷公司笨笨收集 微电子技术是十九世纪末,二十世纪初开始发展起来的以半导体集成电路为核心的高新电子技术,它在二十世纪迅速发展,成为近代科技的一门重要学科。微电子技术作为电子信息产业的基础和心脏,对航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术及家用电器产业的发展产生直接而深远的影响。尤其是微电子技术是军用高技术的核心和基础。军用高技术的迅猛发展,武器装备的巨大变革,在某种意义来说就是微电子技术迅猛发展和广泛应用的结果。微电子技术的渗透性最强,对国民经济和现代科学技术发展起着巨大的推动作用,其发展水平和发展规模已成为衡量一个国家军事、经济实力和技术进步的重要标志。正因为如此、世界各国都把微电子技术作为最要害的技术列在高技术的首位,使其成为争夺技术优势的最重要的领域。 一、基本概念 简介:微电子技术是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。它包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,是微电子学中的各项工艺技术的总和。微电子技术是在电子电路和系统的超小型化和微型化过程中逐渐形成和发展起来的,其核心是集成电路,即通过一定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互联,采用微细加工工艺,集成在一块半导体单晶片(如硅和砷化镓)上,并封装在一个外壳内,执行特定电路或系统功能。与传统电子技术相比,其主要特征是器件和电路的微小型化。它把电路系统设计和制造工艺精密结合起来,适合进行大规模的批量生产,因而成本低,可靠性高。

图1 微电子技术中元器件发展演变 特点:微电子技术当前发展的一个鲜明特点就是:系统级芯片(System On Chip,简称SOC)概念的出现。在集成电路(IC)发展初期,电路都从器件的物理版图设计入手,后来出现了IC单元库,使用IC设计从器件级进入到逻辑级,这样的设计思路使大批电路和逻辑设计师可以直接参与IC设计,极大的推动了IC产业的发展。由于IC设计与工艺技术水平不断提高,集成电路规模越来越大,复杂程度越来越高,已经可以将整个系统集成为一个芯片。正是在需求牵引和技术推动的双重作用下,出现了将整个系统集成在一个IC芯片上的系统级芯片的概念。其进一步发展,可以将各种物理的、化学的和生物的敏感器(执行信息获取功能)和执行器与信息处理系统集成在一起,从而完成从信息获取、处理、存储、传输到执行的系统功能,这是一个更广义上的系统集成芯片。很多研究表明,与由IC组成的系统相比,由于SOC设计能够综合并全盘考虑整个系统的各种情况,可以在同样的工艺技术条件下实现更高性能的系统指标。微电子技术从IC 向SOC转变不仅是一种概念上的突破,同时也是信息技术发展的必然结果。目前,SOC技术已经崭露头角,21世纪将是SOC技术真正快速发展的时期。 微电子技术的另一个显着特点就是其强大的生命力,它源于可以低成本、大批量地生产出具有高可靠性和高精度的微电子结构模块。这种技术一旦与其他学科相结合,便会诞生出一系列崭新的学科和重大的经济增长点。作为与微电子技术成功结合的典型例子便是MEMS(微电子机械系统或称微机电系统)技术和生物芯片等。前者是微电子技术与机械、光学等领域结合而诞生的,后者则是与生物工程技术结合的产物。 应用领域:

微电子加工工艺总结

1、分立器件和集成电路的区别 分立元件:每个芯片只含有一个器件;集成电路:每个芯片含有多个元件。 2、平面工艺的特点 平面工艺是由Hoerni于1960年提出的。在这项技术中,整个半导体表面先形成一层氧化层,再借助平板印刷技术,通过刻蚀去除部分氧化层,从而形成一个窗口。 P-N结形成的方法: ①合金结方法 A、接触加热:将一个p型小球放在一个n型半导体上,加热到小球熔融。 B、冷却:p型小球以合金的形式掺入半导体底片,冷却后,小球下面形成一个再分布结晶区,这样就得到了一个 pn结。 合金结的缺点:不能准确控制pn结的位置。 ②生长结方法 半导体单晶是由掺有某种杂质(例如P型)的半导体熔液中生长出来的。 生长结的缺点:不适宜大批量生产。 扩散结的形成方式 与合金结相似点: 表面表露在高浓度相反类型的杂质源之中 与合金结区别点: 不发生相变,杂质靠固态扩散进入半导体晶体内部 扩散结的优点 扩散结结深能够精确控制。 平面工艺制作二极管的基本流程: 衬底制备——氧化——一次光刻(刻扩散窗口)——硼预沉积——硼再沉积——二次光刻(刻引线孔)——蒸铝——三次光刻(反刻铝电极)——P-N结特性测试 3、微电子工艺的特点

高技术含量设备先进、技术先进。 高精度光刻图形的最小线条尺寸在亚微米量级,制备的介质薄膜厚度也在纳米量级,而精度更在上述尺度之上。超纯指工艺材料方面,如衬底材料Si、Ge单晶纯度达11个9。 超净环境、操作者、工艺三个方面的超净,如 VLSI在100级超净室10级超净台中制作。 大批量、低成本图形转移技术使之得以实现。 高温多数关键工艺是在高温下实现,如:热氧化、扩散、退火。 4、芯片制造的四个阶段 固态器件的制造分为4个大的阶段(粗线条): ①材料制备 ②晶体生长/晶圆准备 ③晶圆制造、芯片生成 ④封装 晶圆制备: (1)获取多晶 (2)晶体生长----制备出单晶,包含可以掺杂(元素掺杂和母金掺杂) (3)硅片制备----制备出空白硅片 硅片制备工艺流程(从晶棒到空白硅片): 晶体准备(直径滚磨、晶体定向、导电类型检查和电阻率检查)→ 切片→研磨→化学机械抛光(CMP)→背处理→双面抛光→边缘倒角→抛光→检验→氧化或外延工艺→打包封装 芯片制造的基础工艺 增层——光刻——掺杂——热处理 5、high-k技术

微电子技术的发展

微 电子技术的发展 摘要:微电子技术是科技发展到一定阶段的时代产物,是对当今社会经济最具影响力的高新技术之一。本文主要对微电子技术的概念、发展及其在社会各大产业中的应用进行了浅析的探讨。 【关键词】微电子技术发展应用 微电子技术的核心技术是半导体集成电路,微电子技术的发展及应用影响我们生产生活的方方面面。对促使经济发展,人类的进步有着巨大的影响力。随着社会经济的发展,为了达到社会经济的发展对微电子技术的需求,实现社会经济在技术支持下快捷稳定发展,我们必须要不断地对微电子技术进行优化和改进,积极地探索更深层次的微电子技术知识,使微电子技术更好地服务于社会经济发展。相信微电子技术不仅是在当今,乃至未来社会发展中微电子技术必将是促使社会发展进步的主导产业。 1微电子技术的概念 微电子技术是信息化时代最具代表性的高新技术之一,它的核心技术半导体集成电路技,术由电路设计、工艺技术、检测技术、材料配置以及物理组装等购置技术体系。微电子技术基于自身集成化程度高,反应敏捷、占用空间较小等优势特点目前在有关涉及电子产业中得以广泛的应用。 2 微电子技术的发展现状 国外微电子的发展 自1965年发明第一块集成电路以来,特别是过去的十年中,全球微电子产业一直处于高速发展的时期,推动着信息产业的高速发展。集成电路产业及其产品是带动整个经济增长的重要因素。集成电路已发展到超大规模和甚大规模、深亚微米μ

m)精度和可集成数百万晶体管的水平,现在已把整个电子系统集成在一个芯片上。人们认为:微电子技术的发展和应用使全球发生了第三次工业革命。1965年,Intel 公司创始人之一的董事长Gorden Moore在研究存贮器芯片上晶体管增长数的时间关系时发现,每过18~24个月,芯片集成度提高一倍。这一关系被称为穆尔定律(Moores Law),一直沿用至今。自从20 世纪50 年代后期集成电路问世以来, 就一直追求在芯片上有更多的晶体管, 能够完成更多的功能, 从一代到下一代芯片的基本价格变化却很小, 这是由于较高的集成度导致完成每项功能的价格降低。这是驱动芯片发展的最基本动力。现在还在向更小的工艺发展。技术飞速的进步, 促使人们不断探究现代半导体器件最终的物理极限。 国内微电子发展 早在1965年,我国的集成电路就开始起步,而此时世界上最著名的芯片制造商英特尔还没有成立。由于体制等众多的原因,我国在这一领域与国外差距越来越大。目前,我国集成电路产业已具备了一定的发展规模,形成了从电路设计、芯片制造和电路封装三业并举,与集成电路有关的主要材料、测试设备、仪器等支持业也相继配套发展,在地域上呈现相对集中的格局,京津、苏浙沪、粤闽地区成为集成电路产业较为发达的区域。。我国集成电路设计业在过去的几年中有了长足的进步,高等院校、科研院所、企业从事集成电路设计的单位越来越多。然而国内集成电路设计企业规模,设计人员的平均数量还未达到国际同类公司的水平。随着信息时代的到来,微电子技术得以快速发展,在信息时代中扮演中重要角色,是影响时代发展的关键技术之一。从微电子技术的发展历程来看,上世纪五十年代贝尔实验室发明了晶体管,晶体管的面世标志着微电子技术的诞生。在随后的几年内经过科学家的不断努力,又发明了集成电路。集成电路的发明为后来的微型计算机的发明奠定了坚实的技术基础。直至上世纪七十年代,集成电路在微型计算机中的成功应用,标志着微电子技术的发展达到了空前的高度。随着微电子技术的进一步发展,以集成电路为核心的微电子技术经过科学家的优化和改进,较上世界刚诞生的微电子技术集成化程度足足提高了近500 万倍,另外在微电子技术产品体积方面也大大地缩小。一个微小的单独的集成片就能集成几千万个集体管。自改革开发以来,国家对微电

微电子技术

微电子技术 微电子技术是在电子电路和系统的超小型化和微型化过程中逐渐形成和发展起来的,微电子第二次大战中、后期,由于军事需要对电子设备提出了不少具有根本意义的设想,并研究出一些有用的技术。1947年晶体管的发明,后来又结合印刷电路组装使电子电路在小型化的方面前进了一大步。到1958年前后已研究成功以这种组件为基础的混合组件。集成电路技术是通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照-定的电路互连,“集成”在一块半导体单晶片上,执行特定电路或系统功能。微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支。作为电子学的分支学科,它主要研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子学又是信息领域的重要基础学科,在这一领域上,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息获取的科学,构成了信息科学的基石,其发展书评直接影响着整个信息技术的发展。微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。微电子学是一门综合性很强的边缘学科,其中包括了半导体器件物理、集成电

路工艺和集成电路及系统微电子技术。微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向。信息技术发展的方向是多媒体(智能化)、网络化和个体化。要求系统获取和存储海量的多媒体信息、以极高速度精确可靠的处理和传输这些信息并及时地把有用信息显示出来或用于控制。所有这些都只能依赖于微电子技术的支撑才能成为现实。超高容量、超小型、超高速、超高频、超低功耗是信息技术无止境追求的目标,是微电子技术迅速发展的动力。微电子技术,乍听起来给人一种很高深很复杂的感觉。其实它并没有您想象中的那么神秘,下面就让我们揭开它的面纱,了解一下它在军事领域的应用。如何学好微电子知识。(1)温度是粒子(分子、原子、电子等)平均动能的量度。热量是粒子的随机运动、通过碰撞把动能从较高温度的物体传递给较低温度的物体的平均 动能。对于热平衡系统,其中无热量的转移。(2)热平衡状态就是整个系统中温度均匀的状态;对于几个系统而言,即是处于相同温度的一种状态,它们之间不存在热量转移的现象。(3)热涨落是系统的能量或者温度发生瞬间波动(起伏)的现象。虽然处于热平衡状态的两个体系之间并无净能量的转移;但是热平衡是一种动态平衡。从某一个瞬间来看,由于粒子的速度有高、有低(服从Maxwell速率分布定律),则仍然存在着瞬间动能——热量的传递,这就会造成热涨

微电子工艺技术

课程简介 课程号:11194050 课程名称:微电子工艺技术英文名称:Microelectronics Technology 周学时:3.0-0.0学分:3 预修要求:微电子学、固体物理与半导体物理、集成电路 内容简介: 了解集成电路制造工艺技术是从事集成电路设计、制造和研究人员所必须的。为此所开设的微电子工艺技术课程,是微电子技术专业的一门必修课。通过本课程的学习,使学生对半导体器件和半导体集成电路的制造工艺及原理、工艺设备及工艺流程有一个较为完整和系统的概念,並具有一定的工艺分析和设计以及解决工艺问题和提高产品质量的能力。是一门与实际联系紧密的课程。 主要内容包括:微电子加工工艺环境及衬底制备技术;扩散和离子注入两种搀杂技术的原理、杂质分布的数学描述和具体工艺条件的选取和计算;外延和氧化、PVD等薄膜生长技术的原理、工艺过程和影响质量的诸因素;光刻和刻蚀微细图形转移技术;集成电路工艺整合等问题。 选用教材或参考书: 教材:《ULSI Technology》,C.Y.Chang,Publisher: McGraw-Hill Science/Engineering/Math;ASIN: 0070630623 ;January 12, 1996,Editions: 2nd 主要参考书: 1. 《Introduction to Microelectronic Fabrication》(2nd Edition) ,Richard C. Jaeger,Prentice Hall,October 17, 2001,ISBN: 020******* 2. 《Silicon VLSI Technology:Fundemantals, Practice, and Modeling》Peter B.Griffin Publisher: Prentice Hall; ISBN: 0130850373 ; 1 edition (July 14, 2000)

微电子技术专业介绍

微电子技术专业介绍 一、微电子技术专业概况 1、本专业的社会地位及发展状况 纵观国际国内的发展趋势,任何一个国家或地区社会经济的发展及现代化建设进程中,电子技术都是社会发展中最系统、最前位、最核心、最快速的支柱性技术。电子技术学科也是现代社会中应用最广泛、使用最直接、产业最庞大、需求量最大的应用性学科。该专业是以现代电子技术应用学科为先导,以最新的计算机应用技术及微处理技术为核心,本着新型实用为目的的教学方针,以专业素质和实际能力的培养为教学目标,主要面向生产,管理和服务第一线,针对目前各企、事业单位现代化生产、管理、操作和维护等方面电子技术应用性人才供不应求的现状,培养学员在计算机软、硬件管理和维护;移动通信原理及应用;彩电、冰箱、空调器等家用电器原理和维修;机电设备自动化操作等技术方面,既具备系统理论知识,又熟练掌握专业技能的中等应用型技术人才。 2、微电子技术专业师资配备状况 本专业师资队伍配备具有鲜明的职业特色,专业教师不仅具有教师资格证、并且还具有和专业对口的机电工程师专业技术职称证。他们不仅职业教学经验丰富,而且专业技术过硬、实际操作能力强,既能给学员讲授专业理论知识,又能指导学员实训操作,提高学员的实际动手能力,是一支名副其实的“双师型”教师队伍,为培养本专业优秀技术人才提供了可靠保证。 3、微电子技术专业实验实习配备及要求 微电子技术专业一贯重视实践性教学,实验、实习、实训设施比较完善。拥有仪器仪表、音响视频、机电制冷、计算机安装与应用等多个实验室,配备有大量的实验仪器和实训设备,使本专业在教学过程中,突出了培养目标的实践性和职业性

特色,强化了学员动手能力和实践技能的培养。同时,本专业提倡让学员获得“双证书”或“多证书”,要求学员在毕业时既要取得中专毕业的学历证书,又要获取相应的技能等级证书。本专业的毕业生应能全面掌握本专业的系统知识,掌握现代化高薪电子设备的工作原理,结构性能等方面的最新技术,对目前各企、事业单位中常用的机电、家电及办公自动化电器设备的工作原理、构造、使用及维修工艺等方面都具有相应的了解,具备较成熟的专业技术素质、过硬的专业技术本领和相当的实际动手能力。 二、培养目标 本专业毕业生可以从事大、中、小型企、事业单位电子电工、电器设备的科研开发、制作调试、运行操作、管理维修等技术工作,也可以在中等职业学校;中、初级技术学校中从事教学实验、实习指导、以及管理维护工作。 本专业就业渠道较宽,每届毕业生的对口就业面均为100%。学校在学员毕业前都进行专门的就业辅导。同时学校还与省内、外数百家电子电器企、事业单位建立就业协作关系,特别优秀的毕业生还可进入高等学校深造,从而全方位拓宽了学员们的就业面,为每一个学员的就业和继续发展创造了条件。 三、课程设置 1、专业课程: 计算机应用基础、电工技术基础、电工技能与实训、电子设备测量、电子技术基础、黑白电视机原理与维修、电视机安装与维修实训、低压电器设备运行与维修、彩色电视机原理与维修、彩色电视机安装与维修实训、电冰箱、空调原理与维修、电冰箱与空调维修实训、移动通信原理与应用、微机组装及软、硬件维修技术 2、选修课程: 家用电子产品、电器产品维修、汽车音响与空调技术、显示器原理与维修 四、微电子专业可获证书

微电子制造工艺

《微电子制造工艺》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:微电子制造工艺 所属专业:微电子科学与工程 课程性质:专业必修课 学分: 4 (二)课程简介、目标与任务; 本课程作为微电子科学与工程专业的专业必修课,是半导体制造工艺的基础。主要介绍半导体制造相关的全部基础技术信息,以及制造厂中的每一道制造工艺,包括硅片氧化,淀积,金属化,光刻,刻蚀,离子注入和化学机械平坦化等内容。 该课程的目的使学生了解产业变化历史中的所有工艺和设备,以及每道具体工艺的技术发展的现状及发展趋势。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 上本课程之前或者同时应了解半导体物理的相关知识,以便为本课程打下基础;同时本课程又是集成电路分析与设计,以及微电子制造工艺专业实验及实习的基础。 (四)教材与主要参考书。 本课程所使用的教材是《半导体制造技术》,Michael Quirk, Julian Serda著,韩郑生等译,电子工业出版社。 主要参考书: 《半导体器件物理与工艺》施敏苏州大学出版社 《硅集成电路工艺基础》陈力俊复旦大学出版社 《芯片制造-半导体工艺制程实用教程》电子工业出版社 《集成电路制造技术-原理与实践》电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《半导体器件基础》电子工业出版社 《硅集成电路工艺基础》北京大学出版社 二、课程内容与安排 第一章半导体产业介绍(3学时) 第二章半导体材料特性(3学时)

第三章器件技术(3学时) 第四章硅和硅片制备(5学时) 第五章半导体制造中的化学品(3学时) 第六章硅片制造中的玷污控制(3学时) 第七章测量学和缺陷检查(3学时) 第八章工艺腔内的气体控制(3学时) 第九章集成电路制造工艺概况(5学时) 第十章氧化(6学时) 第十一章淀积(5学时) 第十二章金属化(5学时) 第十三章光刻:气相成底膜到软烘(4学时) 第十四章光刻:对准和曝光(4学时) 第十五章光刻:光刻胶显影和先进的光科技术(4学时) 第十六章刻蚀(5学时) 第十七章离子注入(4学时) 第十八章化学机械平坦化(4学时) (一)教学方法与学时分配 采用多媒体课件与板书相结合的课堂教学方法,基于学生便于理解接受的原 则,对不同讲授内容给予不同方式的侧重。学时分配详见课程内容与安排。 (二)内容及基本要求 主要内容:本章属于引言章节,主要介绍半导体产业的历史,现状及发展趋势。要求掌握和了解集成电路制造以及半导体发展的趋势。 【重点掌握】:硅和硅片制备,氧化,淀积,光刻技术 【掌握】:芯片制备过程中的清洗,金属化,刻蚀,离子注入,化学机械平坦化 【了解】:器件技术,半导体制造中的化学品及玷污 【一般了解】:测量学和缺陷检查,工艺腔内的气体控制 【难点】:光刻过程及离子注入 (重点掌握、掌握、了解、一般了解四个层次可根据教学内容和对学生的具体要求适当减少,但不得少于两个层次) 制定人:陶春兰 审定人: 批准人: 日期:

微电子工艺习题参考解答

CRYSTAL GROWTH AND EXPITAXY 1.画出一50cm 长的单晶硅锭距离籽晶10cm 、20cm 、30cm 、40cm 、45cm 时砷的掺杂分布。(单晶硅锭从融体中拉出时,初始的掺杂浓度为1017cm -3) 2.硅的晶格常数为5.43?.假设为一硬球模型: (a)计算硅原子的半径。 (b)确定硅原子的浓度为多少(单位为cm -3)? (c)利用阿伏伽德罗(Avogadro)常数求出硅的密度。 3.假设有一l0kg 的纯硅融体,当硼掺杂的单晶硅锭生长到一半时,希望得到0.01 Ω·cm 的电阻率,则需要加总量是多少的硼去掺杂? 4.一直径200mm 、厚1mm 的硅晶片,含有5.41mg 的硼均匀分布在替代位置上,求: (a)硼的浓度为多少? (b)硼原子间的平均距离。 5.用于柴可拉斯基法的籽晶,通常先拉成一小直径(5.5mm)的狭窄颈以作为无位错生长的开始。如果硅的临界屈服强度为2×106g/cm2,试计算此籽晶可以支撑的200mm 直径单晶硅锭的最大长度。 6.在利用柴可拉斯基法所生长的晶体中掺入硼原子,为何在尾端的硼原子浓度会比籽晶端的浓度高? 7.为何晶片中心的杂质浓度会比晶片周围的大? 8.对柴可拉斯基技术,在k 0=0.05时,画出C s /C 0值的曲线。 9.利用悬浮区熔工艺来提纯一含有镓且浓度为5×1016cm -3的单晶硅锭。一次悬浮区熔通过,熔融带长度为2cm ,则在离多远处镓的浓度会低于5×1015cm -3? 10.从式L kx s e k C C /0)1(1/---=,假设k e =0.3,求在x/L=1和2时,C s /C 0的值。 11.如果用如右图所示的硅材料制造p +-n 突变结二极管,试求用传统的方法掺杂和用中子辐照硅的击穿电压改变的百分比。 12.由图10.10,若C m =20%,在T b 时,还剩下多少比例的液体? 13.用图10.11解释为何砷化镓液体总会变成含镓比较多? 14.空隙n s 的平衡浓度为 Nexp[-E s /(kT)],N 为半导体原子的浓度,而E s 为形成能量。计算硅在27℃、900℃和1 200℃的n s (假设E s =2.3eV). 15.假设弗兰克尔缺陷的形成能量(E f ) 为1.1eV ,计算在27℃、900℃时的缺陷密度.弗兰克尔缺陷的平衡密度是错误!未找到

微电子工艺原理试题

微电子工艺原理 一、单项选择 1.The most common reticle reduction ratio used with step-and-scan exposure tools is() a.1:1 and 4:1 b. 1:1 and 5:1 c.4:1 and 5:1 d.4:1 2. Which of the following processes are performed in the diffusion area? Circle all that apply. () a. wafer cleans b.high temperature processing c.metallization d.polishing e.photoresist stripping 3.What are the three production areas where photoresist-coated wafers can be found? () a.diffusion b.photolithography c.etch d.implant e.thin films f.polish 4. Which of the following is not a common production tool in the thin films area? () a.plasma resist stripper b.CVD systems C. PVD systems d.rapid thermal anneal system e.sputtering system f.spin-on-glass dispense system 5.What does the term CMP stand for? () a.chemically modulated photostabilizer b.chemical mechanical propellant c.chemicaly manipulated plasma d. chemical mechanical planarization 6.What is another name for CMP? () a.etch b.implant c.polish d.diffusion 7.The term WET stands for() a.wafer etch technology b. wet etch for titanium contancts c. wafer elastomeric treatment d. wafer electrical test 8. The data obtained from wafer test/sort is used to() a.determine which wafers need to go through WET. b.determine which wafers need to go through backgrind. c.determines the die yield for each wafer. d.calculate cycle time for wafer production. 9.The wafer is tested twice in order to determine its product worthiness() a.once after first metal etch and after the completion of the last wafer process step. b.once before the contanct etch and after the completion of the wafer process flow. c. once after the first ion implant and after the completion of the wafer process flow. d.once at wafer/test sort and after die separation. 10.The purpose of the contanct formation process is to () a.insulate all exposed silicon areas of the wafer. b.form metal contacts on all active areas of the silicon. c.create barriers for charge carriers between transistors.

微电子工艺整理.doc

微电子工艺引论 硅片、芯片的概念 硅片:制造电子器件的基本半导体材料硅的圆形单晶薄片 芯片:由硅片生产的半导体产品 *什么是微电子工艺技术?微电子工艺技术主要包括哪些技术? 微电子工艺技术:在半导体材料芯片上采用微米级加工工艺制造微小型化电子元器件和微型化电路技术 主要包括:超精细加工技术、薄膜生长和控制技术、高密度组装技术、过程检测和过程控制技术等 集成电路制造涉及的五个大的制造阶段的内容 硅片制备:将硅从沙中提炼并纯化、经过特殊工艺产生适当直径的硅锭、将硅锭切割成用于制造芯片的薄硅片 芯片制造:硅片经过各种清洗、成膜、光刻、刻蚀和掺杂步骤,一整套集成电路永久刻蚀在硅片上 芯片测试/拣选:对单个芯片进行探测和电学测试,挑选出可接受和不可接受的芯片、为有缺陷的芯片做标记、通过测试的芯片将继续进行以后的步骤 装配与封装:对硅片背面进行研磨以减少衬底的厚度、将一片厚的塑料膜贴在硅片背面、在正面沿着划片线用带金刚石尖的锯刃将硅片上的芯片分开、在装配厂,好的芯片被压焊或抽空形成装配包、将芯片密封在塑料或陶瓷壳内 终测:为确保芯片的功能,对每一个被封装的集成电路进行电学和环境特性参数的测试IC工艺前工序、IC工艺后工序、以及IC工艺辅助工序 IC工艺前工序:(1)薄膜制备技术:主要包括外延、氧化、化学气相淀积、物理气相淀积(如溅射、蒸发) 等 (2)掺杂技术:主要包括扩散和离子注入等技术 (3)图形转换技术:主要包括光刻、刻蚀等技术 IC工艺后工序:划片、封装、测试、老化、筛选 IC工艺辅助工序:超净厂房技术 超纯水、高纯气体制备技术 光刻掩膜版制备技术 材料准备技术 微芯片技术发展的主要趋势 提高芯片性能(速度、功耗)、提高芯片可靠性(低失效)、降低芯片成本(减小特征尺寸,增加硅片面积,制造规模) 什么是关键尺寸(CD)? 芯片上的物理尺寸特征称为特征尺寸,特别是硅片上的最小特征尺寸,也称为关键尺寸或CD (2)半导体材料 本征半导体和非本征半导体的区别是什么? 本征半导体:不含任何杂质的纯净半导体,其纯度在99.999999%(8~10个9) 为何硅被选为最主要的半导体材料? a) 硅的丰裕度——制造成本低 b) 熔点高(1412 OC)——更宽的工艺限度和工作温度范围

相关文档