文档库 最新最全的文档下载
当前位置:文档库 › 支持向量机 (1)

支持向量机 (1)

支持向量机 (1)
支持向量机 (1)

支持向量机模型选择研究

摘要:统计学习理论为系统地研究有限样本情况下的机器学习问题提供了一套比较完整的理论体系。支持向量机(suPportvectorMachine,SVM)是在该理论体系下产生的一种新的机器学习方法,它能较好地解决小样本、非线性、维数灾难和局部极小等问题,具有很强的泛化能力。支持向量机目前已经广泛地应用于模式识别、回归估计、概率密度估计等各个领域。不仅如此,支持向量机的出现推动了基于核的学习方法(Kernel-based Learning Methods)的迅速发展,该方法使得研究人员能够高效地分析非线性关系,而这种高效率原先只有线性算法才能得到。目前,以支持向量机为主要代表的核方法是机器学习领域研究的焦点课题之一。

众所周知,支持向量机的性能主要取决于两个因素:(1)核函数的选择;(2)惩罚系数(正则化参数)C的选择。对于具体的问题,如何确定SVM中的核函数与惩罚系数就是所谓的模型选择问题。模型选择,尤其是核函数的选择是支持向量机研究的中心内容之一。本文针对模型选择问题,特别是核函数的选择问题进行了较为深入的研究。其中主要的内容如下:

1.系统地归纳总结了统计学习理论、核函数特征空间和支持向量机的有关理论与算法。

2.研究了SVM参数的基本语义,指出数据集中的不同特征和不同样本对分类结果的影响可以分别由核参数和惩罚系数来刻画,从而样木重要性和特征重要性的考察可以归结到SVM的模型选择问题来研究。在

对样本加权SVM模型(例如模糊SVM)分析的基础上,运用了特征加权SVM模型,即FWSVM,本质上就是SVM与特征加权的结合。

3,在系统归纳总结SVM模型选择。尤其是核函数参数选择的常用方法(例如交叉验证技术、最小化LOO误差及其上界、优化核评估标准)。关键词:机器学习;模式分类;支持向量机;模型选择;核函数;核函数评估

支持向量机基础

引言

机器学习的科学基础之一是统计学。传统统计学所研究的是渐近理论,即当样本数目趋于无穷大时的极限特性。基于传统统计学的机器学习,也称为统计模式识别,由Duda等人提出。Duda的贡献主要是以经典统计理论为工具刻画了模式识别与机器学习的各类任务,同时暗示了对所建模型的评价方法。然而,在实际应用中,学习样本的数目往往是有限的,特别当问题处于高维空问时尤其如此。统计学习理论研究的是有限样本情况下的机器学习问题,它基于PAC(Probably Approximately Correct)框架给出关于学习算法泛化性能的界,从而可以得出误差精度和样木数目之间的关系。这样,样木集合成为泛化指标的随机变量,由此建立了结构风险理论。

Minsky和PaPert在20世纪60年代明确指出线性学习机计算能力有限。总体上,现实世界复杂的应用需要比线性函数更富有表达能力的假设空间"多层感知器可以作为这个问题的一个解,由此导向了

多层神经网络的反向传播算法。核函数表示方式提供了另一条解决途径,即将数据映射到高维空间来增强线性学习机的计算能力。核函数的引入最终使得在适当的特征空间中使用人们熟知的线性算法高效地检测非线性关系成为一可能。SVM 是建立在统计学习理论(包括核函数的表示理论)基础上的第一个学习算法,目前主要应用于求解监督学习问题,即分类和回归问题。SVM 以泛化能力为目标,其目的不是对己知样本的描述(或称为记忆),而是对未知样本的预测(或称为泛化)"对于算法的性能问题,SVM 标志着人们已经从单纯的实验验证向理论分析过渡"与多层神经网络的反向传播算法相比较,SVM 的优点是什么呢?首先,以严格的数学理论(统计学习理论)为基础,克服了神经网络学习中的经验和启发式成分;用结构风险最小化原则代替经验风险最小化,克服了过学习问题,提高了学习机的泛化能力。其次,利用核函数与核技巧巧妙地克服了特征空间的维数灾难问题;最后,通过解决一个凸二次规划问题,得到全局最优解,而不是神经网络学习中的局部最优解。

问题的数学形式为:

()()1

1,,1,2l i U w N w w C N ==+∑ st ((,1,))1,1,,0,1,,.i i i i y w x b N i l

N i l +≥-=≥=

通过求其对偶问题,归结为一个二次函数极值问题:

1,11()(,)2l

l

i i j i j i j i i j W A A y y A A K x x ===-∑∑

:0,1,,i st A C i l ≤≤=

10l i

i i A y ==∑

分类判别函数为:

()()1

,l i i i i f x sign A y K x x b =????=+?? ?????∑ 模型选择与核函数的研究

面对一个实际的问题,我们应如何应用支持向量机来解决呢?从通用的层面看,显然首先应把问题转化为能用支持向量机求解的数学模型。这一过程称为模型选择,其中应包括:(i)数据集的获取与预处理;(ii)SvM 类型的选择,如选择标准的SVM 或v 一SVM;(111)SVM 中核函数和其已参数(如惩罚系数C)的选择。其中第三个问题是模型选择研究的重点。核函数隐式地定义了高维特征空间的结构,使得线性不可分的问题转化为线性可分的问题,而且不增加计算量,是影响SVM 性能的关键因素"另一方面,SVM 的分类性能除了取决于核函数的选择外,还取决于惩罚系数C,该系数的目的是在误分样本与学习机模型复杂性之间进行折衷,即在确定的特征空间中调节经验风险和学习机置信范围的比例,以使得学习机器的泛化能力最好。简要地说,核函数的选择主要影响数据在特征空间中的分布,而惩罚系数C ,在特征空间中确定经验风险水平而影响SVM 的性能。本文主要讨论核函数的选择问题。由于核函数和核技巧在SVM 中的成功应用,学术界对核函数的研究正如火如茶地展开,其中核函数的理论研究,核函数的构造和核函数中参数的选择是三个主要的研究方向。

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

支持向量机(SVM)原理及

支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方 法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量回归简介

支持向量回归简介 人类通过学习,从已知的事实中分析、总结出规律,并且根据规律对未来 的现象或无法观测的现象做出正确的预测和判断,即获得认知的推广能力。在对智能机器的研究当中,人们也希望能够利用机器(计算机)来模拟人的良好学习能力,这就是机器学习问题。基于数据的机器学习是现代智能技术中的重要方面,机器学习的目的是通过对已知数据的学习,找到数据内在的相互依赖关系,从而获得对未知数据的预测和判断能力,在过去的十几年里,人工神经网络以其强大的并行处理机制、任意函数的逼近能力,学习能力以及自组织和自适应能力等在模式识别、预测和决策等领域得到了广泛的应用。但是神经网络受到网络结构复杂性和样本复杂性的影响较大,容易出现“过学习”或低泛化能力。特别是神经网络学习算法缺乏定量的分析与完备的理论基础支持,没有在本质上推进学习过程本质的认识。 现有机器学习方法共同的重要理论基础之一是统计学。传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。 与传统统计学相比, 统计学习理论(Statistical Learning Theory 或SLT ) 是一种专门研究小样本情况下机器学习规律的理论Vladimir N. Vapnik 等人从六、七十年代开始致力于此方面研究,到九十年代中期,随着其理论的不断发展和成熟[17] ,也由于神经网络等学习方法在理论上缺乏实 质性进展, 统计学习理论开始受到越来越广泛的重视。 统计学习理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将很多现有方法纳入其中,有望帮助解决许多原来难以解决的问题(比如神经网络结构选择问题、局部极小点问题)等;同时, 在这一理论基础上发展了一种新的通用学习方法—支持向量机(Support Vector Machine 或SVM ) ,它已初步表现出很多优于已有方法的性能。一些学者认为,SVM 正在成为继神经网络研究之后新的研究热点,并将有力地推动机 器学习理论和技术的发展。 支持向量机(SVM )是一种比较好的实现了结构风险最小化思想的方法。它的机器学习策略是结构风险最小化原则为了最小化期望风险,应同时最小化经验风险和置信范围) 支持向量机方法的基本思想: (1 )它是专门针对有限样本情况的学习机器,实现的是结构风险最小化:在对给定的数据逼近的精度与逼近函数的复杂性之间寻求折衷,以期获得最好的推广能力; (2 )它最终解决的是一个凸二次规划问题,从理论上说,得到的将是全局最优解,解决了在神经网络方法中无法避免的局部极值问题; (3 )它将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性决策函数来实现原空间中的非线性决策函数,巧妙地解决了维数问题,并保证了有较好的推广能力,而且算法复杂度与样本维数无关。 目前,SVM 算法在模式识别、回归估计、概率密度函数估计等方面都有应用,且算法在效率与精度上已经超过传统的学习算法或与之不相上下。

支持向量机参数设置详解

程序中SVM 的参数: TestSVM_Parameter.svm_type=C_SVC; TestSVM_Parameter.kernel_type= RBF; TestSVM_Parameter.degree=3.0; TestSVM_Parameter.coef0=1; TestSVM_Parameter.gamma=1; TestSVM_Parameter.cache_size=40; TestSVM_Parameter.eps=0.01; TestSVM_Parameter.C=1.0; TestSVM_Parameter.shrinking=1; TestSVM_Parameter.nr_weight=0; TestSVM_Parameter.weight=NULL; TestSVM_Parameter.weight_label=NULL; SVM 参数含义: int svm_type :SVM 问题类型: 0: C_SVC: 多类别识别问题,求解问题 ,,min b w ξ 1 12l t i i C ξ=+∑w w 1: NU_SVC :多类别识别问题,求解问题 ,,,min b ρw ξ 1 112l t i i l νρξ=-+∑w w 2: ONE_CLASS :两类别识别问题,求解问题 ,,,min b ρw ξ 1 112l t i i l ρξν=-+∑w w 3: EPSILON_SVR :回归分析,求解问题 *,,,min b w ξξ *1112l l t i i i i C C ξξ==++∑∑w w 4: NU_SVR :回归分析,求解问题 *,,,,min b εw ξξ ()*112l t i i i C νεξξ=??+++ ???∑w w int kernel_type :核函数类型: 0: LINEAR ,线性,(),t K =x y x y 1: POL Y ,多项式,()(),d t K C γ=+x y x y 2: RBF ,径向基函数,()()2,exp K γ=--x y x y 3: SIGMOID ,Sigmoid 函数,()( ),tanh t K C γ=+x y x y double degree :多项式核函数参数 double gamma :多项式、径向基函数和Sigmoid 函数的参数 double coef0:多项式和Sigmoid 函数的参数

支持向量机及支持向量回归简介

3.支持向量机(回归) 3.1.1 支持向量机 支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。它将输入样本集合变换到高维空间使得其分离性状况得到改善。它的结构酷似三层感知器,是构造分类规则的通用方法。SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。 所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代 替在特征空间中内积(),())x y φφ(的计算。因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。由于内积运算量相当大,核技巧就是为了降低计算量而生的。 特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间 n R 上的二元函数,设H 中的规范正交基为12(),(),...,(), ...n x x x φφφ。如果 2 2 1 (,)((),()), {}k k k k k K x y a x y a l φφ∞ == ∈∑ , 那么取1 ()() k k k x a x φφ∞ ==∑ 即为所求的非线性嵌入映射。由于核函数(,)K x y 的定义 域是原来的输入空间,而不是高维的特征空间。因此,巧妙地避开了计算高维内 积 (),())x y φφ(所需付出的计算代价。实际计算中,我们只要选定一个(,)K x y ,

SVM支持向量机白话入门

(一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,有点八股,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。 所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC 维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。

基于支持向量机的模式识别

基于支持向量机的模式识别 摘要 随着人工智能和机器学习学科的不断发展,传统的机器学习方法已经不能适应学科的快速发展。而支持向量机(Support Vector Machine,SVM)则是根据统计学习理论提出的一种新型且有效的机器学习方法,它以结构风险最小化和VC 维理论为基础,适当的选择函数子集和决策函数,使学习机器的实际风险最小化,通过对有限的训练样本进行最小误差分类。支持向量机能够较好的解决小样本、非线性、过学习和局部最小等实际问题,同时具有较强的推广能力。支持向量机的样本训练问题实质是求解一个大的凸二次规划问题,从而所得到的解也是全局最优的,通常也是唯一的解。 本文以支持向量机理论为基础,对其在模式识别领域的应用进行系统的研究。首先运用传统的增式支持向量机对历史数据分类,该分类结果表明对于较复杂的数据辨识时效果不佳。然后运用改进后的增式支持向量机对历史数据进行分类,再利用支持向量机具有的分类优势对数据进行模式识别。 本文对传统增式支持向量机算法和改进增式支持向量机算法进行了仿真对比,仿真结果体现了改进增式支持向量机算法的优越性,改进增式支持向量机算法减少了训练样本集的样本数量,优化了时间复杂度和空间复杂度,提高了分类效率。该方法应用于模式识别领域中能明显提高系统的准确率。 关键词:支持向量机;模式识别;多类分类;增式算法

Pattern Recognition Based on Support Vector Machine Abstract With the discipline of artificial intelligence and machine learning continues to evolve, traditional machine learning methods can not adapt to the rapid development of disciplines. The support vector machine (Support Vector Machine, SVM) is based on statistical learning theory a new and effective machine learning method, which to base on the structural risk minimization and the VC dimension theory, a function subset of appropriate choice and decision-making function of appropriate choice, the learning machine to minimize the actual risk, through the limited training samples for minimum error classification. SVM can solve the small sample, nonlinear, over learning and local minimum practical issues, but also it has a strong outreach capacity. Sample training problems of Support Vector Machines to solve really a large convex quadratic programming problems, and to the global optimal solution is also obtained, usually the only solution. This paper based on support vector machine theory, its application in the field of pattern recognition system. First, by using the traditional incremental support vector machine classification of historical data, the classification results show that the data for the identification of more complex when the results are poor. And then improved by the use of incremental Support Vector Machines to classify the historical data, and then use the classification of Support Vector Machine has advantages for data pattern recognition. This type of traditional incremental Support Vector Machine and improved incremental Support Vector Machine algorithm was simulated comparison, simulation results demonstrate the improved incremental Support Vector Machine algorithm by superiority, improved incremental Support Vector Machine algorithm reduces the set of training samples number of samples,and to optimize the time complexity and space complexity, improving the classification efficiency. The method is applied to pattern recognition can significantly improve the accuracy of the system. Key words: Support Vector Machine; Pattern Recognition; Multi-class Classification; Incremental Algorithm

基于支持向量机的故障诊断

基于支持向量机的故障诊断 摘要 在化工生产过程中,为了准确检测故障,减少机械的损失和人员的伤亡,提出了支持向量机算法。支持向量机是基于统计学理论的方法,具有较强的逼近能力和泛化能力。但是在最近几年中,一种基于主元分析的过程监控方法已在工业过程中得到应用,主元分析方法通过正常工况下的历史数据建立的统计模型能很好地检测过程的异常变化和故障的发生。本文主要就这两种方法展开运用。在实际生产过程中,一方面,主元分析方法故障诊断能力有限;另一方面,存在着大量的历史数据,既有正常工况下的数据,又有故障数据,如何充分利用各种类别数据,提高故障诊断能力,具有十分重要的意义。 本文首先运用传统支持向量机算法对历史数据进行分类,分类结果表明该方法对于简单的数据比较容易区分,但是在数据复杂,可辨性较低的情况下,效果不明显。然后运用改进了的传统支持向量机算法对历史数据进行分类,即运用主元分析方法提取各数据的主要特征,再利用支持向量机具有的分类优势对过程数据进行在线诊断,从而提高故障诊断能力。 本文对传统支持向量机算法和改进支持向量机算法进行了仿真比较,仿真结果体现了改进支持向量机算法的优越性;改进支持向量机算法提高了传统支持向量机算法分类的正确率。该种方法在实际工程中能够提高系统的诊断性能,减少不必要的损失。 关键词:支持向量机;故障诊断;主元分析方法;田纳西-伊斯曼过程;

Fault Diagnosis Based on Support Vector Machine Abstract In order to detect faults accurately, reduce mechanical lossesand casualties in the chemical production process, the algorithm of support vector machines was proposed. Based on the statistics theories, support vector machine is a method of approximation ability and generalization ability. Recently, a new method of process monitoring based on principal component analysis is applied in industrial production process. The statistical model built by principal component analysis method using historic data could detect unusual changes and faults happening in the process accurately. This research is on the application of these two methods. In the actual production process, principal component analysis has certain limitations in diagnosing fault. Besides, the vast volume of historical data was collected in both normal and unusual conditions. It is of great importance to make full use of the data to improve the capacity of fault diagnosis. Firstly, this paper classified the historical data by applying the traditional support vector machine algorithm. The results showed that traditionalmethod works well on simple data sets. However, it showed insignificant effects under a complex and low-differentiability condition. In succession, an advanced approach was used to improve the traditional method, which was approached to enhance the ability of fault diagnosis by using principal component analysis to extract the main features of the data, then with the use of support vector machine which has the advantages of online diagnostic on process data to classify. In this paper, the traditional support vector machine algorithm and advanced support vector machine algorithm were compared in simulation process, the results indicates the superiority of the advanced method which improved the correctness of the traditional one on classification. It could also improve the diagnostic performance in the actual process and reduce unnecessary losses consequently. Key words: Support Vector Machine; Fault Diagnosis; Principal Component Analysis; Tennessee Eastman Process

支持向量机数据分类预测

支持向量机数据分类预测 一、题目——意大利葡萄酒种类识别 Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。 二、模型建立 模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。 三、Matlab实现 3.1 选定训练集和测试集 在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 3.2数据预处理 对数据进行归一化: %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale';

(完整版)支持向量回归机

3.3 支持向量回归机 SVM 本身是针对经典的二分类问题提出的,支持向量回归机(Support Vector Regression ,SVR )是支持向量在函数回归领域的应用。SVR 与SVM 分类有以下不同:SVM 回归的样本点只有一类,所寻求的最优超平面不是使两类样本点分得“最开”,而是使所有样本点离超平面的“总偏差”最小。这时样本点都在两条边界线之间,求最优回归超平面同样等价于求最大间隔。 3.3.1 SVR 基本模型 对于线性情况,支持向量机函数拟合首先考虑用线性回归函数 b x x f +?=ω)(拟合n i y x i i ,...,2,1),,(=,n i R x ∈为输入量,R y i ∈为输出量,即 需要确定ω和b 。 图3-3a SVR 结构图 图3-3b ε不灵敏度函数 惩罚函数是学习模型在学习过程中对误差的一种度量,一般在模型学习前己经选定,不同的学习问题对应的损失函数一般也不同,同一学习问题选取不同的损失函数得到的模型也不一样。常用的惩罚函数形式及密度函数如表3-1。 表3-1 常用的损失函数和相应的密度函数 损失函数名称 损失函数表达式()i c ξ% 噪声密度 ()i p ξ ε -不敏感 i εξ 1 exp()2(1) i εξε-+ 拉普拉斯 i ξ 1 exp()2 i ξ- 高斯 212 i ξ 21 exp()22i ξπ -

标准支持向量机采用ε-不灵敏度函数,即假设所有训练数据在精度ε下用线性函数拟合如图(3-3a )所示, ** ()()1,2,...,,0 i i i i i i i i y f x f x y i n εξεξξξ-≤+??-≤+=??≥? (3.11) 式中,*,i i ξξ是松弛因子,当划分有误差时,ξ,*i ξ都大于0,误差不存在取0。这时,该问题转化为求优化目标函数最小化问题: ∑=++?=n i i i C R 1 ** )(21 ),,(ξξωωξξω (3.12) 式(3.12)中第一项使拟合函数更为平坦,从而提高泛化能力;第二项为减小误差;常数0>C 表示对超出误差ε的样本的惩罚程度。求解式(3.11)和式(3.12)可看出,这是一个凸二次优化问题,所以引入Lagrange 函数: * 11 ****1 1 1()[()] 2[()]() n n i i i i i i i i n n i i i i i i i i i i L C y f x y f x ωωξξαξεαξεξγξγ=====?++-+-+-+-+-+∑∑∑∑ (3.13) 式中,α,0*≥i α,i γ,0*≥i γ,为Lagrange 乘数,n i ,...,2,1=。求函数L 对ω, b ,i ξ,*i ξ的最小化,对i α,*i α,i γ,*i γ的最大化,代入Lagrange 函数得到对偶形式,最大化函数:

基于支持向量机的分类方法

基于支持向量机的分类方法 摘要:本文首先概述了支持向量机的相关理论,引出了支持向量机的基本模型。当训练集的两类样本点集重合区域很大时,线性支持向量分类机就不适用了,由此介绍了核函数相关概念。然后进行了核函数的实验仿真,并将支持向量机应用于实例肿瘤诊断,建立了相应的支持向量机模型,从而对测试集进行分类。最后提出了一种支持向量机的改进算法,即根据类向心度对复杂的训练样本进行预删减。 1、支持向量机 给定训练样本集1122{[,],[,], ,[,]}()l l l T a y a y a y Y =∈Ω?L ,其中n i a R ∈Ω=,Ω是输入空间,每一个点i a 由n 个属性特征组成,{1,1},1,,i y Y i l ∈=-=L 。分类 就是在基于训练集在样本空间中找到一个划分超平面,将不同的类别分开,划分超平面可通过线性方程来描述: 0T a b ω+= 其中12(;;;)d ωωωω=K 是法向量,决定了超平面的方向,b 是位移项,决定 了超平面与原点之间的距离。样本空间中任意点到超平面的距离为|| |||| T a b r ωω+=。 支持向量、间隔: 假设超平面能将训练样本正确分类,即对于[,]i i a y T ∈,若1i y =+,则有 0T i a b ω+>,若1i y =-,则有0T i a b ω+<。则有距离超平面最近的几个训练样本点使得 11 11 T i i T i i a b y a b y ωω?+≥+=+?+≤-=-? 中的等号成立,这几个训练样本点被称为支持向量;两个异类支持向量到超平面 的距离之和2 |||| r ω=被称为间隔。 支持向量机基本模型: 找到具有最大间隔的划分超平面,即 ,2max ||||..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这等价于 2 ,||||min 2..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这就是支持向量机(SVM )的基本模型。 支持向量机问题的特点是目标函数2 ||||2 ω是ω的凸函数,并且约束条件都是 线性的。

支持向量机(SVM)简明学习教程

支持向量机(SVM )简明学习教程 一、最优分类超平面 给定训练数据),(,),,(11l l y x y x ,其中n i R x ∈,}1,1{-∈i y 。 若1=i y ,称i x 为第一类的,I ∈i x ;若1-=i y ,称i x 为第二类的,II ∈i x 。 若存在向量?和常数b ,使得?????II ∈<-I ∈>-i i T i i T x if b x x if b x ,0,0?? (1),则该训练集可被超平面 0=-b x T ?分开。 (一)、平分最近点法 求两个凸包集中的最近点d c ,',做d c ,'的垂直平分面x ,即为所求。 02 )(2 22 2 =-- -?-=-d c x d c x d x c T ,则d c -=?,2 ) ()(d c d c b T +-= 。 求d c ,,?? ?? ?≥==≥==∑∑∑∑-=-===. 0,1, . 0,1,1 111 i y i y i i i y i y i i i i i i x d x c αα ααα α

所以2 1 1 2 ∑∑-==-= -i i y i i y i i x x d c αα,只需求出最小的T l ),,(1ααα =。 算法:1)求解. 0,1,1..2121min 1 1 2 12 11≥===-∑∑∑∑∑-===-==i y i y i l i i i i y i i y i i i i i i t s x y x x αααααα;2)求最优超平面0=-b x T ?。 (二)、最大间隔法 附加条件1=?,加上(1)式。记C x C i T x i >=I ∈??min )(1,C x C i T x i <=II ∈??max )(2。 使?????II ∈<-I ∈>-=-= i i T i i T x if b x x if b x t s C C ,0,0,1..2 ) ()()(max 21??????ρ (2) 可以说明在(2)下可以得到一个最优超平面,且该超平面是唯一的。 如何快速生成一个最优超平面??? 考虑等价问题:求权向量w 和b ,使?????II ∈-<-I ∈>-i i T i i T x if b x w x if b x w ,1,1,且?最小。 这种写法已经包含最大间隔。 事实上b C C C x if C b x w x if C b x w i i T i i T =+=??????II ∈=+-))()((21),(1),(121021????中心,而w w =?, 故w b C = ,w C C 1 2)()()(21=-=???ρ。 所以(2)式可以转化为求解: 1 )(..min ≥-b x w y t s w i T i (3) 总结,求最优超平面,只需求解: 1 )(..2 1)(min ≥-= Φb x w y t s w w w i T i T (QP1) 对(QP1)构造lagrange 函数: 令∑=---=l i i T i i b x w y w b w L 1 2]1)([21),,(αα,其中0),,(1≥=T l ααα 为lagrange 乘子。 下求L 的鞍点:

用于分类的支持向量机

文章编号:100228743(2004)0320075204 用于分类的支持向量机 黄发良,钟 智Ξ (1.广西师范大学计算机系,广西桂林541000;  2.广西师范学院数学与计算机科学系,广西南宁530001) 摘 要:支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索. 关键词:支持向量机;机器学习;分类 中图分类号:TP181 文献标识码:A 支持向量机S VM (Support Vector Machine )是AT&T Bell 实验室的V.Vapnik 提出的针对分类和回归问题的统计学习理论.由于S VM 方法具有许多引人注目的优点和有前途的实验性能,越来越受重视,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等. S VM 的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界. 1 基本原理 支持向量机理论最初来源于数据分类问题的处理,S VM 就是要寻找一个满足要求的分割平面,使训练集中的点距离该平面尽可能地远,即寻求一个分割平面使其两侧的margin 尽可能最大. 设输入模式集合{x i }∈R n 由两类点组成,如果x i 属于第1类,则y i =1,如果x i 属于第2类,则y i =-1,那么有训练样本集合{x i ,y i },i =1,2,3,…,n ,支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论,(1)线性可分,(2)线性不可分. 1.1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ?x +b =0(1) 其中,“?”是点积,w 是n 维向量,b 为偏移量. 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.最优超平面可以通过解下面的二次优化问题来获得: min <(w )= 12‖w ‖2(2) Ξ收稿日期:2004202206作者简介:黄发良(1975-),男,湖南永州人,硕士研究生;研究方向:数据挖掘、web 信息检索. 2004年9月 广西师范学院学报(自然科学版)Sep.2004 第21卷第3期 Journal of G u angxi T eachers Education U niversity(N atural Science Edition) V ol.21N o.3

-10 python Spark MLlib支持向量机

Python Spark MLlib 支持向量机

1基本概念 2SVM 分类程序 3参数评估 内容大纲 4训练评估参数并找出最佳参数组合5预测

定义最优超平面,将两类数据正确分开,并且使分类间隔最大。 主要任务:寻找最优超平面 特点:分类准确性高、误差容忍度高

程序关键步骤说明: import sys from time import time import pandas as pd import matplotlib.pyplot as plt from pyspark.mllib.classification import SVMWithSGD from pyspark.mllib.regression import LabeledPoint import numpy as np from pyspark.mllib.evaluation import BinaryClassificationMetrics from pyspark.mllib.feature import StandardScaler 导入SVMWithSGD模块 1)导入SVMWithSGD链接库

程序关键步骤说明: 2)加入数据标准化 def PrepareData(sc): #-------------1.导入并转换数据--- print("开始导入数据…") rawDataWithHeader = Sc.textFile(Path+ "data/train.tsv") header = rawDataWithHeader.first() rawData = rawDataWithHeader.filter(lambda x:x !=header) rData=rawData.map(lambda x: x.replace(" \"", "")) lines = rData.map(lambda x: x.split("\t ")) print("共计: " + str(lines.count()) + "项")

支持向量机SVM分类算法

支持向量机SVM分类算法 SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。 机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。 这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的VC维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛

相关文档
相关文档 最新文档