文档库 最新最全的文档下载
当前位置:文档库 › 专题3.2 积分与微积分基本定理(理)(解析版) Word版含解析

专题3.2 积分与微积分基本定理(理)(解析版) Word版含解析

专题3.2 积分与微积分基本定理(理)(解析版) Word版含解析
专题3.2 积分与微积分基本定理(理)(解析版) Word版含解析

2017年高考备考之 3年高考2年模拟1年原创

【三年高考】

1. 【2015高考湖南,理11】2

0(1)x dx ?-= .

【答案】. 【解析】

0)2

1()1(22

2

0=-=-?x x dx x . 2.【2015高考陕西,理16】如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .

【答案】1.2

【解析】建立空间直角坐标系,如图所示:

原始的最大流量是()1

1010222162

?+-??=,设抛物线的方程为22x py =(0p >)

,因为该抛物线过点()5,2,所以2

225p ?=,解得254p =,所以2252x y =,即2225

y x =,所

以当前最大流量是

()()5

3235

35

522224022255255257575753x dx x x --???

????

?-=-=?-?-?--?-= ? ? ???????

????

?,故

O x

y

原始的最大流量与当前最大流量的比值是

16

1.2403

=,所以答案应填:1.2. 3.【2015高考天津,理11】曲线2

y x = 与直线y x = 所围成的封闭图形的面积为 . 【答案】

16

4. 【2014江西高考理第8题】若1

2

()2(),f x x f x dx =+?

则1

()f x dx =?( )

A.1-

B.13-

C.1

3

D.1 【答案】

B

5. 【2014山东高考理第6题】 直线3

4x y x y ==与曲线在第一象限内围成的封闭图形的面积为( )

A.22

B.24

C.

D.4 【答案】D

【解析】由已知得,2

32

4200

1(4)(2)|44

S x x dx x x =

-=-=?,故选D . 6. 【2014陕西高考理第3题】定积分

1

(2)x

x e dx +?的值为( )

.2Ae + .1B e + .C e .1De -

【答案】C 【解析】

1

212120

00

(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=?

,故选C

【三年高考命题回顾】

纵观前三年各地高考试题, 定积分属于理科内容,从近几年的高考试题来看,定积分重点考查定积分的应用,利用定积分求值,求面积,题型为选择题或填空题. 【2017年高考复习建议与高考命题预测】

定积分可以看作是导数在某一区间上的逆运算.它是新课标新增加的内容之一,在以前的课本中没有出现定积分的概念,在高考中主要考查定积分的计算和定积分的几何意义,多为容易题,一般每年出一道题,有时和二项式结合出题,因此在2017年复习备考中,只须掌握积分的概念,积分的运算,会用积分求面积,体积即可.

由于在2016年的高考试题中积分没出题,预测2017年高考对定积分考查,可能是利用定积分求值,或与几何概型结合出题,利用定积分来求封闭图形的面积.

【2017年高考考点定位】

高考对定积分的考查主要有定积分的计算和定积分的几何意义,作为新增内容,它是大学微积分的基础,很受出题人的青睐,故在复习时应引起重视. 考点一、求已知函数的定积分 【备考知识梳理】 1、定积分的概念

如果函数()f x 在区间[],a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……将区间

[],a b 等分成个小区间,在每个小区间[]1,i i x x - 上任取一点()1,2,i i ξ=…,n ,作和式

()()1

1

n

n

i i i i b a

f x f n

ξξ==-?=∑

,当n →+∞ 时,上述和式无限接近某个水常数,这个常数叫做函数在区间上的定积分,记作

()b

a

f x dx ?

,即

()()1

lim n

b

i a

n i b a

f x dx f n

ξ→∞

=-=∑

?

2、微积分基本定理

如果()f x 是区间[],a b 上的连续函数,并且()()F x f x '= ,那么

()()()b

a

f x dx F b F a =-? ,这个结论叫做微积分基本定理,又叫做牛顿——莱布尼兹公式.

3、定积分的基本性质 (1)()()=k b

b

a a

kf x dx f x dx ??,其中为常数

(2)()()()()[]b

b

b

a a

a

f x

g x dx f x dx g x dx ±=±???

(3)

()()()b c b

a

a

c

f x dx f x dx f x dx =+?

??,其中a c b <<

【规律方法技巧】

1.求函数()f x 的定积分,关键是求出函数()f x 的一个原函数()F x ,即满足

()F x '=()f x .正确运用求导运算与求原函数运算互为逆运算的关系.

2.计算简单定积分的步骤

(1)把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差; (2)利用定积分的性质把所求的定积分化为若干个定积分的和或差; (3)分别用求导公式找到F (x ),使得F ′(x )=f (x ); (4)利用牛顿——莱布尼兹公式求出各个定积分的值; (5)计算所求定积分的值.

3.求导运算与求原函数运算互为逆运算,求定积分的关键是找到被积函数的原函数,为避免出错,在求出原函数后可利用求导与积分互为逆运算的关系进行验证. 【考点针对训练】

1.【2016届吉林大学附中高三第二次模拟】1

1)d x x -=?( )

(A )

4π (B )2π (C )3π (D )12

π+ 【答案】B

【解析】依题意1

1

1

02

2

xdx π

π

--+=

+=

?

?,其中y =部分.

2. 【2016届辽宁省锦州市高三下学期质量检测二】已知22

cos a xdx π

π-=?,则二项式6

2a x x ?

?+ ?

??

的展开式中3x 的系数为( )

A .20

B .20-

C .160

D .160- 【答案】

C

考点二、求分段函数的定积分

【备考知识梳理】

1、分段函数的定积分

(1)分段函数在区间[],a b 上的定积分可分成几段定积分的和的形式.

(2)分段的标准是使每一段上的函数表达式是确定的,一般按照原函数分段的情况分,无需分得过细.

2、奇函数与偶函数在对称区间上的定积分

若()f x 为偶函数,且在关于原点对称的区间[],a a -上连续,则

()()0

2a

a

a

f x dx f x dx -=?

?

若()f x 为奇函数,且在关于原点对称的区间[],a a -上连续,则

()0a

a

f x dx -=?

【规律方法技巧】

分段函数在区间[],a b 上的定积分可分成几段定积分的和的形式. 分段的标准只需依据已知函数的分段标准即可. 【考点针对训练】

1.求函数()(

)

()()

30114214

45x x x f x x x ?≤≤=<≤-<≤?? 在区间[]0,5 上的定积分. 【答案】

16109

ln 212

-

2.【2016届海南师范大学附属中学高三临考模拟】设?

??∈∈=],2,1[,],

1,0[,sin )(2x x x x x f 则?20)(dx x f 等

于( ) A .

1cos 37- B .1cos 310- C .1cos 37+ D .1cos 3

10

+ 【答案】B

【解析】2

1

2

213201

1

1

710

()sin cos 1cos1cos13

33

f x dx xdx x dx x x =+=-+

=-+

=-???,选B. 考点三、定积分的几何意义

【备考知识梳理】

1、当函数()f x 在区间[],a b 上恒为正时,定积分()b

a f x dx ?的几何意义是直线

,,0x a x b y === 和曲线()y f x =围成的曲边梯形的面积;

2、一般情况下,定积分()b

a

f x dx ?的几何意义是介于轴、曲线()y f x =和直线

,x a x b ==之间的曲边梯形的面积的代数和,其中在轴上方的面积等于该区间上定积分值,轴下方的面积等于该区间上定积分的相反数.

【规律方法技巧】

1.利用定积分求平面图形面积的关键是画出几何图形,结合图形位置,确定积分区间以及被积函数,从而得到面积的积分表达式,再利用微积分基本定理求出积分值.

2. 定积分的应用及技巧:(1)对被积函数,要先化简,再求定积分.(2)求被积函数是分段函数的定积分,依据定积分的性质,分段求定积分再求和.(3)对含有绝对值符号的被积函数,要去掉绝对值符号才能求定积分.(4)应用定积分求曲边梯形的面积,解题的关键是利用两条曲线的交点确定积分区间以及结合图形确定被积函数.求解两条曲线围成的封闭图形的面积一般是用积分区间内上方曲线减去下方曲线对应的方程、或者直接作差之后求积分的绝对值,否则就会求出负值.

易错提示] 在使用定积分求两曲线围成的图形的面积时,要注意根据曲线的交点判断这个面积是怎样的定积分,既不要弄错积分的上下限,也不要弄错被积函数.

用微积分基本定理求定积分时,要掌握积分与导数的互逆关系及求导公式的逆向形式. 3.定积分的应用主要有两个问题:一是能利用定积分求曲边梯形的面积;二是能利用定积分求变速直线运动的路程及变力做功问题,其中,应特别注意求定积分的运算与利用定积分计算曲边梯形面积的区别. 【考点针对训练】

1.【2016届山东省东营市胜利一中高三最后一卷】如图所示,由函数()sin f x x =与函数

()cos g x x =在区间30,2π??

????

上的图象所围成的封闭图形的面积为( )

A

.1 B

.2 C

D

. 【答案】D

【解析】由()sin f x x =和()cos g x x =在30,2π??

????

的交点坐标为)22,45(),22,4(-ππ,两函数图象所围成的封闭图形的面积为

dx

x x dx x x dx x x S )sin (cos 4

52

3)cos (sin 44

5)sin (cos 0

4-+-+-=???π

π

πππ

224

523)cos (sin 445)cos (sin 0

4)cos (sin =+++-+π

π

πππ

x x x x x x .故选D.

2.【2016届安徽省六安一中高三下组卷三】函数(

)()()

2

2,20,02x f x x x x -≤<=-≤≤??的图象与

轴所围成的封闭图形的面积为( )

A .5π-

B .1π+

C .3π-

D .1π- 【答案】A

【应试技巧点拨】

1. 利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论. 2.求曲边图形面积的方法与步骤

(1)画图,并将图形分割为若干个曲边梯形;

(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;

(4)求出各曲边梯形的面积和,即各积分的绝对值的和. 3. 定积分

()b

a

f x dx ?的几何意义是介于轴、曲线y =()f x 以及直线,x a x b ==之间的曲边

梯形面积的代数和 ,其中在轴上方的面积等于该区间上的积分值,在轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数.

1. 【2016届山西省榆林市高三二模】设1

m -=

?

,若将函数()()sin f x x ω?=+的

图像向左平移m 个单位后所得图像与原图像重合,则ω的值不可能为( )

A .4

B .6

C .8

D .12 【答案】

B

2. 【2016届山东省师大附中高三最后一模】设函数()()2

0f x ax b a =+≠,若

200

()2()f x dx f x =?

,00x >,则0x 等于( )

C.32

D.3

【答案】B

【解析】∵函数()()2

0f x ax b a =+≠,2

002f x dx f x ?=()(),

()2

232000208|23223a ax b dx x bx a b f x ax b ∴?? ???++=+=?

+=,(

,2

02283a ax x b b

??∴?=∴?=?=,,故选B. 3. 【2016届吉林省毓文中学高三模拟】设[](]2,0,1,

()1,1,e x x f x x x

?∈?

=?∈??(其中为自然对数的底数),

()e

f x dx ?

的值为( )

A .

43 B .54 C .65 D .6

7

【答案】A 【解析】

1

1

2

310

1

01114()ln 1333

e

e

e

f x dx x dx dx x x x =+=+=+=?

??

,故选A. 4. 【2016届安徽省六安一中高三第九次月考】如图,矩形OABC 内的阴影部分是由曲线

()()sin ,0,f x x x π=∈及直线(),0,x a a π=∈与轴围成,向矩形OABC 内随机投掷一点,

若此点落在阴影部分的概率为

1

4

,则的值是( )

A .

712π B .23π C .34π D .56

π 【答案】B

5. 【2016届宁夏银川唐徕回民中学高三下三模】由曲线x y =,直线2-=x y 及y 轴所围

成的封闭图形的面积为( ) A .

316 B .3

10

C .4

D .6 【答案】A

【解析】由2

y y x ?=??

=-??解得4,2x y ==,故面积为

)

32

44

200

21622323|x

x dx x x ??+=-+= ???

?.

6. 【2016届山东省济宁市高三下学期3月模拟】若2n

x x ?

?

+

??

?

的展开式中各项的系数之和为81,且常数项为,则直线6

a

y x =与曲线2y x =所围成的封闭区域面积为 . 【答案】

323

7. 【2016届河南省南阳一中高三第三次模拟】已知?=

-20

4

7

d )sin(π

?x x ,则=?2sin .

【答案】

16

9 【解析】因为

20sin()d x x π

φ-=?20(sin cos cos sin )d x x x πφφ=-?()20cos cos sin sin |x x π

φφ=+

sin cos φφ=-=

71sin 216φ-=,9sin 216

φ=,故答案为169.

8. 【2016届贵州省贵阳六中高三5月高考模拟】曲线2

y x =与直线y x =所围成的封闭图形的面积为 . 【答案】

1

6

【解析】先根据题意画出图形,得到积分上限为1,积分下限为0,直线y x =与曲线2

y x

=所围图形的面积120=?-S x x dx () ,而1

2231001

1111233|26

=?-=-

=-=S x x dx x x ()(),∴曲边梯形的面积是

1

6

9.【2016届山西省忻州一中等四校高三下第四次联考】已知函数

),()(23R b a bx ax x x f ∈++-=的图象如图所示,它与轴在原点相切,且轴与函数图象所围

成的区域(如图阴影部分)的面积为

12

1

,则的值为_________

【答案】1-

10. 【2016年甘肃省兰州市高三实战考试】若1

()()f x f x dx x +

=?

,则

1

()f x dx =?

.

【答案】14

. 【解析】

1

()f x dx ?

是一个常数,设为,则有()f x x c =-,∴1

()x c x c dx x -+-=?,解得

14c =

,故填:14

. 11. 【福建省厦门双十中学2015届高三上学期期中】已知函数2,01()2,12

x x f x x x ?<≤=?-<≤?,则

2

()f x dx ?

等于 .

【答案】

56

【解析】试题分析:

2

1

2

2

3122010

0111135

()(2)|(2)|(2)32326

f x dx x dx x dx x x x =+-=+-=+-=?

??. 12. 【2015届山西省太原市五中高三5

月月考理科】已知11

(1a dx -=

+?

,则

61

[(1)]2a x x

π

--

-展开式中的常数项为_____. 【答案】20-

13. 【2015届山东省威海市高三第二次高考模拟理科】若1

()()f x f x dx x +

=?, 则

1

()f x dx =?

_________.

【答案】

14

【解析】因为

1

()f x dx ?是一常数,即可设1

0()f x dx m =?,所以()f x x m =-,()f x 的原函

数21()(2g x x mx c c =-+为常数),所以1

0()(1)(0)f x dx g g =-?,即得1

2m m =-,解得

14m =,即1

1

()4f x dx =?

14. 【山东省潍坊市重点中学2015届高三上学期期中考试】如图,阴影区域的边界是直线

0,2,0===x x y 及曲线23x y =,则这个区域的面积是

A 4

B 8 C

13 D 1

2

【答案】B

【解析】由定积分的几何意义,得802|332

032

2=-===

?

x x S ,故答案为B.

15.【 2015年江西省五校协作体高三期中】已知集合(),20,0|}0,{M x y x y x y =+-≤≥≥,

()

,{|}0N x y y y =≥,则集合M N ?中的点所构成的平面区域的面积为( )

A .

79 B .1 C .34 D .7

6

【答案】B

【一年原创真预测】

1. 若6

n (x

的展开式中含有常数项,且的最小值为,则a

2a

(x -+=?( )

A .

B .1253

C .2502532

π

+ D .

250253

【答案】C.

【入选理由】本题考查二项式定理、定积分等基础知识,意在考查基本运算能力.将导数与二项式定理整合在一个问题中,有新意,故选此题.

2.若6

n (x

的展开式中含有常数项,且的最小值为,则a

2a

(x -=?( )

A .

B .1253

C .2502532

π

+ D .

250253

【答案】C. 【解析】6

n

(x

+

的通项为156n r r 6(n r)

r

r 2

r 1n

n

T C x

C x

-

-+==,由15

6n r 02

-

=得:5

n r 4

=

,因为为正整数,所以当r 4=时,的最小值是,即a=5,则a

5

5

5

5

2

2

2

35

5a

5

5

1(x (x x dx x |3

------==+=+?

???

?

,又由定积分的定义可知5

-?

表示圆心在原点且半径为5的圆上半部分的面积,

a

52355a 125025(x x |332

---π=+=+??,故选C. 【入选理由】本题考查二项式定理、定积分等基础知识,意在考查基本运算能力.将导数与二项式定理整合在一个问题中,在高考中也出现过,故选此题. 3.定积分

1

(2e )d e x a

x x +=?,则6()a x x

+展开式中的常数项为( ) A .1 B .-1 C .20 D .-20 【答案】C

【解析】1

21000

(2e )d (e )|(1e)(0e )e e x x a

x x x +=+=+-+==?

,所以a =1,6

()a x x

+展开式

的通项为662166()r r

r r r r r a T C x

a C x x

--+==,令6-2r =0,即r =3,所以常数项为334620T a C ==. 【入选理由】本题考查二项式定理、定积分等基础知识,意在考查基本运算能力.将导数与二项式定理整合在一个问题中,这是常见题型,故选此题. 4.设()0

sin cos k x x dx π

=

-?,若()828

01281kx a a x a x a x -=+++???+,则1238a a a a +++???+=

. 【答案】0.

【入选理由】本题考查二项式定理、定积分等基础知识,意在考查基本运算能力.将导数与二项式定理整合在一个问题中,此种出法,高考出题不多,有创意,故选此题.

5.由直线1y =,2y =,曲线1

y x =及y 轴所围成的封闭图形的面积是( ) A .ln2 B .2ln 21- C .1ln 22 D .5

4

【答案】A

【解析】由图可知封闭图形的面积为11

11221111d 1ln ln 222x x x

?+-?==?,故选A .

【入选理由】本题考查定积分求面积等基础知识,意在考查学生逻辑思维能力和基本运算能力.利用定积分求面积,是经常出的题型,故选此题.

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

专题13 定积分与微积分基本定理知识点

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

()d b a f x x ? =1 lim ()n i n i b a f n ξ→∞ =-∑ . (2)在 ()d b a f x x ? 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被 积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d b b a a kf x x k f x x =??(k 为常数); (2)[()()]d ()d ()d b b b a a a f x g x x f x x g x x ±=±? ??; (3) ()d =()d +()d b c b a a c f x x f x x f x x ? ??(其中a

高数中值定理

第三章中值定理与导数 的应用

中值定理与导数的应用的结构 洛必达法则 Rolle 定理 Lagrange 中值定理 常用的泰勒公式 型 0,1,0∞∞型 21∞-∞型 ∞?0型00型∞ ∞Cauchy 中值定理 Taylor 中值定理 x x F =)() ()(b f a f =0 =n g f g f 1= ?2 11 2 21111∞∞∞-∞=∞-∞取对数 令g f y =单调性,极值与最值,凹凸性,拐点,函数图形的描绘;曲率;求根方法. 导数的应用

第三章中值定理与导数的应用 1. 中值定理 2. 常用麦克劳林公式 3. 洛必达法则 4. 函数的单调性、凹凸性、极值与拐点 5. 函数图形性质的讨论 6. 判定极值的充分条件 7. 最值问题 8. 典型例题

1. 中值定理 泰勒中值定理 设f (x )在含0x 的某开区间(a ,b )内具有(n +1)阶 导数, 则当),(b a x ∈时,在 x 与0x 之间存在 ξ ,使 (柯西中值公式) ) () ()()()()('' ξξg f b g a g b f a f =--(拉氏中值公式) )()()(ξf b f a f '=-柯西中值定理 设f (x ), g (x )在闭区间[a ,b ]上连续,在开区间 (a ,b )内可导且g '(x )≠0, 那末),(b a ∈?ξ,使 罗尔中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导且f (a )= f (b ), 那末),(b a ∈?ξ,使f '(ξ )=0 1 0)1(0 00)() ()!1()()(!)()(++=-++-=∑n n n k n n x x n f x x n x f x f ξ拉氏中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导, 那末),(b a ∈?ξ,使

7.微积分基本定理练习题

7、微积分基本定理 一、选择题 1.??0 1(x 2 +2x )d x 等于( ) A.13 B.23 C .1 D.43 2.∫2π π(sin x -cos x )d x 等于( ) A .-3 B .-2 C .-1 D .0 3.自由落体的速率v =gt ,则落体从t =0到t =t 0所走的路程为( ) A.13gt 20 B .gt 2 0 C.12gt 20 D.16gt 20 4.曲线y =cos x ? ????0≤x ≤3π2与坐标轴所围图形的面积是( ) A .4 B .2 C.5 2 D .3 5.如图,阴影部分的面积是( ) A .2 3 B .2- 3 C.323 D.35 3 6.??0 3|x 2-4|d x =( ) A.213 B.223 C.233 D.25 3 7.??241 x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 8.若??1a ? ?? ??2x +1x d x =3+ln2,则a 等于( ) A .6 B .4 C .3 D .2 9.(2010·山东理,7)由曲线y =x 2 ,y =x 3 围成的封闭图形面积为( ) A.112 B.14 C.13 D.7 12 10.设f (x )=??? ?? x 2 0≤x <12-x 1

11.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________. 12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________. 13.求曲线y =sin x 与直线x =-π2,x =5 4π,y =0所围图形的面积为________. 14.若a =??02x 2 d x ,b =??02x 3 d x ,c =??0 2sin x d x ,则a 、b 、c 大小关系是________. 三、解答题 15.求下列定积分: ①??0 2(3x 2+4x 3 )d x ; ② sin 2 x 2 d x . 17.求直线y =2x +3与抛物线y =x 2 所围成的图形的面积. 18.(1)已知f (a )=??0 1(2ax 2 -a 2 x )d x ,求f (a )的最大值; (2)已知f (x )=ax 2 +bx +c (a ≠0),且f (-1)=2,f ′(0)=0,??0 1f (x )d x =-2,求a ,b ,c 的值. DBCDCCDDAC 11. 13 12. 23(1132-1) 13.4-2 2 [解析] 所求面积为 =1+2+? ?? ?? 1-22=4-22. 14.[答案] c

高中数学16微积分基本定理(教案)

三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 2 1 ()T T v t dt ? 。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1 ()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算 ()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ= ()x a f t dt ? 与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ? =0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有 ()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求 定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

§1.6微积分基本定理

1.6微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三:教学过程: 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 21()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1.计算下列定积分: (1)2 11dx x ?; (2)3211(2)x dx x -?。 解:(1)因为'1(ln )x x =, 所以22111ln |ln 2ln1ln 2dx x x ==-=?。 (2))因为2''211()2,()x x x x ==-, 所以3332211111(2)2x dx xdx dx x x -=-??? 233111122||(91)(1)33x x =+=-+-=。 练习:计算 120x dx ? 解:由于313 x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有

微分中值定理的证明题

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 证:构造函数()()x F x f x e λ=,则()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()0F a F b ==,由罗尔中值定理知:,)a b ξ?∈ (,使()0F ξ'= 即:[()()]0f f e λξξλξ'+=,而0e λξ≠,故()()0f f ξλξ'+=。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 证:将上等式变形得:1111 111111 (1)()b a e e e b a b a ξξ-=-- 作辅助函数1 ()x f x xe =,则()f x 在11[,]b a 上连续,在11 (,)b a 内可导, 由拉格朗日定理得: 11()()1()f f b a f b a ξ-'=- 1ξ11(,)b a ∈ , 即 11111(1)11b a e e b a e b a ξξ-=-- 1ξ11(,)b a ∈ , 即:ae (1)(,)b e be e a b ξξ-=- (,)a b ξ∈。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证:显然()F x 在[0,1]上连续,在(0,1)内可导,又(0)(1)0F F ==,故由罗尔定理知:0(0,1)x ?∈,使得0()0F x '= 又2()2()()F x xf x x f x ''=+,故(0)0F '=, 于是()F x '在0[0]x ,上满足罗尔定理条件,故存在0(0,)x ξ∈, 使得:()0F ξ''=,而0(0,)x ξ∈?(0,1),即证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明:

定积分与微积分基本定理1

第23练 定积分与微积分基本定理 一、选择题 1.(2016·安徽示范高中联考)??1 e ? ????2x +1x d x 等于( ) A .e 2 -2 B .e -1 C .e 2 D .e +1 2.从空中自由下落的一物体,在第一秒末恰经过电视塔塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( ) A.1 2g B .g C.32 g D .2g 3.(2016·江西师大附中期末)若? ?1 2(x -a )d x =∫π 40cos 2x d x ,则a 等于( ) A .-1 B .1 C .2 D .4 4.(2016·淄博一模)如图所示,曲线y =x 2 -1,x =2,x =0,y =0围成的阴影部分的面积为( ) A .??02|x 2 -1|d x B.???? ??02(x 2 -1)d x C.??0 2(x 2 -1)d x D.??01(x 2 -1)d x +??1 2(1-x 2 )d x

5.(2016·天津蓟县期中)由直线y =x 和曲线y =x 3 围成的封闭图形面积为( ) A.14 B.12 C .1 D .2 6.(2016·辽宁师大附中期中)定积分??0 1x (2-x )d x 的值为( ) A.π4 B. π2 C .π D .2π 7.(2016·山西四校联考)定积分??-2 2|x 2 -2x |d x 等于( ) A .5 B .6 C .7 D .8 8.若函数f (x ),g (x )满足? ?1-1f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组 正交函数.给出三组函数: ①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2 . 其中为区间[-1,1]上的正交函数的组数是( ) A .0 B .1 C .2 D .3 二、填空题 9.(2016·江西高安二中段考)已知? ?a -a(sin x +3x 2 )d x =16,则正实数a 的值为________. 10.(2017·德州月考)如图,已知点A ? ?? ??0,14,点P (x 0,y 0)(x 0>0)在曲线y =x 2 上,若阴影 部分面积与△OAP 面积相等,则x 0=________. 11.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2 +1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________ J(x 的单位:m ;力的单位:N). 12.(2016·洛阳统考)用min{a ,b }表示a ,b 两个数中的较小的数,设f (x )=min{x 2 ,x },那么由函数y =f (x )的图象、x 轴、直线x =1 2和直线x =4所围成的封闭图形的面积为 ________.

定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义 河南省卢氏县第一高级中学山永峰 考 什么怎么考 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题. 2.考查简单定积分的求解. 3.考查曲边梯形面积的求解. 4.与几何概型相结合考查. [归纳·知识整合] 1.定积分 (1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质:①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. [探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等? 提示:相等. 2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算. 3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

数学:1.6 微积分基本定理(教案)

1.6 微积分基本定理 一、教学目标  知识与技能目标  通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分过程与方法通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二、教学重难点 重点 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义  三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥),则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()() S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()() b a f x dx F b F a =-?若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()() b a f x dx F b F a =-?

非常好定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义 [备考方向要明了 ] 考什么怎么考 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题. 2.考查简单定积分的求解. 3.考查曲边梯形面积的求解. 4.与几何概型相结合考查. [归纳·知识整合] 1.定积分 (1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等

于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质: ①∫b a kf (x )d x =k ∫b a f (x )d x . ②∫b a [f 1(x )±f 2(x )]d x =∫b a f 1(x )d x ±∫b a f 2(x )d x . ③∫b a f (x )d x =∫c a f (x )d x +∫b c f (x )d x . [探究] 1.若积分变量为t ,则∫b a f (x )d x 与∫b a f (t )d t 是否相等? 提示:相等. 2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算. 3.定积分∫b a [f (x )-g (x )]d x (f (x )>g (x ))的几何意义是什么? 提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积. 2.微积分基本定理:如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式. 为了方便,常把F (b )-F (a )记成F (x )|b a ,即 ∫b a f (x )d x =F (x )|b a =F (b )-F (a ). 课前预测: 1.∫421x d x 等于( ) A .2ln 2 B .-2ln 2 C .-ln 2 D .ln 2 2.(教材 习 题改

定积分和微积分基本定理知识梳理

定积分和微积分基本定理 【考纲要求】 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念及其基本定理。 2.正确计算定积分,利用定积分求面积。 【知识网络】 【考点梳理】 要点一、定积分的概念 定积分的定义:如果函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<

微积分中值定理及其应用

微积分中值定理及其应用 前言: 关于微分中值定理的证明问题是数学分析中的难点,本文将从微分中值定理的证明入手,对其进行证明,讨论了微分中值定理的内在联系及推广,并给出其在解题中的应用,如:微分中值定理在一些定理中的证明,利用几何意义思考解题,讨论导函数零点的存在性,研究函数性态,证明不等式和求极限等。 主题: 有关定理: 罗尔中值定理 拉格朗日中值定理 柯西中值定理 Cauchy 中值定理统一了微积分中值定理各种形式,从而建立了微分中值定理和积分中值定理之间的 内在联系. 以Rolle 中值定理为基础,借助不同形式辅助函数可对其它几个中值定理作出多种形式的统一证 明;利用Taylor 公式可以进一步导出微积分中值定理的推广形式. 作为微积分知识体系中十分重要的三个中值定理之一,拉格朗日中值定理中中值的存在性问题, 对理解和应用定理有着十分重要的意义。一般意义上说, 同数学中许多存在性问题一样, 只需关注是否存 在即可。但是, 认真分析拉格朗日中值定理的结构, 就会产生这样的问题其中值〔的存在是否具有函数属性, 在什么条件下能够具有函数的属性。 总结: 在解关于微分中值的题目时,大多数题是有一定技巧的。在习题解题答中可以看到这方面的应用,虽然有些实例,但却凌乱无序,不成系统,本文针对这个问题,通过总结归纳,以建立初具规模的体系框架。 微积分概念和基本定理已成为大众化的知识,但是由于种种原因,例如,对相关数学知识的研究不够透彻,使得微积分中值定理应用存在某些问题,通过对例题的分析和总结,对微积分的应用作了更为清晰和简便的解法,对提高微积分课程,尤其是微分中值定理的教学质量和效果发挥了良好的作用。

微积分基本定理教案

微积分基本定理教案 Revised by BLUE on the afternoon of December 12,2020.

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含 义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 设()()F x f x '=则在[,]a b 上,⊿y=()()F b F a - 将[,]a b 分成n 等份,在第i 个区间[x i-1,x i ]上,记⊿yi=F(x i )-F(x i-1),则 ⊿y=∑⊿y i 如下图,因为⊿h i =f(x i-1) ⊿x 而⊿y i ≈⊿h i 所以 ⊿y ≈∑⊿h i =∑f(x i-1) ⊿x 故 ⊿y=lim ∑⊿h i =∑f(x i-1) ⊿x= ?b a dx x f )( 即?b a dx x f )(=()()F b F a -

相关文档
相关文档 最新文档