文档库 最新最全的文档下载
当前位置:文档库 › 填料吸收塔的操作和吸收系 数的测定

填料吸收塔的操作和吸收系 数的测定

填料吸收塔的操作和吸收系    数的测定
填料吸收塔的操作和吸收系    数的测定

水吸收_低浓度二氧化硫_填料吸收塔_设计

水吸收低浓度SO2填料吸收塔设计 第一部分设计任务、依据和要求 一、设计任务及操作条件 1、混合气体(空气中含SO 2 气体的混合气体)处理量为90 kmol/h 2、混合气体组成:SO 2 含量为7.6%(摩尔百分比),空气为:92.4%(mol/%) 3、要求出塔净化气含SO 2为:0.145%(mol/%),H 2 O为:1.172 kmol/h 4、吸收剂为水,不含SO 2 5、常压,气体入塔温度为25°C,水入塔温度为20°C。 二、设计内容 1、设计方案的确定 2、填料吸收塔的塔径、填料层高度及填料层压强的计算。 3、填料塔附属结构的选型与设计。 4、填料塔工艺条件图。 三、H2O- SO2 在常压20 °C下的平衡数据

四、 气体与液体的物理性质数据 气体的物理性质: 气体粘度()0.0652/G u kg m h =? 气体扩散系数20.0393/G D m s = 气体密度31.383/G kg m ρ= 液体的物理性质:液体粘度 3.6/()L u kg m h =? 液体扩散系数625.310/L D m s -=? 液体密度 3998.2/L kg m ρ= 液体表面张力 4273/92.7110/L dyn cm kg h σ==? 五、 设计要求 1、设计计算说明书一份 2、填料塔图(2号图)一张

第二部分 SO2净化技术和设备 一、SO2的来源、性质及其危害: 1、二氧化硫的来源 二氧化硫的来源很广泛,几乎所有企业都要产生二氧化硫,最主要途径是含硫化石燃料的燃烧。大约一吨煤中含有5-50kg硫,一吨石油中含有5-30kg硫。这些燃料经燃烧都产生并排放出二氧化硫,占所有排放总量的96%. 二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。主要有自然来源和人为来源两大类: 自然来源主要是火山活动,喷出的火山气体中含有大量的二氧化硫气体,地质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫,随火山灰一起喷射到大气中。地球上57%的二氧化硫来自自然界,沼泽、洼地、大陆架等处所排放的硫化氢,进入大气,被空气中的氧氧化为二氧化硫。自然排放大约占大气中全部二氧化硫的一半,通过自然循环过程,自然排放的硫基本上是平衡的。 人为来源则指在人类进行生产、生活活动中,使用含硫及其化合物的矿石进行燃烧,以及硫矿石的冶炼和硫酸、磷肥纸浆的生产等产生的工业废气,从而使其中一部分或全部的硫以二氧化硫的形式排放到大气中,形成二氧化硫污染。这部分二氧化硫占地球上二氧化硫来源的43%。随着化石燃料消费量的不断增加,全世界认为排放的二氧化硫在不断在增加,其中北半球排放的二氧化硫占人为排放总量的90%。我国的能源主要依靠煤炭和石油,而我国的煤炭、石油一般含硫量较高,因此,火力发电厂、钢铁厂、冶炼厂、化工厂和炼油厂排放出的大量二氧化硫和二氧化碳是造成我国大气污染的主要原因。由于我国部分地区燃用高硫煤,燃煤设备未能采取脱硫措施,致使二氧化硫排放量不断增加,造成严重的环境污染。 2、二氧化硫的性质 (1)物理性质: 二氧化硫又名亚硫酸酐,英文名称: sulfur dioxide 。无色气体,有强烈刺激性气味。分子量64.07 密度为1.4337kg/m3 (标准状况下),密度比空气大。溶解度:9.4g/mL(25℃)熔点-76.1℃(200.75K)沸点-10℃ (263K)

111水吸收二氧化硫填料吸收塔设计说明书完整版

吉林化工学院 化工原理课程设计 题目处理量为3100m3/h水吸收二氧化硫过程填料吸收塔的设计 教学院 专业班级 学生姓名 学生学号 指导教师 2011 年 12 月 5 日

课程设计任务书 1、设计题目:处理量为2550~3200m3/h水吸收二氧化硫过程填料吸收塔的设计 。 矿石焙烧炉送出的气体冷却到20℃后送入填料塔中,用20℃清水洗涤洗涤除去其中的SO 2入塔的炉气流量为3100m3/h,其中进塔SO2的摩尔分率为0.05,要求SO2的吸收率为95%。吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。吸收剂的用量为最小用量的1.5倍。 2、工艺操作条件: (1)操作平均压力常压 (2)操作温度t=20℃ (3)选用填料类型及规格自选。 3、设计任务: 完成吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,撰写设计说明书。 处理量为3100m3/h水吸收二氧化硫过程填料吸收塔的设计 化工原理教学与实验中心 2011年11月

目录 摘要.................................................................................................................................IV 第一章绪论. (1) 1.1 吸收技术概况 (1) 1.2 吸收设备发展 (1) 1.3 吸收在工业生产中的应用 (3) 第二章吸收塔的设计方案 (4) 2.1 吸收剂的选择 (4) 2.2 吸收流程选择 (5) 2.2.1 吸收工艺流程的确定 (5) 2.2.2 吸收工艺流程图及工艺过程说明 (6) 2.3 吸收塔设备及填料的选择 (7) 2.3.1 吸收塔设备的选择 (7) 2.3.2 填料的选择 (8) 2.4 吸收剂再生方法的选择 (10) 2.5 操作参数的选择 (11) 2.5.1 操作温度的确定 (11) 2.5.2 操作压强的确定 (11) 第三章吸收塔工艺条件的计算 (12) 3.1 基础物性数据 (12) 3.1.1 液相物性数据 (12) 3.1.2 气相物性数据 (12) 3.1.3 气液两相平衡时的数据 (12) 3.2 物料衡算 (12) 3.3 填料塔的工艺尺寸计算 (13)

填料吸收塔的计算.

4.5 填料吸收塔的计算 本节重点:吸收塔的物料衡算、吸收剂用量及填料层高度的计算 本节难点:填料吸收塔传质单元数的概念及计算 4.5.1 吸收塔中的物料衡算—操作线方程 如图,q n (V)—惰性气体的摩尔流量 mol/s q n (L)—溶剂的摩尔流量 mol/s Y 1、X 1—塔底气液两相中吸收质的物质的量比 Y 2、X 2—塔顶气液两相中吸收质的物质的量比 Y 、X —塔内任意截面吸收质的物质的量比 从塔内任意截面到塔底对吸收质作物料衡算: q n (L)X+ q n (V)Y 1= q n (L)X 1+ q n (V)Y q n (V)(Y 1-Y)= q n (L)(X 1-X) (4-40) 或 1n n 1n n X )V (q )L (q Y X )V (q )L (q Y -+= (4-41) 该式称为吸收操作线方程,表示吸收过程中,塔内任意截 面Y 与X 间的关系。 若对整个塔作物料衡算,则有: 1n n 12n n 2X ) V (q )L (q Y X )V (q )L (q Y -+= (4-42) 如图4-9,吸收过程的操作线是经过点(X 1,Y 1)和点(X 2,Y 2)的一条直线,其斜率为q n (L)/q n (V),操作线上的任一点表示在塔内任一截面 上气液相组成的关系。 生产中常以气相被吸收的吸收质的量与气相中 原有吸收质的量之比,衡量吸收效果和确定吸收任 务,称为吸收率η )1(Y Y 12η-= (4-43) 4.5.2 吸收剂用量的计算 吸收操作处理气量q n (V),进出塔气体组成Y 1、 Y 2,以及吸收剂进塔组成X 2通常是由生产工艺确定的,而吸收剂用量和塔底溶液浓度是可以变动的,为了完成工艺要求的任务,需计算吸收剂的用量。 1、液气比 由全塔物料衡算式(4-42)1n n 12n n 2X ) V (q )L (q Y X )V (q )L (q Y -+= 可知吸收剂出塔浓度 X 1与吸收剂用量q n (L)是相互制约的, 选取的q n (L)/q n (V) ↑,操作线斜率 ↑ ,操作线与平衡线的距离 ↑ ,塔内传质推动力 ↑ ,完成一定分离任务所需塔高 ↓; q n (L)/q n (V) ↑,吸收剂用量↑ ,吸收剂出塔浓度 X 1↓ ,循环和再生费用↑ ; 若q n (L)/q n (V) ↓ ,吸收剂出塔浓度 X 1↑ ,塔内传质推动力↓ ,完成相同任务所需塔高↑ ,设备费用↑ 。

实验四填料吸收塔的操作及吸收传质系数的测定

实验四填料吸收塔的操作及吸收传质系数的测定姓名:学号:;学院专业级班; 同组同学姓名:;;。 实验日期:;天气:;室温:大气压:;成绩: . 一、实验目的 1.了解填料吸收塔的结构和操作流程; 2.掌握产生液泛现象的原因和过程。 3.明确吸收塔填料层压降p与空塔气速u在双对数坐标中的关系曲线及其意义,了 解实际操作气速与泛点气速之间的关系 4.了解吸收剂进口条件的变化对吸收操作结果的影响; 5. 掌握气相总容积吸收传质系数Ky,α的测定方法 二、基本原理 吸收是指利用气体中各组分在液相中溶解度的差异而分离气体混合物的操作。在吸收过 程中,所用液体成为吸收剂(或溶剂);气体中被溶解的组分称为吸收质或溶质;不被溶解 的气体组分称为惰性气体或载体;吸收操作所得到的液体称为溶液(主要成分为吸收剂和溶质);剩余的气体为尾气,主要成分为惰性气体,还有残余的吸收质。 1.气液相平衡关系 大多数气体物质A溶解形成稀溶液时,稀溶液上方溶质A的平衡分压p A*与其在溶液 中的 摩尔分数x A成正比: p A* = Ex A (4-1) 这就是亨利定律。式中,E为亨利系数(kPa)。 若气相组成也用平衡摩尔分数y*表示,则(3-4-1)式可写为:

y A* = Ex A/p (4-2) 令E/p= m,则 y A* = mx A (4-3) 式中,m为相平衡系数,量纲为1。 吸收过程中,溶液和气体的总量在不断变化,使得吸收过程的计算比较复杂。为了简便 起见,工程计算中采用在吸收过程中数量不变的惰性气体(如空气)和纯吸收剂为基准,用 物质的量之比(也称为比摩尔分数)来表示气相和液相中吸收质A的含量,并分别用Y A和 X A表示。平衡时,其关系式为: Y A*= mX A/(1?(1?m)X A) 当溶液浓度很低时,X A很小,则1+(1-m)X A?1,式(3-4-4)可简化为: Y A*=mX A 2.填料吸收塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。填料层上方有液体分布装置,可以使液体均匀喷洒在填料塔上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降△P的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降△P与空塔气速u的关系可用式△P=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为 1.8— 2.0。在有一条喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守△P∝u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。当气速增加到某一值时。由于上升气流与下降液体的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在△P∝u n关系式中,n的数值可达10左右,此点称为泛点。在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。随着喷淋密度的增加,填料层的载点气速和泛点气速下降。 本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与塔顶表压的大小,直到发生液泛为止。 3.吸收速率方程式

填料吸收塔课程设计

一设计任务书 (一)设计题目 过程填料吸收塔的设计:试设计一座填料吸收塔,用于脱除焙烧水吸收SO 2 炉送出的混合气体(先冷却)中的SO2,其余为惰性组分,采用清水进行吸收。 (二)操作条件 (1)操作压力常压 (2)操作温度25℃ (三)设计内容 (1)吸收塔的物料衡算; (2)吸收塔的工艺尺寸计算; (3)填料层压降的计算; (4)液体分布器简要设计; (5)吸收塔接管尺寸计算; (6)绘制吸收塔设计条件图; (7)对设计过程的评述和有关问题的讨论。 二设计方案简介 2.1方案的确定 用水吸收SO 属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流 2 不作为产品,故采用纯溶剂。 程。因用水作为吸收剂,且SO 2 2.2填料的类型与选择 的过程,操作温度及操作压力较低,工业上通常选用塑料散对于水吸收SO 2 装填料。在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。

阶梯环是对鲍尔环的改进。与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。 2.3设计步骤 本课程设计从以下几个方面的内容来进行设计 (一)吸收塔的物料衡算;(二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(三)设计液体分布器及辅助设备的选型;(四)绘制有关吸收操作图纸。 三、工艺计算 3.1基础物性数据 3.1.1 液相物性数据 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,25℃时水的有关物性数据如下: 密度为ρ L =997.1 kg/m3 粘度为μ L =0.0008937 Pa·s=3.2173kg/(m·h) 表面张力为σ L =71.97 dyn/cm=932731 kg/h2 SO 2在水中的扩散系数为 D L =1.724×10-9m2/s=6.206×10-6m2/h (依Wilke-Chang 0.5 18r 0.6 () 1.85910 M T D V φ μ - =?计算,查《化学工程基础》) 3.1.2 气相物性数据 设进塔混合气体温度为25℃, 混合气体的平均摩尔质量为 M Vm=Σy i M i=0.1×64.06+0.9×29=32.506g/mol 混合气体的平均密度为

水吸收氨气过程填料吸收塔的设计说明

课程设计任务书 一、设计题目:水吸收氨气过程填料吸收塔的设计; 试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。混合气体的处理量为2600m3/h,其中含氨为7%(体积分数),混合气体的进料温度为25℃。要求:氨气的回收率达到98%。(20℃氨在水中的溶解度系数为H=0.725kmol/(m3.kPa) 二、工艺操作条件: (1)操作平均压力常压 (2)操作温度 : t=20℃ (3)吸收剂用量为最小用量的倍数自己确定 (4)选用填料类型及规格自选。 三、设计容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计; (6)绘制液体分布器施工图 (7)吸收塔接管尺寸计算; (8)设计参数一览表; (9)绘制生产工艺流程图(A4号图纸); (10)绘制吸收塔设计条件图(A4号图纸); (11)对设计过程的评述和有关问题的讨论。

目录 1. 设计方案简介 (1) 1.1设计方案的确定 (1) 1.2填料的选择 (1) 2. 工艺计算 (1) 2.1 基础物性数据 (1) 2.1.1液相物性的数据 (1) 2.1.2气相物性的数据 (1) 2.1.3气液相平衡数据 (1) 2.1.4 物料衡算 (1) 2.2 填料塔的工艺尺寸的计算 (2) 2.2.1 塔径的计算 (2) 2.2.2 填料层高度计算 (3) 2.2.3 填料层压降计算 (6) 2.2.4 液体分布器简要设计 (7) 3. 辅助设备的计算及选型 (8) 3.1 填料支承设备 (8) 3.2填料压紧装置 (8) 3.3液体再分布装置 (8) 4. 设计一览表 (9) 5. 后记 (9) 6. 参考文献 (9) 7. 主要符号说明 (10) 8. 附图(工艺流程简图、主体设备设计条件图)

填料吸收传质系数的测定

序号:40 化工原理实验报告 实验名称:填料吸收传质系数的测定 学院:化学工程学院 专业:化学工程与工艺

1、熟悉填料塔的构造与操作。 2、观察填料塔流体力学状况,测定压降与气速的关系曲线。 3、掌握总传质系数K x a 的测定方法并分析影响因素。 4、学习气液连续接触式填料塔,利用船只速率方程处理传质问题的办法。 一、 实验原理 本装置先用吸收柱讲将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数a x K ,并进行关联,得到 b a V AL K ?=a x 的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。本实 验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。 1、填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa 线)。当有喷淋量时,在低气速下(c 点以前)压降也正比于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图1中c 点),持液量开始增大,压降-气速线向上 弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 图一 填料层压降-空塔气速关系示意图 2、传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验是对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。整理得到相应的传质速率方式为: m p x A x V a K G ???=

填料精馏塔设计示例

4.3 填料精馏塔设计示例 4.3.1 化工原理课程设计任务书 1 设计题目 分离甲醇-水混合液的填料精馏塔 2 设计数据及条件 生产能力:年处理甲醇-水混合液0.30万吨(年开工300天) 原料:甲醇含量为70%(质量百分比,下同)的常温液体 分离要求:塔顶甲醇含量不低于98%,塔底甲醇含量不高于2% 建厂地址:沈阳 3 设计要求 (1)编制一份精馏塔设计说明书,主要内容: ①前言; ②流程确定和说明; ③生产条件确定和说明; ④精馏塔的设计计算; ⑤主要附属设备及附件的选型计算; ⑥设计结果列表; ⑦设计结果的自我总结评价与说明; ⑧注明参考和使用的设计资料。 (2)编制一份精馏塔工艺条件单,绘制一份带控制点的工艺流程图。 4.3.2 前言

在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大,应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 塔设备按其结构形式基本上可分为两类:板式塔和填料塔。以前,在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小以性能稳定等特点。因此填料塔已被推广到大型汽液操作中。在某些场合还代替了传统的板式塔。如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。 板式塔为逐级接触式汽液传质设备,它具有结构简单、安装方便、操作弹性大、持液量小等优点。同时也有投资费用较高、填料易堵塞等缺点。 本设计目的是分离甲醇-水混合液,处理量不大,故选用填料塔。 塔型的选择因素很多。主要因素有物料性质、操作条件、塔设备的制造安装和维修等。 1 与物性有关的因素 ①易起泡的物系在板式塔中有较严重的雾沫夹带现象或引起液泛,故选用填料塔为宜。因为填料不易形成泡沫。本设计为分离甲醇和水,故选用填料塔。 ②对于易腐蚀介质,可选用陶瓷或其他耐腐蚀性材料作填料,对于不腐蚀的介质,则可选金属性质或塑料填料,而本设计分离甲醇和水,腐蚀性小可选用金属填料。 2 与操作条件有关的因素 ①传质速率受气膜控制的系统,选用填料塔为宜。因为填料塔层中液相为膜状流、气相湍动,有利于减小气膜阻力。 ②难分离物系与产品纯度要求较高,塔板数很多时,可采用高效填料。 ③若塔的高度有限制,在某些情况下,选用填料塔可降低塔高,为了节约能耗,故本设计选用填料塔。 ④要求塔内持液量、停留时间短、压强小的物系,宜用规整填料。 4.3.3 流程确定和说明 1 加料方式 加料方式有两种:高位槽加料和泵直接加料。采用高位槽加料,通过控制液位高度,可以得到稳定的流量和流速。通过重力加料,可

化工原理课程设计-填料吸收塔的设计

化工原理课程设计-填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:化学工程与工艺(精细化工方向) 学号: 学生姓名: 指导教师: 2012 年 5 月31 日

《化工原理课程设计》任务书 2011~2012 学年第2学期 学生姓名:专业班级:化学工程与工艺(2009) 指导教师:工作部门:化工教研室 一、课程设计题目:填料吸收塔的设计 二、课程设计内容(含技术指标) 1. 工艺条件与数据 煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸 收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时 处理含苯煤气2000m3;冷却水进口温度<25℃,出口温度≤50℃。 2. 操作条件 吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充 新鲜吸收剂;过程中热效应忽略不计。 3. 设计内容 ①吸收塔、解吸塔填料层的高度计算和设计; ②塔径的计算; ③其他工艺尺寸的计算。 三、进度安排 1.5月14日:分配任务; 2.5月14日-5月20日:查询资料、初步设计; 3.5月21日-5月27日:设计计算,完成报告。 四、基本要求 1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明 书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程 和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计 算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。 设计说明书应附有带控制点的工艺流程图。 设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作 条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算; 设计结果概览;附录;参考文献等。 2. 图纸1套:包括工艺流程图(3号图纸)。 教研室主任签名: 年月日

实验四填料塔吸收传质系数的测定

实验四填料塔吸收传质 系数的测定 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

4填料塔吸收传质系数的测定 4.1实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 4.2实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定K xa 和H OL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 0 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol/(m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol/(m 3 ·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2)

])1ln[(11 1 121A mx y mx y A A N OL +----= (6-3) 2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2; (3)平衡关系。 本实验的平衡关系可写成 y =m x (6-4) 式中: m 相平衡常数,m =E /P ; E 亨利系数,E =f (t),Pa ,根据液相温度测定值由附录查得; p 总压,Pa ,取压力表指示值。 对清水而言,x 2=0,由全塔物料衡算 可得x 1。 4.3实验装置与流程 1〕装置流程 本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。

(完整版)填料塔计算部分要点

填料吸收塔设计任务书 一、设计题目 填料吸收塔设计 二、设计任务及操作条件 1、原料气处理量:5000m3/h。 2、原料气组成:98%空气+2.5%的氨气。 3、操作温度:20℃。 4、氢氟酸回收率:98%。 5、操作压强:常压。 6、吸收剂:清水。 7、填料选择:拉西环。 三、设计内容 1.设计方案的确定及流程说明。 2.填料吸收塔的塔径,填料层的高度,填料层的压降的计算。 3.填料吸收塔的附属机构及辅助设备的选型与设计计算。 4.吸收塔的工艺流程图。 5.填料吸收塔的工艺条件图。

目录 第一章设计方案的简介 (4) 第一节塔设备的选型 (4) 第二节填料吸收塔方案的确定 (6) 第三节吸收剂的选择 (6) 第四节操作温度与压力的确定 (7) 第二章填料的类型与选择 (7) 第一节填料的类型 (7) 第二节填料的选择 (9) 第三章填料塔工艺尺寸 (10) 第一节基础物性数据 (10) 第二节物料衡算 (11) 第三节填料塔的工艺尺寸的计算 (12) 第四节填料层压降的计算 (16) 第四章辅助设备的设计与计算 (16) 第一节液体分布器的简要设计 (16) 第二节支承板的选用 (17) 第三节管子、泵及风机的选用 (18) 第五章塔体附件设计 (20) 第一节塔的支座 (20) 第二节其他附件 (20)

第一章设计方案的简介 第一节塔设备的选型 塔设备是化工、石油化工、生物化工制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 1、板式塔 板式塔为逐级接触式气液传质设备,是最常用的气液传质设备之一。传质机理如下所述:塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。溢流堰的作用是使塔板上保持一定厚度的液层。气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩、筛孔或浮阀等),分散成小股气流,鼓泡通过各层塔板的液层。在塔板上,气液两相密切接触,进行热量和质量的交换。在板式塔中,气液两相逐级接触,两相的组成沿塔高呈阶梯式变化,在正常操作下,液相为连续相,气相为分散相。 一般而论,板式塔的空塔速度较高,因而生产能力较大,塔板效率稳定,操作弹性大,且造价低,检修、清洗方便,故工业上应用较为广泛。 2、填料塔 填料塔是最常用的气液传质设备之一,它广泛应用于蒸馏、吸收、解吸、汽提、萃取、化学交换、洗涤和热交换等过程。几年来,由于填料塔研究工作已日益深入,填料结构的形式不断更新,填料性能也得到了迅速的提高。金属鞍环,改型鲍尔环及波纹填料等大通量、低压力降、高效率填料的开发,使大型填料塔不断地出现,并已推广到大型汽—液系统操作中,尤其是孔板波纹填料,由于具有较好的综合性能,使其不仅在大规模生产中被采用,且由于其在许多方面优于各种塔盘而越来越得到人们的重视,在某些领域中,有取代板式塔的趋势。近年来,在蒸馏和吸收领域中,最突出的变化是新型填料,特别是规整填料在大直径塔中的采用,它标志作塔填料、塔内件及塔设备的综合设计技术已进入到一个新的阶段。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒(如右图所示),底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔

填料塔设计说明书

填 料 塔 设 计 说 明 书 设计题目:水吸收氨填料吸收塔学院:资源环境学院 指导老师:吴根义罗惠莉 设计者:海江 学号:7 专业班级:08级环境工程1班

一、设计题目 试设计一座填料吸收塔,用于脱出混于空气中的氨气。混合气体的处理为2400m3/h,其中含氨5%,要求塔顶排放气体中含氨低于0.02%。采用清水进行吸收,吸收剂的用量为最小量的1.5倍。 二、操作条件 1、操作压力常压 2、操作温度 20℃ 三、吸收剂的选择 吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。所以本设计选择用清水作吸收剂,氨气为吸收质。水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。且氨气不作为产品,故采用纯溶剂。 四、流程选择及流程说明 逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作。逆流操作的特点是传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。工业生产中多用逆流操作。 五、塔填料选择 阶梯环填料。阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的间隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前使用的环形填料中最为优良的一种 选用聚丙烯阶梯环填料,填料规格:

六、填料塔塔径的计算 1、液相物性数 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,20℃水的有关物性数据如下: 密度为:L ρ=998.2 kg/m3 粘度为:μL=0.001004 Pa·S=3.6 kg/(m·h) 表面力为σL=72.6 dyn/cm =940896 kg/h2 2、气相物性数据: 20℃下氨在水中的溶解度系数为:H=0.725kmol/(m3·kPa)。 混合气体的平均摩尔质量为: Mvm=0.05×17.03g/mol +0.95×29g/mol=28.40g/mol , 混合气体的平均密度为:ρvm =1.183 kg/m3 混合气体的粘度可近似取为空气的粘度,查手册得20℃空气的粘度为: μv=1.81×10-5 Pa·S=0.065 kg/(m·h) 3、气相平衡数据 20℃时NH3在水中的溶解度系数为H=0.725 kmol/(m3·kPa),常压下20℃时NH3在水中的亨利系数为E=76.41kPa 。 4、物料衡算: 亨利系数 S L HM E ρ= 相平衡常数 754.03 .10102.18725.02 .998=??=== P HM P E m S L ρ E ——亨利系数 H ——溶解度系数 Ms ——相对摩尔质量

吸收塔的计算

第 4 节吸收塔的计算 吸收过程既可在板式塔内进行,也可在填料塔内进行。在板式塔中气液逐级接触,而在填料塔中气液则呈连续接触。本章对于吸收操作的分析和计算主要结合连续接触方式进行。 填料塔内充以某种特定形状的固体填料以构成填料层。填料层是塔实现气、液接触的主要部位。填料的主要作用是:①填料层内空隙体积所占比例很大,填料间隙形成不规则的弯曲通道,气体通过时可达到很高的湍动程度;②单位体积填料层内提供很大的固体表面,液体分布于填料表面呈膜状流下,增大了气、液之间的接触面积。 通常填料塔的工艺计算包括如下项目: (1)在选定吸收剂的基础上确定吸收剂的用量; (2)计算塔的主要工艺尺寸,包括塔径和塔的有效高度,对填料塔,有效高度是填料层高度,而对板式塔,则是实际板层数与板间距的乘积。 计算的基本依据是物料衡算,气、液平衡关系及速率关系。下面的讨论限于如下假设条件: (1)吸收为低浓度等温物理吸收,总吸收系数为常数; (2)惰性组分B 在溶剂中完全不溶解,溶剂在操作条件下完全不挥发,惰性气体和吸收剂在整个吸收塔中均为常量; (3)吸收塔中气、液两相逆流流动。 2.4.1吸收塔的物料衡算与操作线方程式 全塔物料衡算图2-12 所示是一个定态操作逆流接触的吸收塔,图中各符号的意义如下:

V —惰性气体的流量,kmol ( B )/ s ; L —纯吸收剂的流量,kmol (S )/ S ; Y i ;、Y 2—分别为进出吸收塔气体中溶质物质量的比,kmol (A ) /kmol (B ); X i 、X 2――分别为出塔及进塔液体中溶质物质量的比, kmol (A )/ kmol (S )。注意,本章中塔底截面一律以下标“ I ”表示,塔顶截面一律以下标 “ 2”表示。 在全塔范围内作溶质的物料衡算,得: VY i + LX 2 = VY 2+ LX i 图2-12物料衡算示意图 或 V (Y i — Y 2)= L (X i — X 2) 一般情况下,进塔混合气体的流量和组成是吸收任务所规定的,若吸收剂的 流量与组成已被确定,则V 、丫、L 及X 2。为已知数,再根据规定的溶质回收率, 便可求得气体出塔时的溶质含量,即: 丫2 = Y l (1—巾A ) (2 — 39) 式中巾A 为溶质的吸收率或回收率。 通过全塔物料衡算式2 — 38可以求得吸收液组成X I 。于是,在吸收塔的底部 与顶部两个截面上,气、液两相的组成 丫1、X l 与丫2、X 2均成为已知数。 2 ?吸收塔的操作线方程式与操作线 V, 丫 2 L, X 2 V Y i L, X i (2 — 38)

化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计任务书设计题目填料吸收塔设计—15 主要内容1、设计方案简介:对给定或选定的工艺流程、主要设备进行简要 论述; 2、主要设备的工艺设计计算:物料衡算、能量衡算、工艺参数的 选定、填料塔结构设计和工艺尺寸的设计计算; 3、辅助设备的选型 4、绘流程图:以单线图的形式描绘,标出主体设备和辅助设备的 物料方向、物流量、能流量。 5、吸收塔的设备工艺条件图 6、编写设计计算说明书 设计参数用清水吸收空气中的NH 3 气体,混合气体处理量5000m3/h,其中NH 3 含量为0.14kg/m3干空气(标态),干空气温度为25℃,相对湿度为 70%,要求净化气中NH 3 含量不超过0.07%(体积分数),气体入口温 度40℃,入塔吸收剂中不含NH 3 ,水入口温度30℃。 设计计划进度布置任务,学习课程设计指导书,其它准备……………0.5天主要工艺设计计算…………………………………………2.5天辅助设备选型计算/绘制工艺流程图……………………1.0天绘制主要设备工艺条件图…………………………………1.0天编写设计计算说明书(考核)……………………………1.0天合计:(1周)………………………………………………6.0天 主要参考文献1. 《化工原理课程设计》,贾绍义等编,天津大学出版社,2002.08 2.《化工原理》(上、下册),夏清,陈常贵主编,天津大学出版社, 2005.01 3. 《化工原理课程设计》,大连理工大学编,大连理工大学出版社, 1994.07 4.《化工工艺设计手册》(第三版)(上、下册),化学工业出版社, 2003.08 5.《化学工程手册》(第二版)(上、下卷),时钧等主编,化学工 业出版社,1998.11 6.《化工设备机械基础》,董大勤编,化学工业出版社,2003.01 7.《化工数据导引》,王福安主编,化工出版社,1995.10 8.《化工工程制图》,魏崇光等主编,化学工业出版社1994.05 9.《现代填料塔技术指南》,王树楹主编,中国石化出版社,1998.08 设计文件要求1.设计说明书不得少于7000字,A4幅面; 2.工艺流程图为A2幅面; 3.设备工艺条件图为A3幅面; 备注

实验四填料塔吸收传质系数的测定

4填料塔吸收传质系数的测定 实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定K xa 和H OL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 0 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol/(m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol/(m 3 ·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2) ])1ln[(11 1 121A mx y mx y A A N OL +----= ?(6-3)

2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2 ; (3)平衡关系。 本实验的平衡关系可写成 y=m x(6-4) 式中:m相平衡常数,m=E/P; E亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得; p总压,Pa,取压力表指示值。 对清水而言,x2=0,由全塔物料衡算 可得x1。 实验装置与流程 1〕装置流程 本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。 图6—1吸收装置流程图 2〕主要设备 (1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填

填料吸收塔课程项目设计方案

填料吸收塔课程项目设计方案 一设计任务书 (一)设计题目 水吸收SO 过程填料吸收塔的设计:试设计一座填料吸收塔,用于脱除焙烧 2 炉送出的混合气体(先冷却)中的SO2,其余为惰性组分,采用清水进行吸收。 (二)操作条件 (1)操作压力常压 (2)操作温度25℃ (三)设计容 (1)吸收塔的物料衡算; (2)吸收塔的工艺尺寸计算; (3)填料层压降的计算; (4)液体分布器简要设计; (5)吸收塔接管尺寸计算; (6)绘制吸收塔设计条件图; (7)对设计过程的评述和有关问题的讨论。 二设计方案简介 2.1方案的确定 用水吸收SO 属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流 2 不作为产品,故采用纯溶剂。 程。因用水作为吸收剂,且SO 2 2.2填料的类型与选择

对于水吸收SO 2 的过程,操作温度及操作压力较低,工业上通常选用塑料散装填料。在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。 阶梯环是对鲍尔环的改进。与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。 2.3设计步骤 本课程设计从以下几个方面的容来进行设计 (一)吸收塔的物料衡算;(二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(三)设计液体分布器及辅助设备的选型;(四)绘制有关吸收操作图纸。 三、工艺计算 3.1基础物性数据 3.1.1 液相物性数据 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,25℃时水的有关物性数据如下: 密度为ρ L =997.1 kg/m3 粘度为μ L =0.0008937 Pa·s=3.2173kg/(m·h) 表面力为σ L =71.97 dyn/cm=932731 kg/h2 SO 2在水中的扩散系数为 D L =1.724×10-9m2/s=6.206×10-6m2/h (依Wilke-Chang 0.5 18r 0.6 () 1.85910 M T D V φ μ - =?计算,查《化学工程基础》) 3.1.2 气相物性数据 设进塔混合气体温度为25℃,混合气体的平均摩尔质量为

填料吸收塔的操作及吸收传质系数的测定

五、数据处理 由PV=nRT ,→ P 0V 0/T 0=PV/T, 得: 101V 0/273.15=121*400/299.15,→V 0=434 L 。 又填料塔内径:35mm ,填料层高度:400mm ,→V 填=0.25*π*0.0352*0.4=3.85*10-4m 3 G B =434/(22.4*1000)/(0.25*π*0.0352)=20.15 kmol/(m 2*h ) 吸收剂流量为2L/h 时,L S =2*0997/(18*0.25*π*0.0352)=115kmol/(m 2*h ) 吸收剂流量为4L/h 时,L S =4*0997/(18*0.25*π*0.0352)=230kmol/(m 2*h ) 表格如下: m 、K Ya 的计算 亨利定律:y*=mx ,y*= P*A /P ,根据左图不同液相浓度下温度—平衡分压关系曲线, 吸收剂为2L/h 时,t2约为28℃,x1为2.64%,P*A ≈5.6kPa , →m=5.6/(121*2.64%)=1.75 →ΔY 1=20.03%-1.75*2.64%=15.41% ,ΔY 2=4.94%-1.75*0=4.94% ,ΔY m =9.18% ,G a =20.15*(20.03-4.94)%=3.04kmol/(m 2*h ) ,K Ya =3.04/(0.4*9.18%)=82.71 kmol/(m 2*h ) 吸收剂为4L/h 时,t2约为28.5℃,x1为1.40%,P*A ≈3.2kPa , →m=3.2/(121*1.40%) =1.89 →ΔY 1=17.99%-1.89*1.40%=15.34% ,ΔY 2=2.06%-1.89*0=2.06% ,ΔY m =6.61% ,G a =20.15*(17.99-2.06)%=3.20kmol/(m 2*h ) ,K Ya =3.20/(0.4*6.61%)=121.03kmol/(m 2*h ) 丙酮液相浓度在1%、 2%、3%的温度(℃)—平衡分压(kPa )

相关文档
相关文档 最新文档