文档库 最新最全的文档下载
当前位置:文档库 › 微波消解—原子吸收光度法测定堆肥中微量镉、锌和铜

微波消解—原子吸收光度法测定堆肥中微量镉、锌和铜

微波消解—原子吸收光度法测定堆肥中微量镉、锌和铜

摘要:原子吸收光度法是目前较常采用的重金属测定方法,该方法测定速度较快、结果准确,具有较高的灵敏性。本文建立了微波消解-原子吸收光度法测定堆肥中微量镉、锌和铜的方法,用微波消解样品,并对样品进行了预处理,优化了微波消解的条件。与常规消解测定法相比,运用微波消解-原子吸收光度法测定堆肥中的微量Cd、Zn和Cu,提高了被测元素的灵敏度,降低了检出限,极大限度地提高了分析的准确度。

关键词:原子吸收光度法微波消解堆肥

随着科学技术的不断发展,各类分析检测方法和检测仪器不断出现,传统的样品预处理、制备及分析方法已不能适应仪器的发展,影响了测定结果的准确性。传统的消解方法消解时间较长,且能量损失及试剂消耗量大,测定不便。本文采用微波消解消解和处理生活垃圾堆肥样品,不仅缩短了消解的时间,同时也改善了试验环境,同时也采用了原子吸收光度法测定了堆肥中的微量Cd、Zn和Cu,提高了分析结果的准确性。

3.堆肥样品预处理

运用四分法在堆肥样品中选择6个不同的采样点随机采样,每个采样点采集的样品重量为1.0g,将六组样品混合均匀,烘干研细后过100目筛分,并将其存放到磨口广口瓶中。准确称取干燥恒重的堆肥样品0.5000g两份,在其中一份中放入消解罐中,迅速加入5mLHNO3并迅速密封,将其放入微波消解炉中在微博解冻下消解5min,结束消解后,取出消解罐,冷却后直接在电热板上进行加热,将剩余的酸驱赶出,冷却后将样品转移至50mL的容量瓶中,用1%的硝酸溶液定容并摇匀。另一份样品加入10ml硝酸、5mL氢氟酸以及2mL高氯酸进行常规消解,消解时间约8h。

4.标准曲线的绘制以及样品的测定

二、结果及讨论

1.消解体系的选择

试验表明,采用常规消解法需加入的10mL硝酸+5氢氟酸+2ml高氯酸消解时间长达8小时,而采用微波消解法只需加入5mLHNO3在微波消解炉中消解5分钟,消解较为迅速,且消耗的试剂较少。由此可见,采用微波消解法可以有效地节约时间和试剂。

2.微波消解程序的优化

试验通过控制消解时间和微波强度对消解程序进行分析和优化。测试结果表明消解时间以及微波强度的改变对堆肥样品中金属的测定结果没有明显的影响,因此选择最短的微波时间就微波强度,即微波消解时间为5min,消解强度为微波解冻。

3.线性范围

4.精密度试验

5.加标回收试验

6.检测过程中的质量控制

6.1精密度的控制

试验的精密度主要体现在测量结果的重现性上,要提高测量精密度,首先应加强仪器的精密度及调试、维护水平。在试验过程中应严格按照相关的操作规范

无机化学性质实验报告 镉锰锌铜

无机化学性质实验报告 课程名称:无机化学实验实验名称:铜银锌镉汞 一.实验目的。 1.了解ds 区元素单质及化合物的结构对性质的影响。 2.掌握ds区元素单质的氧化物或氢化物的性质。 3.掌握ds区元素单质的金属离子形成配合物的特征。 4.掌握Cu(Ⅰ)与Cu(Ⅱ)的相互转化条件。 5.学习ds区元素离子的鉴定。 二.实验原理。 铜银锌镉汞皆是周期系ds区元素。在化合物中,铜银锌镉汞常见的氧化物通常是+2,其中铜和汞也有+1; 银的氧化数通常是+1. 1.蓝色的Cu(OH)2具有两性。Ag+与适量的NaOH反应只能得到Ag2O沉淀,因AgOH极其不稳定,在室 温下即可脱水生成Ag2O 。Ag++2O H -===Ag2O+H2O 铜二价与过量的氨水作用可生成深蓝色的四氨合铜配离子,银离子与适量的氨水作用可生成氧化银沉淀,过量时生成无色Ag(NH3)2+配离子。 Hg2+ 、Hg22+与过量氨水反应时,首先生成难溶于水的白色氨基化合物,在没有大量NH4+存在的条件下,氨基化合物不宜形成氨配离子。在有大量NH4+存在的条件下,氨基化合物可溶于氨水形成配离子。 Cu2能在中性或弱碱性环境中与K4[Fe(CN)6] 反应生成红棕色的Cu2【Fe(CN)6】沉淀,可以利用这个反应来鉴定Cu2。 2.锌的氧化物和氢氧化物均显两性。 3镉的氧化物和氢氧化物均显碱性。 4汞一价二价的氧化物和氢氧化物均显碱性。 5.Cu2+、Ag+、Zn2+、Cd2+、Hg22+、Hg2+溶液中通入H2S都可生成相应的硫化物沉淀,其中ZnS的K SPθ较 大,通入H2S是必须控制溶液的pH值。HgS沉淀极难溶,但可溶于过量的Na2S。通常,在实验室中用王水溶解HgS。Hg2S沉淀不稳定,见光即分解为HgS和Hg。 6.在水溶液中具有一定的氧化性,能氧化I-和SCN-等,白色的Cu2I2能溶于过量的KI或KSCN溶液 中生成[CuI2]-或【Cu(SCN)2】配离子,这两种离子在稀释时由沉淀为Cu2I2和Cu(SCN)2。 在加热的碱性溶液中,Cu2+能氧化醛或糖类,并生成砖红色的Cu2O. 7,在水溶液中银离子有一定的氧化性。在盐溶液中加入过量的氨水,在加热时,能将醛类或某些糖类氧化,本身被还原成银单质,应用这个反应来制备银镜。 2+2+

火焰原子吸收法测定痕量银、镉锂

火焰原子吸收法测定痕量银、镉锂 1、方法提要 样品经氢氟酸、盐酸、硝酸、高氯酸分解。在10%的盐酸介质中,利用碘化钾作为富集剂,甲基异丁基酮萃取,在偏光塞曼原子线吸收光谱仪上测定银、镉(锂经分取溶液后用发射法测定)。 2、仪器及工作条件 仪器:日立180—80偏光塞曼原子吸收光谱仪。银、镉、空心阴极灯(上海产)。 工作条件: 灯电流(mA )波长 (nm) 狭缝 (nm ) 燃烧器高 (格) 乙炔压 力 (Pa) 空气压 力 (Pa) 拟合 型式 Ag 8.0 328.1 1.3 7.5 0.9M 1.60M 直线Cd 7.5 228.8 1.3 7.5 0.9M 1.60M 直线 3、药品及试剂 (1)药品:盐酸GR(北京)、硝酸GR(北京)、高氯酸GR(北京)、氢氟酸AR(北京)、甲基异丁基酮AR、抗坏血酸AR(上海)。

(2)试剂: 15%KI-10%VC-3%硫脲混合溶液:分别称取3g硫脲,15gKI,10gVc溶于100ml纯水中。 混合标准溶液:准确吸取每毫升含2微克银1微克镉的标准溶液10毫升,放入100毫升容量瓶中用10%的盐酸溶液稀释至刻度,摇匀。该混合标准溶液浓度:ρ(Ag)=0.200μg/ml,ρ(Cd)=0.100μg/ml(置于暗处保存)。 4、操作步骤 称取1.0000克试样于100毫升聚四氟乙烯烧杯中,用去离子水润湿,加入20毫升浓盐酸,5毫升氢氟酸,在电热板上加热蒸发至体积约为10毫升,取下,加10毫升硝酸,5毫升氢氟酸,3毫升高氯酸;在电热板上继续加热至高氯酸烟冒尽,取下加入2毫升浓盐酸,用15毫升左右去离子水冲洗杯壁,低温溶解,移入25毫升比色管中,用去离子水稀释至20毫升,摇匀,加入3毫升15%KI-10%VC-3%硫脲混合液,摇匀,放置1分钟,加入4毫升萃取液,剧烈震荡160次,放置10分钟后,上仪器进行测量。 标准系列: 分别吸取标准混合溶液0.00、1.00、2.00、3.00毫升;于25毫升比色管中,用10%盐酸稀释至20毫升,摇匀,其它手续同操作步骤。该系列银为0.000、0.200、0.400、0.600μg/ml,镉为0.000、0.100、0.200、0.300μg/ml。

75铜、锌、镉、铬、锰及镍的原子吸收分光光度法《空气与废气监测分析方法》(第四版增补版)剖析

新项目试验报告 项目名称:铜、锌、镉、锰及镍的原子吸收分光光度法 《空气与废气监测分析方法》(第四版) 项目负责人: 审批日期:

一、项目概述 悬浮颗粒物(SP)中痕量金属(如Pb、Cd、Zn等)是重要的大气污染物之一。这些颗粒中的金属元素多来源于人为污染,主要存在于《2.5um的细小颗粒物中。目前已证实颗粒物中至少有10种痕量金属具有生物毒性,以Cd、As等为代表的无机金属元素及其化合物,不但对人体具有毒害,而且具有致癌作用。在一些城市中Pb、Cd已达有害水平。用大流量采样器或中流量采样器将SP采集在滤料山,样品酸消解处理后,用原子吸收分光光度法作颗粒物各组分分析。 二、检测方法和原理 检测方法:原子吸收分光光度法。 原理:采集在过氯乙烯滤膜上的颗粒物,用硫酸-灰化法消化,制备成样品溶液,然后将溶液引入火焰或石墨炉原子化器内,用标准曲线法或标准加入法测定溶液中各元素的浓度。 除镉外,其他元素均未见到明显的干扰。测定镉时,用碘化钾-甲基异丁基酮进行萃取分离以消除干扰。如用石墨炉测定,则可用氘灯扣除背景,消除干扰。 各元素测定范围见表1(按采样10m3,定容10ml计)。 表1 *经碘化钾-甲基异丁基酮萃取测定。 三、主要仪器和试剂 1.试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂,去离子水或同等纯度的水。 1.1 过氯乙烯滤膜。

1.2 硝酸、盐酸、氢氟酸:优级纯。 1.3 0.7%(V/V)硫酸溶液:用优级纯硫酸配制。 1.4 1%(V/V)硝酸溶液:用优级纯硝酸配制。 1.5 硝酸溶液:0.16mol/L。 1.6 5%(m/V)抗坏血酸溶液:称取 5.0g抗坏血酸,溶解于水中并稀释至100ml。临用时配制。 1.7 甲基异丁酮。 1.8 碘化钾溶液:1.0mol/L。 1.9铜、锌、镉、锰及镍标准贮备液:称取上述金属(99.99%)各0.5000g,分别用(1+1)盐酸溶液5.0ml、硝酸5.0ml溶解,移入500ml容量瓶中,用水稀释至标线,摇匀。上述溶液每毫升含相应元素1.00mg。贮于聚乙烯塑料瓶中,冰箱内保存。 1.10铜、锌、镉、锰及镍标准使用液:临用时,吸取10.00ml标准贮备液于100ml容量瓶中,底价1.0ml硝酸,用水稀释至标线。此溶液没毫升含铜、锌、镉、锰及镍各元素100ug。 2.仪器和设备 2.1 总悬浮颗粒物采样器:大流量采样器或中流量采样器。 2.2 马弗炉。 2.3 铂坩埚或裂解石墨坩埚:20~30ml。 2.4 原子吸收分光光度计:具有火焰、石墨炉原子化器。 四、采样要求和样品预处理技术 同总悬浮颗粒物采样方法。 五、检测步骤 3.1原子吸收分光光度计工作条件 ①火焰原子吸收分光光度法工作条件,见表2

石墨炉原子吸收法测定大米中铅镉

不同消化方法-石墨炉原子吸收法测定大米中镉的比较 秦品芝1 摘要采用干法灰化法、湿法消解法及微波消解法作为前处理方式,石墨炉原子吸收光谱法测定大米中的镉。试验结果表明,干法消解法准确度和回收率均偏低;湿法消解法空白值较高,试剂消耗量大,前处理时间长;微波消解法具有准确度高,回收率好,操作简单快速,试剂消耗小等特点。 关键词镉;微波消解;湿法消解;干法灰化 镉是食品卫生标准中的重要限量指标,国标分析方法中镉的测定有石墨炉原子吸收光谱法、火焰原子吸收光谱法、比色法和原子荧光法[1]。石墨炉原子吸收光谱法具有较高的灵敏度,已成为日常工作中测定食品中镉的首选方法。所以,本次实验采用石墨炉原子吸收法测定大米中的镉。 前处理时元素及有机物分析测试过程中不可或缺的关键步骤,也是样品分析整个过程中最费力、费时的部分,同时也会对分析结果的准确性有着较大的直接影响,预处理方法与手段的好坏将直接在测试结果中体现[2],样品前处理方法通常是干灰化法或湿消解法[3],这些方法操作繁琐,试剂用量较大,危险性高,易受沾污和损失,测定周期较长,影响因素多,测定的准确度不易控制。微波消解技术是近年来发展成熟的新的试样消解技术[4],样品在密闭消解罐中,用硝酸和过氧化氢在高温高压下对待测样品进行消化处理[5]。其优点是消解速度快,试剂用量少,操作简单安全,大大减少易挥发元素的损失和实验环境对样品的污染,降低了空白值,提高了方法的灵敏度和准确度[6]。 实验原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收228.8nm 共振线,在一定浓度范围,其吸收值与镉含量成正比,与标准系列比较定量。 2.实验材料 2.1仪器 原子吸收分光光度计;电子天平(精确度:0.01g);微波消解仪;马弗炉;超纯水器;可调式电热板;电子控温加热板。 2.2试剂 硝酸(分析纯);高氯酸(分析纯);盐酸(优级纯);过氧化氢;镉标准溶液;大米标准物质。 3.实验方法 3.1样品前处理 3.1.1干灰化法 首先将大米样品粉碎,然后准确称取2.00g~5.00g样品于瓷坩埚中,先在可控温电热板上小心加热至样品完全炭化,然后移入马弗炉中,在500~550℃灰化约8小时,冷却后取出。然后用硝酸将灰分小心溶解,若有少量样品灰化不完全,再补加一定量硝酸,在可控温电热板上小心加热,直至消化完全,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.2湿消解法 准确称取已粉碎的大米样品1.00g~2.00g于锥形瓶中,加盖小漏斗,加入体积比为5∶1硝酸高氯酸混合消化液15mL,于电热板上缓慢加热,反应趋于缓和后,慢慢加入1mL过氧化氢,继续加热消化直至溶液澄清,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.3微波消解法

水质 铜、锌、铅、镉的测定--原子吸收分光光度法

1 适用范围 本标准规定了测定水中铜、锌、铅、镉得火焰原子吸收分光光度法。 本标准分为两部分。第一部分为直接法,适用于测定地下水、地面水与废水中得铜、锌、铅、镉;第二部分为螯合萃取法,适用于测定地下水与清洁地面水中低浓度得铜铅、镉。 2定义 2、1溶解得金属,未酸化得样品中能通过0、45um滤膜得金属成分。 2、2金属总量:未经过滤得样品经强烈消解后测得得金属浓度,或样品中溶解与悬浮得两部分金属浓度得总量。 3试剂与材料 除非另有说明,分析时均使用符合国家标准得分析纯试剂;实验用水,GB/T 6682,二级。 3、1硝酸:ρ(HNO3)=1、42 g/mL,优级纯。 3、3 硝酸:ρ(HNO3)=1、42 g/mL,分析纯。。 )=1、67 g/mL,优级纯。 3、3 高氯酸:ρ(HClO 4 3、4燃料:乙炔,用钢瓶气或由乙炔发生器供给,纯度不低于99、6%。 3、5 氧化剂:空气,一般由气体压缩机供给,进入燃烧器以前应经过适当过滤,以除去其中得水、油与其她杂质。 3、6硝酸溶液:1+1。 用硝酸(3、2)配制。 3、7 硝酸溶液:1+499。 用硝酸(3、1)配制。 3、8 金属储备液:1、000g/L。 称取1、000g光谱纯金属,准确到0、001g,用硝酸(3、1)溶解,必要时加热,直至溶解完全,然后用水稀释定容至1000mL。 3、9中间标准溶液。 用硝酸溶液3、7稀释金属贮备液3、8配制,此溶液中铜、锌、铅、镉得浓度分别为50、00、10、00、100、00、10、00mg/L。

4 采样与样品 4、1用聚乙烯塑料瓶采集样品。采样瓶先用洗涤剂洗净,再在硝酸溶液3、6中浸泡,使用前用水冲洗干净。分析金属总量得样品,采集后立即加硝酸3、1酸化至PH=1~2,正常情况下,每1000mL样品加2ml硝酸3、1。 4、2试样得制备 分析溶解得金属时,样品采集后立即通过0、45um滤膜过滤,得到得滤液再按4、1中得要求酸化。 5适用范围 5、1测定浓度范围与仪器得特性有关。 5、2 地下水与地面水中得共存栗子与化合物在常见浓度下不干扰测定。但当钙得浓度高于1000 mg/L时,抑制镉得吸收,浓度为2000mg/L时,信号抑制达19%。铁得含量超过100mg/L时,抑制锌得吸收。当样品中含盐量很高,特征谱线波长又低于350nm时,可能出现非特征吸收。如高浓度得钙因产生背景吸收,使铅得测定结果偏高。 5原理 将样品或消解处理过得样品直接吸入火焰,在火焰中形成得原子对特征电磁辐射产生吸收,将测得得样品吸光度与标准溶液得吸光度进行比较,确定样品中被测元素得浓度。 6仪器 一般实验室仪器与:原子吸收分光光度计及相应得辅助设备,配有乙炔-空气燃烧器;光源选用空心阴极灯或无极放电灯。仪器操作参数可参照厂家得说明进行选择。 注:实验用得玻璃或塑料器皿用洗涤剂洗净后,在硝酸溶液3、6中浸泡,使用前用水冲洗干净。 7步骤 7、1 校准 7.1.1 参照下表1,在100mL容量瓶中,用硝酸溶液3、7稀释中间标准溶液3、9,配制至少4个工作标准溶液,其浓度范围应包括样品中被测元素得浓度。 表1

土壤中镉的测定原子吸收分光光度法

土壤中镉的测定(原子吸收分光光度法) 原理:土壤样品用HNO3-HF-HClO4或HCl-HNO3-HF-HClO4混酸体系消化后,将消化液直接喷入空气-乙炔火焰。在火焰中形成的Cd基态原子蒸汽对光源发射的特征电磁辐射产生吸收。测得试液吸光度扣除全程序空白吸光度,从标准曲线查得Cd含量。计算土壤中Cd含量。 该方法适用于高背景土壤(必要时应消除基体元素干扰)和受污染土壤中Cd的测定。方法检出限范围为0.05—2mgCd/kg。 仪器 1.原子吸收分光光度计,空气-乙炔火焰原子化器,镉空心阴极灯。 2.仪器工作条件 测定波长228.8nm 通带宽度1.3nm 灯电流7.5mA 火焰类型空气-乙炔,氧化型,蓝色火焰 试剂 1.盐酸:特级纯。 2.硝酸:特级纯。 3.氢氟酸:优级纯。 4.高氯酸:优级纯。 5.镉标准贮备液:称取0.5000g金属镉粉(光谱纯),溶于25mL(1+5)HNO3(微热溶解)。冷却,移入500mL容量瓶中,用蒸馏去离子水稀释并定容。此溶液每毫升含1.0mg镉。 6.镉标准使用液:吸取10.0mL镉标准贮备液于100mL容量瓶中,用水稀至标线,摇匀备用。吸取5.0mL稀释后的标液于另一100mL容量瓶中,用水稀至标线即得每毫升含5?g镉的标准使用液。 测定步骤

1.土样试液的制备:称取0.5—1.000g土样于25mL聚四氟乙烯坩埚中,用少许水润湿,加入10mLHCl,在电热板上加热(<450℃)消解2小时,然后加入15mLHNO3,继续加热至溶解物剩余约5mL时,再加入5mLHF并加热分解除去硅化合物,最后加入5mLHClO4加热至消解物呈淡黄色时,打开盖,蒸至近干。取下冷却,加入(1+5)HNO31mL微热溶解残渣,移入50mL容量瓶中,定容。同时进行全程序试剂空白实验。 2.标准曲线的绘制:吸取镉标准使用液0、0.50、1.00、 2.00、 3.00、 4.00mL分别于6个50mL容量瓶中,用0.2%HNO3溶液定容、摇匀。此标准系列分别含镉0、0.05、0.10、0.20、0.30、0.40?g/mL。测其吸光度,绘制标准曲线。 3.样品测定 (1)标准曲线法:按绘制标准曲线条件测定试样溶液的吸光度,扣除全程序空白吸光度,从标准曲线上查得镉含量。 式中:m——从标准曲线上查得镉含量(?g); W——称量土样干重量(g)。 (2)标准加入法:取试样溶液5.0mL分别于4个10mL容量瓶中,依次分别加入镉标准使用液(5.0?g/mL)0、0.50、1.00、1.50mL,用0.2%HNO3溶液定容,设试样溶液镉浓度为c x,加标后试样浓度分别为c x+0、c x+c s、c x+2c s、c x+3c s,测得之吸光度分别为A x、A1、A2、A3。绘制A-C图(见图1)。由图知,所得曲线不通过原点,其截距所反映的吸光度正是试液中待测镉离子浓度的响应。外延曲线与横坐标相交,原点与交点的距离,即为待测镉离子的浓度。结果计算方法同上。 注意事项 1.土样消化过程中,最后除HClO4时必须防止将溶液蒸干涸,不慎蒸干时Fe、Al盐可能形成难溶的氧化物而包藏镉,使结果偏低。注意无水HClO4会爆炸! 2.镉的测定波长为228.8nm,该分析线处于紫外光区,易受光散射和分子吸收的干扰,特别是在220.0—270.0nm之间,NaCl有强烈的分子吸收,覆盖了228.8nm线。另外,Ca、Mg的分子吸收和光散射也十分强。这些因素皆可造成镉的表观吸光度增大。为消除基体干扰,可在测量体系中加入适量基体改进剂,如在标准系列溶液和试样中分别加入0.5gLa(NO3)3、6H2O。此法适用于测定土壤中含镉量较高和受镉污染土壤中的镉含量。 3.高氯酸的纯度对空白值的影响很大,直接关系到测定结果的准确度,因此必须注意全过程空白值的扣除,并尽量减少加入量以降低空白值。

土壤中铅镉的测定步骤

土壤中铅镉的测定 一、样品制备 工具: 晾干白磁盘 磨样玛瑙研钵(白色瓷研钵) 过筛尼龙筛(10目和100目)。 分装具塞磨口玻璃瓶、具塞无色聚乙烯塑料瓶,无色聚乙烯塑料袋或特制牛皮纸袋。 二、湿样晾干 摊成2 cm厚的薄层 室内,防阳光直射, 风干后称重(结果报告要求) 三、样品制备: 将采集的土壤样品(一般不少于500 g)混匀后用四分法缩分至约100 g 。 缩分后的土样经风干(自然风干或冷冻干燥)后除去土样中石子和动植物残体等异物,用木棒(或玛瑙棒)研压,通过2 mm 尼龙筛(9目或10目,除去2 mm 以上的砂砾 , 混匀。 用玛瑙研钵将通过 2 mm 尼龙筛的土样研磨至全部通过100 目(孔径0.149 mm) 尼龙筛,混匀后备用 四、注意事项 采样时的土壤标签与土壤样始终放在一起,严禁混错。 制样所用工具每处理一份样品后应擦洗一次,严防交叉

污染。 五、消解 准确称取0. 2~0. 5g(石墨炉0.1-0.3g,精确至0.0002 g)试样于50 mL 聚四氟乙烯坩埚中。用水润湿后加入 10 mL盐酸,于通风橱内的电热板上低温加热,使样品 初步分解,待蒸发至约剩3 mL 左右时,取下稍冷。 然后加入5 mL 硝酸, 5 mL 氢氟酸,3 mL 高氯酸,加盖后于电热板上中温加热 1 h 左右,然后开盖,继 续加热除硅,为了达到良好的飞硅效果,应经常摇动坩 埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机 物充分分解。待坩埚壁上的黑色有机物消失后,开盖。 驱赶臼烟并蒸至内容物呈粘稠状。 视消解情况,可再加入3 mL 硝酸、3 mL氢氟酸、 1mL 高氯酸,重复上述消解过程。当白烟再次冒尽且内容物 呈粘稠状时,取下稍冷,用水冲洗坩埚盖放内壁,并加 入1 mL 盐酸榕液(1+1) 温热溶解残渣。然后全量转移 至100 mL 分液漏斗中,加水至约50 mL 处(石墨炉法 为25mL)。 不同种类土壤所含物质差异较大,在消解时,应注意观察,各种酸的用量可视消解情况酌情增减。含有机物过 多的土壤,应增加硝酸量,使大部分有机物消化完全,再加高氯酸,否则加高氯酸会发生强烈反应,致使瓶中 内容物溅出,甚至发生爆炸,消解时务必小心。土壤消 解液应呈白色或淡黄色(含铁较高的土壤) ,没有明显

火焰原子吸收光谱法铅、镉、铬的测定

火焰原子吸收光谱法铅、镉、铬的测定 方法:火焰原子吸收光谱法 1 范围 本方法适用于电子电气产品各种材质中铅、镉和铬含量的测定。 2 方法提要 对电子电气产品中的金属材质,直接采用常规酸消解方法处理;对其他材质,采用密闭高温压力罐酸消解法处理。材质中的铅、镉、铬成为可溶性盐类溶解在酸消解液中。消解液导入火焰原子吸收分光光度计中进行测定。 3 试剂 除非另有说明,在分析中仅使用确认为分析纯及以上的试剂和蒸馏水或去离子水或相当纯度的水。 3.1 硝酸(HNO3):优级纯。 3.2 硝酸溶液(2+98)。 3.3 30%过氧化氢(H2O2):分析纯。 3.4 盐酸(HCl):优级纯。 3.5 氢氟酸(HF):优级纯。 3.6 铅、镉、铬标准溶液:浓度为100 mg/L或1000mg/L。 4 仪器和设备 4 .1 火焰原子吸收分光光度计TAS990F(或TAS986F):配备铅、镉和铬空心阴极灯。仪器工作条件参见附录A。 4.2 烘箱:(0~200)℃,控温精度±5℃。 4.3 压力罐:聚四氟乙烯内胆及不锈钢罐外套。 4.4 电热板。 4.5 破碎设备:电锯,研磨机、金属切割机、车床等。 5 样品制备 5.1 聚合物材质 用电锯、研磨机等破碎设备将样品研磨成粒径不超过1 mm的粉末样。 5.2 金属材质 用金属切割机、车床等将样品处理成直径不超过1 mm,长度不超过5mm的碎屑或细条。 5.3 其他材质 制备方法同5.1。 6 分析步骤 6.1 样品消解 6.1.1 压力罐消解法 本方法适用于5.1和5.3所指样品。称取样品(0.2~0.5)g,精确到1 mg,置于压力罐(4.3)中,加入8mL硝酸(3.1),2mL 30%过氧化氢(3.3),对于玻璃、陶瓷等含硅质较多的材质,需补加3 mL氢氟酸(3.5)。盖上聚四氟乙烯盖子,拧紧不锈钢罐外套,置于烘箱(4.2)中,在(180±5)℃加热4 h,待压力罐冷却至室温后,将消解液转移至100mL容量瓶中,用水洗涤聚四氟乙烯内胆及盖(3~4)次,将洗涤液并入容量瓶中。用水稀释至刻度。如果溶液不清亮或有沉淀产生,过滤,保留滤液待测。同时做试剂空白实验。 6.1.2 常规酸消解法 本方法适用于5.2所指样品。称取样品(0.5~1.0)g,精确到1 mg,置于烧杯或锥形瓶中,

实验讲义- 直接吸入火焰原子吸收法测定镉 (1)

实验八直接吸入火焰原子吸收法测定镉、铜、铅、锌1 1 方法原理 将水样或消解处理好的试样直接吸入火焰,火焰中形成的原子蒸气对光源发射的特征电磁辐射产生吸收。将测得的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的含量。 2 干扰及消除 地下水和地表水中的共存离子和化合物,在常见浓度下不干扰测定。当钙的浓度高于1000 mg/L时,抑制镉的吸收,浓度为2000 mg/L时,信号抑制达19%。在弱酸性条件下,样品中六价铬的含量超过30mg/L时,由于生成铬酸铅沉淀而使铅的测定的结果偏低,在这种情况下需要加入l%抗坏血酸将六价铬还原成三价铬。样品中溶解性硅的含量超过20 mg/L时干扰锌的测定,使测定结果偏低,加入200 mg/L钙可消除这一干扰。铁的含量超过100 mg/L时,抑制锌的吸收。当样品中含盐量很高,分析波长又低于350 nm时,可能出现非持征吸收。如高浓度的钙,因产生非特征吸收,即背景吸收,使铅的测定结果偏高。 基于上述原因,分析样品前需要检验是否存在基体干扰或背景吸收。一般通过测定加标回收率,判断基体干扰的程度,通过测定分析线附近l nm内的一条非特征吸收线处的吸收,可判断背景吸收的大小。根据表1选择与选用分析线相对应的非特征吸收谱线。 表1 背景校正用的邻近线波长 元素分析线波长(nm)非特征吸收谱线(nm) 镉228.8 229(氘) 铜324.7 324(锆) 铅283.3 283.7(锆) 锌213.8 214(氘)根据检验的结果,如果存在基体干扰,可加入干扰抑制剂,或用标准加入法测定并计算结果。如果存在背景吸收,用自动背景校正装置或邻近非特征吸收谱线法进行校正。后一种方法是从分析线处测得的吸收值中扣除邻近非特征吸收谱1本方法选自《水和废水监测分析方法》(第四版),与GB/T7475—1987等效。

含铬、汞、镉、铅、锌、锰、铜、银等金属和重金属离子的废液处理规程

含铬、汞、镉、铅、锌、锰、铜、银等金属和重金属离子的废液处理规程 1 目的 为了使化验室分析检验过程产生的有毒有害的废液达标排放,制定本规程。 2 适用范围 本规程适用于化验室产生的含铬、汞、镉、铅、锌、锰、铜、银等金属和重金属离子的废液的处理,通过处理使这些废液达到GB8978《污水综合排放标准》的要求。 3 规程来源 本规程根据《现代实验室安全与劳动保护手册》编制。 4 含铬废液的处理 4.1 处理方法原理 将含铬废液pH值调至3以下,加入亚硫酸氢钠,使其中的Cr(Ⅵ)还原成Cr(Ⅲ),调节废液pH值在7.5~8.5之间,使Cr(Ⅲ)形成Cr(OH)3沉淀析出(如果废液中还含有汞、银等金属离子,用Ca(OH)2制成石灰乳,调节废液pH值在8~9之间,使Cr(Ⅲ)形成Cr(OH)3沉淀,再加入NaHS,使汞、银生成硫化物析出)。 (1) ……(2)4.2 操作步骤 4.2.1 于废液桶中加入浓硫酸,充分搅拌,调整溶液pH值在3以下(采用pH试纸或pH计测定)。如果溶液已是酸性物质,不必调整pH值。 4.2.2 分次少量、边搅拌边加入固体亚硫酸氢钠,至溶液由黄色变为绿色为止。 4.2.3 如果溶液只含铬离子时,加入50 g/L的氢氧化钠溶液,调节溶液pH值7.5~8.5使Cr(Ⅲ)形成沉淀(注意:pH值过高沉淀会再溶解)。废液放置一夜,将沉淀滤出(如果滤液为黄色时,要再次进行还原)、烘干并妥善保管。滤液按《水和废水监测分析方法》(国家环保局编)检验总铬和六价铬,达到GB8978《污水综合排放标准》后直接排放下水道。 4.2.4 如果溶液中还含有汞、银等金属离子(如测定COD的废液),在用亚硫酸氢钠还原六价铬后加入制成石灰乳的氢氧化钙,充分搅拌使溶液的pH值为8~9,溶液澄清后加入适量硫氢化钠(以摩尔数表示的加入量相当于其中含有的可沉淀的金属离子的摩尔数),充分搅拌,保持溶液的pH值8~9废液放置一夜,将沉淀滤出、烘干并妥善保管。滤液按《水和废水监测分析方法》(国家环保局编)检验总铬、六价铬、总银、总汞,达到GB8978《污水综合排放标准》后,检验滤液中是否含有硫离子(取少量滤液加入几滴1mol/L醋酸锌溶液无沉淀生成即不含硫离子,否则含有硫离子),如果含有硫离子可用双氧水将其氧化,中和后直接排放下水道。 5 含砷废液的处理 5.1 处理方法原理 先在废液中加入氢氧化钙溶液,沉淀大部分砷,然后加入三氯化铁,使砷与铁一起共沉淀,从而分离砷。 5.2 操作步骤 废液中含有大量砷时,加入饱和氢氧化钙溶液,调节废液pH值为9.5左右,充分搅拌,放置澄清后过滤。在滤液中加入三氯化铁固体,使其砷铁比达到50(质量比),用氢氧化钠调节滤液pH值为7~10,放置一夜,然后过滤,将两次过滤的滤渣烘干妥善保管好。最后

原子吸收法测定镉离子浓度

原子吸收法测定镉离子浓度 镉的毒性较大,被镉污染的空气和食物对人体危害严重,因此测定茶叶样品中的镉具有非常重要的意义。本文通过干法和湿法两种方法分别对样品进行预处理,优化了原子吸收法的测定条件,建立了一种快速度测定水样的测定方法。 镉(Cd)是一种微软并稍带蓝色的银白色金属,熔点320.9℃,沸点767℃。镉在潮湿的空气中会缓慢氧化形成氧化镉(CdO),自然界中的镉主要以+2价形式存在;镉主要以水溶性镉、吸附性镉和难溶性镉3种形式存在,镉能强烈地干扰+2价态金属元素的吸收和在组织中的积累,特别是对铁、铜、锌等元素的干扰,从而导致缺乏症。镉还可能抑制骨髓内血红蛋白的合成,引起贫血。WTO确定镉为优先研究的食品污染物,联合国环境规划署提出12种具有全球意义的危险化学物质。 实验材料与方法 1.仪器与试剂 仪器:AA6300原子吸收光谱仪(日本岛津),电子天平(上海伦捷机电仪表有限公司),粉碎机(温岭市大海药材仪器机厂),恒温箱(上海博迅事业有限公司医疗设备厂),马弗炉(杭州蓝天化验仪器厂),电炉(上海联营通州市申通电热器厂),移液管,容量瓶。 试剂:硝酸、硫酸为分析纯;镉粉为高纯物质;实验室二级水。 2.操作方法 (1)容器的清洗 本试验所用到的所有的玻璃仪器在使用之前都要用硝酸(1∶1)浸泡24h,然后用纯净水洗净后,放入恒温箱内烘干后方可使用。 (2)镉标准样品液的配制 ①镉贮备液的配制:准确称取镉粉0.1000g,溶于10mL硝酸(1∶1)溶液中,待完全溶解后,于100mL容量瓶中定容,配得1mg/mL的镉的贮备液。 ②镉标准溶液的配制:吸取1mL镉贮备液于100mL容量瓶中定容,得到10ug/mL的镉的稀释溶液;分别吸取该稀释液0.25、1.25、2.5、5、12.5mL于25mL容量瓶中定容,获得标准系列浓度为0.1、0.5、1、2、5ug/mL。 (3)样品制备 水样 (4)样品检测 ①打开AA6300型原子吸收分光光度计的气源阀及空压机电源,把乙炔钢瓶的一级阀逆时针打开1~1.5圈,二级阀顺时针旋至0.09±0.01MPa,打开空压机电源开关,使空压机自动加压并保持压力为0.4~0.51MPa,输出压为0.35MPa不变的工作状态;

火焰原子吸收光谱法测定食品中镉

二苯氨基脲络合一火焰原子吸收光谱法测定食品中镉 一、实验目的 1、掌握原子吸收分光光度计的基本原理和使用方法。 2、了解二苯氨基脲的物化性质 二、实验原理 二苯氨基脲又名二苯碳酞二肼,是白色结晶粉末,溶于热醇、丙酮和冰醋酸,微溶于水。样品吸入火焰后,镉的化合物即可原子化为基态原子,对特征谱线产生吸收,在一定条件下,特征谱线的强度变化与被测元素的浓度成正比,将被测样品吸光度与标准溶液吸光度相比较,即可算出其浓度。 三、实验仪器: 日立Z一8000塞曼偏振原子吸收分光光度计及福空心阴极灯(日立公司、日本), RM一220超纯水仪(艾柯公司,台湾), 乙炔气和空气压缩机,马弗炉。 实验试剂 镉标准储备溶液 (1mg/mL):准确称取 1.0000g金属锅,分次加入 20mL盐酸(1:l)溶解,加2滴硝酸,待溶解后转移至 1000mL容量瓶中,用去离子水稀释至刻度,摇匀。此溶液1.0mL含1.0mg镉。

镉标准溶液(10ug/mL):准确移取 1.0mL的镉标准储备溶液(lmg/mL)于 100mL容量瓶,用 0.5mol./L,硝酸稀释至刻度,摇匀。 镉标准溶液 (l.0mg/mL):准确移取 0.1mL标准储备溶液,置于100mL容量瓶中,并用 0.5mol/L,硝酸稀释至刻度,摇匀。 二苯氨基脲溶液(DPC)(0.5%):称取0.5克DPC粉末于 100mL烧杯中,加 50mL丙酮溶解,然后用去离子水定容,盛于棕色瓶中,在冰箱中保存,变色后不能使用。 氯化钠溶液(20%):称取20克固体氯化钠于 100mL烧杯中,用去离子水溶解后,转移到 100mL容量瓶中,定容。 十六烷基三甲基溴化铵溶液(CTMAB)(0.2%):准确称取0.5g十六烷基三甲基溴化铵,置于 100mL烧杯中,加少量水溶解后转移入250mL容量瓶,用去离子水定容。 中性红指示剂:取中性红0.5g,加水使溶解成 100mL,滤过。 硝酸 (0.5mol./L):移取 3.2mL硝酸加入50mL中,稀释至100mL。 盐酸(1:1):量取 50mL盐酸置于适量水中,再用去离子水稀释至l00mL。 盐酸(l:9):量取10mL盐酸置于适量水中,再用去离子水稀释至100mL。 氨水(1:9):量取 10mL氨水置于适量水中,再用去离子水稀释至100mL。 实验用水为自制去离子水,实验用试剂二苯氨基脲、十六烷基三

水质铜、锌、铅、镉的测定--原子吸收分光光度法

1 适用范围 令狐采学 本标准规定了测定水中铜、锌、铅、镉的火焰原子吸收分光光度法。 本标准分为两部分。第一部分为直接法,适用于测定地下水、地面水和废水中的铜、锌、铅、镉;第二部分为螯合萃取法,适用于测定地下水和清洁地面水中低浓度的铜铅、镉。 2 定义 2.1溶解的金属,未酸化的样品中能通过0.45um滤膜的金属成分。 2.2金属总量:未经过滤的样品经强烈消解后测得的金属浓度,或样品中溶解和悬浮的两部分金属浓度的总量。 3试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂;实验用水,GB/T 6682,二级。 3.1 硝酸:ρ(HNO3)=1.42 g/mL,优级纯。 3.3 硝酸:ρ(HNO3)=1.42 g/mL,分析纯。。 3.3高氯酸:ρ(HClO4)=1.67 g/mL,优级纯。 3.4 燃料:乙炔,用钢瓶气或由乙炔发生器供给,纯度不低于99.6%。 3.5 氧化剂:空气,一般由气体压缩机供给,进入燃烧器以前应经过适当过滤,以除去其中的水、油和其他杂质。 3.6硝酸溶液:1+1。 用硝酸(3.2)配制。 3.7 硝酸溶液:1+499。 用硝酸(3.1)配制。 3.8金属储备液:1.000g/L。 称取1.000g光谱纯金属,准确到0.001g,用硝酸(3.1)溶解,必

要时加热,直至溶解完全,然后用水稀释定容至1000mL。 3.9 中间标准溶液。 用硝酸溶液3.7稀释金属贮备液3.8配制,此溶液中铜、锌、铅、镉的浓度分别为50.00、10.00、100.00、10.00mg/L。 4采样和样品 4.1用聚乙烯塑料瓶采集样品。采样瓶先用洗涤剂洗净,再在硝酸溶液3.6中浸泡,使用前用水冲洗干净。分析金属总量的样品,采集后立即加硝酸3.1酸化至PH=1~2,正常情况下,每1000mL 样品加2ml硝酸3.1。 4.2试样的制备 分析溶解的金属时,样品采集后立即通过0.45um滤膜过滤,得到的滤液再按4.1中的要求酸化。 5适用范围 5.1 测定浓度范围与仪器的特性有关。 5.2 地下水和地面水中的共存栗子和化合物在常见浓度下不干扰测定。但当钙的浓度高于1000mg/L时,抑制镉的吸收,浓度为2000mg/L时,信号抑制达19%。铁的含量超过100mg/L时,抑制锌的吸收。当样品中含盐量很高,特征谱线波长又低于350nm时,可能出现非特征吸收。如高浓度的钙因产生背景吸收,使铅的测定结果偏高。 5 原理 将样品或消解处理过的样品直接吸入火焰,在火焰中形成的原子对特征电磁辐射产生吸收,将测得的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的浓度。 6仪器 一般实验室仪器和:原子吸收分光光度计及相应的辅助设备,配有乙炔-空气燃烧器;光源选用空心阴极灯或无极放电灯。仪器操作参数可参照厂家的说明进行选择。

实验10 火焰原子吸收光谱法测定水中的镉

实验10 火焰原子吸收光谱法测定水中的镉 一﹑实验目的 1. 学习火焰原子吸收光谱仪的正确使用方法。 2. 掌握火焰原子吸收光谱法定量分析测定的方法。 二﹑实验原理 当测定含有机物水样中的镉元素时,需进行消解处理。消解处理的目的是:(1)破坏有机物(防止水中的有机物质与金属离子络合);(2)溶解悬浮性固体;(3)通过氧化和挥发作用去除一些干扰离子,如CN-、NO2-、S2-、SO32-;、S2O32-等。 水样的消解应满足几点要求:(1)消解后的水样应透明、澄清、无沉淀;(2)不引入待测组分和干扰组分,避免为后续工作造成干扰和困难;(3)不使待测组分挥发或沉淀而造成损失;(4)消解过程应平稳,升温不宜过猛;(5)消解操作必须在通风橱中进行。 对于较清洁的水样,可用硝酸消解法进行消解。在混匀的水样中加入适量浓硝酸,在电热板上加热煮沸,得到清澈透明,呈浅色或无色的试液。蒸至近干,取下稍冷后加1%硝酸20mL,过滤后的滤液冷至室温备用。 三﹑仪器与试剂 原子吸收光谱仪;乙炔气体钢瓶和空气压缩机;镉元素空心阴极灯;容量瓶(或比色管、具塞试管);刻度移液管。 高纯金属镉(99.999%);HNO3(优级);3.1% HNO3。 镉标准储备溶液:称取0.5000 g高纯镉于小烧杯中,以HNO3溶解至完全,然后用去离子水稀释定容至500 mL,此溶液含镉1 g/L。 镉标准使用液:⑴移取5.00 mL镉标准储备液于50 mL容量瓶中,用1% HNO3稀释定容;⑵准确移取定容后溶液5.00 mL于100 mL容量瓶中,用1% HNO3稀释定容后,摇匀。此溶液含镉5 mg/L。 四﹑实验步骤 1. 标准系列溶液配制:取6只洁净的25 mL容量瓶,依次准确移入0.00、0.50、1.00、 2.00、4.00、5.00 mL镉标准使用液,以1% HNO3稀释定容,摇匀。 2. 标准曲线绘制:设定仪器参数后,将标准系列溶液由稀到浓依次喷入空气-乙炔火焰中测定吸光度A;在正确扣除空白值的基础上,以吸光度A对标准系列溶液浓度C做图,绘制一条通过原点的标准曲线。 3. 样品中镉的定量测定:量取已经消化处理过的水样约100 mL于一比色管中。按步骤2相同条件的测定空白溶液(1% HNO3)及水样的吸光度A。根据扣除空白溶液吸光度后的样品吸光度A在标准曲线上查出样品中镉的含量。 五﹑结果处理

镉的原子吸收方法

食品中镉的测定 本标准参考GB/T 5009.15-2003《食品中镉的测定》制定,适用于三河汇福生物科技有限公司化验室测定原料中的镉含量。 石墨炉原子吸收光谱法 1 原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收228.8nm共振线在一定浓度范围,其吸收值与铅含量成正比,与标准系列比较定量。 2 试剂和材料 除非另有规定,本方法所使用试剂均为分析纯,水为GB/T 6682规定的一级水。 2.1 硝酸。 2.2 硫酸。 2.3 过氧化氢(30%)。 2.4 高氯酸。 2.5 硝酸(1+1):取50ml硝酸慢慢加入50ml水中。 2.6 硝酸(0.5mol/L):取 3.2ml硝酸加入50ml水中,稀释至100ml。 2.7 盐酸(1+1):取50ml盐酸慢慢加入50ml水中。 2.8 磷酸铵溶液(20g/L):称取2.0g磷酸铵,以水溶解稀释至100ml。 2.9 混合酸:硝酸+高氯酸(4+1),取4份硝酸与1份高氯酸混合。 2.10 镉标准储备液 准确称取1.000g金属镉(99.99%),分次加20ml盐酸(1+1),加2滴硝酸,移入1000ml容量瓶,加水至刻度。混匀。此溶液每毫升含1.0mg镉。

2.11 镉标准使用液 每次吸取镉标准储备液10.0ml于100ml容量瓶中,加硝酸(0.5mol/L)至刻度。如此经多次稀释成每毫升含100.0ng镉的标准使用液。 3 仪器和设备 所用玻璃仪器均需以硝酸(1+5)浸泡过夜,用水反复冲洗,最后用去离子水冲洗干净。 3.1 原子吸收分光光度计(附石墨炉及铅空心阴极灯)。 3.2 马弗炉。 3.3 可调式电热板、可调式电炉。 3.4 干燥恒温箱。 3.5 瓷坩埚。 3.6 压力消解器、压力消解罐或压力溶弹。 4 分析步骤 4.1 试样预处理 4.1.1 在采样和制备过程中,应注意不使试样污染。 4.1.2 粮食、豆类去杂质后,磨碎,过20目筛,储于塑料瓶中,保存备用。4.2 试样消解 4.2.1 压力消解罐消解法 称取1g~5g试样(干样、含脂肪高的试样小于1.0g,新鲜小于2.0g或按压力消解罐使用说明书称取试样)于聚四氟乙烯内罐,加硝酸2~4ml浸泡过夜。再加入过氧化氢(30%)2~3ml(总量不能超过罐容积的三分之一)。盖好内盖,旋紧不锈钢外套,放入恒温干燥箱,120~140℃保持3~4h,在箱内自然冷却至室温,用滴管将消化液洗入或过滤入(视消化液有无沉淀而定)10~25ml容量瓶中,用

AAS测定土壤中镉、铜、铅、锌(精)

实验四原子吸收分光光度法测定土壤中的镉、铜、铅、锌 实验目的: 1、学习和掌握土壤中金属离子的测定方法和原理。 2、学习和掌握用原子吸收分光光度法测定土壤中金属离子的测定方法和原理。 实验原理: 土壤样品经过 HCl-HNO 3-HClO 4混酸体系消解后, 将消解液喷入空气 -乙炔火焰。在火焰中形成的金属 (Cd、 Cu 、 Pb 、 Zn 基态原子蒸汽对光源发射的特征电磁辐射产生吸收。测得试液吸光度扣除全程序空白吸光度, 从标准曲线查得金属含量,计算土壤中 Cd 含量。 金属 (Cd、 Cu 、 Pb 含量低时可用碘化钾 -甲基异丁酮萃取富集分离后测定, 方法简便、灵敏、准确、选择性好,可以消除背景和基体效应干扰。铜、铅含量较低时,可用石墨炉无火焰法测定,含量较高时,可用石墨炉无火焰法测定,含量较高时,可不经萃取,直接将消解液喷入空气 -乙炔火焰中进行测定(土壤受污染的成分复杂时,最好萃取分离。 仪器: 原子吸收分光光度计 镉、铜、铅、锌单元素空心阴极灯。 试剂: 硝酸 (特级纯 盐酸 (特级纯

高氯酸 (优级纯 2mol/L碘化钾溶液:称取 333.4g 碘化钾溶于 1L 去离子水中。 抗坏血酸 甲基异丁酮 (MIBK . 镉标准储备液:称取 0.5000g 金属镉粉 (99.9%,溶于 10mL 盐酸 (1+1中, 转移至500mL 容量瓶中,用去离子水稀释至标线。此溶液每毫升含 1.00mg 镉。测定时将此溶液逐级稀释为 1mL 含5μg 的镉标准使用液。 铅标准储备液:称取 0.5000g 金属铅 (99.9%,用适量硝酸 (1+1溶解后,移 入 500mL 容量瓶中,用去离子水稀释至标线。此溶液每毫升含 1.00mg 铅。铜标准储备液:称取 1.0000g 金属铜 (99.9%,溶于 15mL 硝酸 (1+1中,转移至 1000mL 容量瓶中,用去离子水稀释至标线。此溶液每毫升含 1.00mg 铜。锌标准储备液:称取 1.0000g 金属锌 (99.9%,用 20mL 盐酸 (1+1溶解后, 用去离子水稀释至标线。此溶液每毫升含 1.00mg 锌。 样品: 1、采集与保存 将采集的土壤样品 (一般不少于 500g 混匀后用四分法缩分至约 100g 。缩分后的土样经风干 (自然风干或冷冻干燥后,除去土样中石子和动植物残体等异物,用木棒 (或玛瑙棒研压,通过 2mm 尼龙筛(除去 2mm 以上的砂砾 ,混匀, 用玛瑙研钵将通过 2mm 尼龙筛的土样研磨至全部通过 100目 (孔径 0.149mm 尼龙筛,混匀后备用。 2、试样的制备 取土样 1~5g(根据样品中待测元素含量而定 ,于 100mL 高型硬质烧杯中, 加入少许水润湿,加王水 10~20mL ,于电热板上加热保持微沸,至有机物剧烈反应后,加高

(完整版)分析化学习题参考答案原子吸收光谱法

第六章原子吸收光谱法 基本要求:掌握以下基本概念:共振线、特征谱线、锐线光源、吸收线轮廓、通带、积分吸收、峰值吸收、灵敏度和检出限,掌握原子吸收的测量、AAS的定量关系及定量方法,了解AAS中的干扰及火焰法的条件选择,通过和火焰法比较,了解石墨炉法的特点。 重点:有关方法和仪器的基本术语。 难点:AAS的定量原理,火焰法的条件选择。 参考学时:4学时 部分习题解答 1、何谓原子吸收光谱法?它有什么特点? 答:原子吸收光谱法是利用待测元素的基态原子对其共振辐射光(共振线)的吸收进行分析的方法。 它的特点是:(1)准确度高;(2)灵敏度高;(3)测定元素范围广;(4)可对微量试样进行测定;(5)操作简便,分析速度快。 2、何谓共振发射线?何谓共振吸收线?在原子吸收分光光度计上哪一部分产生共振发射线?哪一部 分产生共振吸收线? 答:电子从基态激发到能量最低的激发态(第一激发态),为共振激发,产生的谱线称为共振吸收线。当电子从共振激发态跃迁回基态,称为共振跃迁,所发射的谱线称为共振发射线。在原子吸收分光光度计上,光源产生共振发射线、原子化器产生共振吸收线。 3、在原子吸收光谱法中为什么常常选择共振线作分析线? 答:(1)共振线是元素的特征谱线。(2)共振线是元素所有谱线中最灵敏的谱线。 4、何谓积分吸收?何谓峰值吸收系数?为什么原子吸收光谱法常采用峰值吸收而不应用积分吸收? 答:原子吸收光谱法中,将光源发射的电磁辐射通过原子蒸汽时,被吸收的能量称为积分吸收,即吸收线下面所包围的整个面积。中心频率处的吸收系数称为峰值吸收系数。 原子吸收谱线很窄,要准确测定积分吸收值需要用高分辨率的分光仪器,目前还难以达到。 而,峰值吸收系数的测定只要使用锐线光源而不必使用高分辨率的分光仪器就可办到。 5、原子分光光度计主要由哪几部分组成?每部分的作用是什么? 答:原子分光光度计主要由四部分组成:光源、原子化系统、分光系统和检测系统。 光源:发出待测元素特征谱线,为锐线光源。

相关文档
相关文档 最新文档