文档库 最新最全的文档下载
当前位置:文档库 › 四点共圆问题 (数学竞赛)

四点共圆问题 (数学竞赛)

四点共圆问题 (数学竞赛)
四点共圆问题 (数学竞赛)

P

四点共圆问题

四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式: (1) 证明某四点共圆或者以四点共圆为基础证明若干点共圆; (2) 通过某四点共圆得到一些重要结论,进而解决问题 下面给出与四点共圆有关的一些基本知识

(1) 若干个点与某定点的距离相等,则这些点在一个圆上;

(2) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆; (3) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆;

(4) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆; (5) 若线段AB CD 、交于E 点,且AE EB CE ED = ,则A B C D 、、、四点共圆;

(6) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD = ,则A B C D 、、、四点共圆。 四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。

例1、已知PQRS 是圆内接四边形,0

90PSR ∠=,过点Q 作PR PS 、的垂线,垂足分别为点H K 、求证:HK 平分QS

例2、给定锐角ABC ,以AB 为直径的圆与边AB 上的高线'

CC 及其延长线交于点M N 、,以AC 为直径的圆与AC 上的高线'

BB 及其延长线交于点P Q 、。证明:M P N Q 、、、四点共圆。

例3、在等腰ABC 中,P 为底边BC 上任意一点,过点P 做两腰的平行线分别与AB AC 、交于点

Q R 、,又点'P 是点P 关于直线QR 的对称点。求证:点'P 在ABC 分析:

C P'

C G 例4、ABC

D 是圆内接四边形,AC 是圆的直径,BD AC ⊥,AC 与BD 的交点为

E ,点

F 在DA

的延长线上,连结BF ,点G 在BA 的延长线上,使得//DG BF ,点H 在GF 的延长线上,

CH GF ⊥. 证明:B E F H 、、、四点共圆。

例5、在ABC 的边AB AC 、上分别取点Q P 、,使得1

PBC QCB A ∠=∠=∠。求证:BQ CP =

例6、在梯形ABCD 中,//AD BC ,1BC BD ==,,1AB AC CD =<,且0

180BAC BDC ∠+∠=,

求CD 的长

例7、在锐角ABC 中AB AC ≠,AD 是高,H 是AD 上一点,联结BH 并延长交AC 于点E ,联结CH 并延长交AB 于F ,已知B C E F 、、、四点共圆,问:点H 是否一定是ABC 的垂心?证明你的结论

C

K

E

例8、已知ABC 的重心G 关于边BC 的对称点是'G ,证明:'A B G C 、、、四点共圆的充要条件是2

2

2

2AB AC BC +=

例9、若过一点的三个圆的三个不同的交点共线,则三个圆的圆心和它们的公共点共圆。

例10、已知凸五边形ABCDE 中,3,BAE BC CD DE α∠===,且满足

01802BCD CDE α∠=∠=-,求证:A B C D E 、、、、五点共圆

例11、已知A 和B 相交于C D 、,延长AC 交B 于E ,延长BC 交A 于F ,试证:C 是DEF 的内心

课后思考题:

1、设D 是等腰Rt ABC 底边BC 的中点,过C D 、两点(但不过点A )任作一圆交直线AC 于E ,联结BE ,交此圆于点F ,求证:AF BE ⊥

2、AB 为O 的直径,点C 在O 上且OC AB ⊥,P 为O 上一点,位于点B C 、之间,直线CP 与AB 的延长线交于点Q ,过Q 作直线与AB 垂直,交直线AP 于点R ,求证:BQ QR =

3、如图,在ABC 中,,AD BC BE CA ⊥⊥,AD 与BE CQ PH ⊥,垂足为Q ,求证:2PE PH PQ =

4、凸四边形ABCD 的内切圆,切边AB BC CD DA 、、、111111111111A B B C C D D A 、、、,点E F G H 、、、分别为11111111A B B C C D D A 、、、的中点,

求证:四边形EFGH 为矩形的充分必要条件是A B C D 、、、四点共圆

5、如图,在锐角△ABC 中,AB

P

四点共圆问题

四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式: (3) 证明某四点共圆或者以四点共圆为基础证明若干点共圆; (4) 通过某四点共圆得到一些重要结论,进而解决问题 下面给出与四点共圆有关的一些基本知识

(7) 若干个点与某定点的距离相等,则这些点在一个圆上;

(8) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆; (9) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆;

(10) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆;

(11) 若线段AB CD 、交于E 点,且AE EB CE ED =

,则A B C D 、、、四点共圆; (12) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD = ,则A B C D 、、、四点共圆。

四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。

例1、已知PQRS 是圆内接四边形,0

90PSR ∠=,过点Q 作PR PS 、的垂线,垂足分别为点H K 、求证:HK 平分QS

证法一:利用P K H Q 、、、四点共圆从而得出=TKS QRP TSK ∠∠=∠然后得出=TKQ TQK ∠∠进而证明TS TK TQ ==

证法二:利用P K H Q 、、、四点共圆得出G K S Q 、、、四点共圆

进而有四边形G KQ S 为矩形

例2、给定锐角ABC ,以AB 为直径的圆与边AB 上的高线'

CC 及其延长线交于点M N 、,以AC 为直径的圆与AC 上的高线'

BB 及其延长线交于点P Q 、。证明:M P N Q 、、、四点共圆。 证法一:设MN PQ 、交于点D 则'DP DQ DC DC =

'DN DM DB DB = ,又易知''B B C C 、、、四点共圆

则''=DP DQ DC DC DB DB DN DM == 故M P N Q 、、、四点共圆。

证法二:利用射影定理有2

'AM AC AB = ,2

'AP AC AB = ;又易知''B B C C 、、、四点共圆则

AM AP =,又AP AQ AM AN ==,,故=AP AQ AM AN ==,故M P N Q 、、、四点共圆

2'AM AC AB = 2

'AP AC AB = 'cos AC AC BAC =∠

,'cos AB AB BAC =∠

C

C P'

C

E

例3、在等腰ABC 中,P 为底边BC 上任意一点,过点P 做两腰的平行线分别与AB AC 、交于点

Q R 、,又点'P 是点P 关于直线QR 的对称点。求证:点'P 在ABC 分析:此题即证明'A P B C 、、、四点共圆,于是只需证明'BP C BAC ∠=∠。 证法一:先证'RP RP RC ==、'QP QP QB ==;由此

11';'22

PP C A BP P A ∠=

∠∠=∠ ;从而'BP C BAC ∠=∠点'P 在ABC 例4、ABCD 是圆内接四边形,AC 是圆的直径,BD AC ⊥,AC 与BD 的交点为E ,点F 在DA

的延长线上,连结BF ,点G 在BA 的延长线上,使得//DG BF ,点H 在GF 的延长线上,

CH GF ⊥.证明:B E F H 、、、四点共圆。 提示:由BAF GAD 及ABE ACD 得 FA AC

EA AG

=,又FAE CAG ∠=∠;故FAE CAG 故=AFE ACG ABD ∠=∠∠于是B E F H 、、、四点共圆

例5、在ABC 的边AB AC 、上分别取点Q P 、,使得1

PBC QCB A ∠=∠=∠。求证:BQ CP =

提示:'B P C Q 、、、四点共圆;再又'P BC PBC QCB ∠=∠=∠ 得//'QC BP ;于是'BQ P C CP ==

说明:BQC ∠和CPB ∠是对线段BC 的两个视角,当点P Q 、在BC 的

两侧时B Q P C 、、、四点共圆;当点P Q 、在BC 的同侧时,常常做对称点,然后便有四点 共圆了,这会给解题带来极大的方便

例6、在梯形ABCD 中,//AD BC ,1BC BD ==,,AB AC CD =<0180BAC BDC ∠+∠=,求CD 的长

提示:设CE CD x ==; AF FE m ==;由A B E C 、、、四点共圆

得AF FE BF FC = ;设CF y =;则()2

1m y y =-;

又CBE ACF ABC AEC ∠=∠=∠=∠;故BFE ACE ;因此BE AE AC EC

==;故22m x =;又由角平分线性质

1BF BE CF CE x ==;故1

x

y CF x ==+可解得1CD x == 例7、在锐角ABC 中AB AC ≠,AD 是高,H 是AD 上一点,联结BH 并延长交AC 于点E ,联结CH 并延长交AB 于F ,已知B C E F 、、、的结论

提示:H 一定是ABC 的垂心;在AD 延长线上取一点G

C

K

E

例8、已知ABC 的重心G 关于边BC 的对称点是'G ,证明:'A B G C 、、、四点共圆的充要条件是222

2AB AC BC +=

提示:'A B G C 、、、四点共圆则A E G F 、、、四点共圆,在BC 上 取一点S 使得E G S C 、、、四点共圆,再证明F G S B 、、、四点共圆 然后便得出2

2

2

2AB AC BC +=,反之,在AD 延长线上取一点

K 使得DG DK =,然后证明A B K C 、、、四点共圆即可

例9、若过一点的三个圆的三个不同的交点共线,则三个圆的圆心和它们的公共点共圆。 提示:如图,

12321122

OO O OC OBC OBA OA OO O ∠==∠=∠==∠

故123O O O O 、、、四点共圆

例10、已知凸五边形ABCDE 中,3,BAE BC CD DE α∠===,且满足

1802BCD CDE α∠=∠=-,求证:A B C D E 、、、、五点共圆

提示:如图, ()()11

22

CBD CDB BCD CDE DCE CED ππα∠=∠=-∠=-∠==∠=∠ 于是B C D E 、、、四点共圆;3BCE DCE ππα∠=-∠=-;故BCE BAE π∠+∠= 于是A B C E 、、、四点共圆;于是A B C D E 、、、、五点共圆

例11、已知A 和B 相交于C D 、,延长AC 交B 于E ,延长BC 交A 于F ,试证:

C 是DEF 的内心

提示:如图,,AFC ACF ACB ADB ∠=∠∠=∠故AFB ADB ∠+∠=A F D B 、、、四点共圆,同理A E D B 、、、,故A E D B F 、、、、五点共圆,于是,DFB EFB FEA DEA ∠=∠∠=∠

于是C 是DEF 的内心

1、设D 是等腰Rt ABC 底边BC 的中点,过C D 、两点(但不过点)任作一圆交直线于,联结BE ,交此圆于点F ,求证:AF BE ⊥

2、AB 为O 的直径,点C 在O 上且OC AB ⊥,P 为O 上一点,位于点B C 、之间,直线CP 与AB 的延长线交于点Q ,过Q 作直线与AB 垂直,交直线AP 于点R ,求证:BQ QR =

3、如图,在ABC 中,,AD BC BE CA ⊥⊥,AD 与BE CQ PH ⊥,垂足为Q ,求证:2PE PH PQ =

提示:连结QE CH 、,易知ABE ACH ∠=∠注意到AP BP ==

四点共圆,所以EQH ACH ∠=∠,从而EQH PEB PEH ∠=∠=∠ 又QPE EPH ∠=∠,所以QPE EPH ,故2PE PH PQ =

4、凸四边形ABCD 的内切圆,切边AB BC CD DA 、、、的切点分别为1111A B C D 、、、,联结

11111111A B B C C D D A 、、、,点E F G H 、、、分别为11111111A B B C C D D A 、、、的中点,

求证:四边形EFGH 为矩形的充分必要条件是A B C D 、、、四点共圆 提示:如图,易知点H 在AI 上,且11AI A D ⊥,又11ID AD ⊥ 由射影定理得221IH IA ID r == ,其中r 为内切圆半径,同理

2IE IB r = ,于是IH IA IE IB = ,所以A H B E 、、、四点共圆,

所以EHI ABE ∠=∠,类似的,,,IHG ADG IFE CBE IFG CDG ∠=∠∠=∠∠=∠,将这四个式子相加得EHG EFG ABC ADC ∠+∠=∠+∠,所以A B C D 、、、四点共圆的充要条件是

E F G H 、、、四点共圆,而熟知一个四边形各边中点围成的四边形是平行四边形,平行四边形为矩形的充要条件是该四边形的四个顶点共圆,由此四边形EFGH 为矩形的充分必要条件是A B C D 、、、四点共圆

5、如图,在锐角△ABC 中,AB

证明:连结BP 、CP 、O 1O 2、EO 2、EF 、FO 1。因为PD ⊥BC ,PF ⊥AB ,故B 、D 、P 、F 四点共圆,且BP 为该圆的直径。又因为O 1是△BDF 的外心,故O 1在BP 上且是BP 的中点。同理可证C 、D 、P 、E 四点共圆,且O 2是的CP 中点。综合以上知O 1O 2∥BC ,所以∠PO 2O 1=∠PCB 。因为AF·AB=AP·AD=AE·AC ,所以B 、C 、E 、F 四点共圆。

充分性:设P 是△ABC 的垂心,由于PE ⊥AC ,PF ⊥AB ,所以B 、O 1、P 、E 四点共线,C 、O 2、P 、F 四点共线,∠FO 2O 1=∠FCB =∠FEB =∠FEO 1,故O 1、O 2、E 、F 四点共圆。 必要性:设O 1、O 2、E 、F 四点共圆,故∠O 1O 2E +∠EFO 1=180°。

由于∠PO 2O 1=∠PCB =∠ACB ?∠ACP ,又因为O 2是直角△CEP 的斜边中点,也就是△CEP 的外心,所以∠PO 2E =2∠ACP 。因为O 1是直角△BFP 的斜边中点,也就是△BFP 的外心,从而∠PFO 1=90°?∠BFO 1=90°?∠ABP 。因为B 、C 、E 、F 四点共圆,所以∠AFE =∠ACB ,∠PFE =90°?∠ACB 。于是,由∠O 1O 2E +∠EFO 1=180°得

(∠ACB ?∠ACP )+2∠ACP +(90°?∠ABP )+(90°?∠ACB )=180°,即∠ABP =∠ACP 。又因为AB

初中数学竞赛——圆4.四点共圆

第1讲 四点共圆 典型例题 一. 基础练习 【例1】 如图,P 为ABC △内一点,D 、E 、F 分别在BC 、CA 、AB 上.已知P 、D 、C 、E 四 点共圆,P 、E 、A 、F 四点共圆,求证:B 、D 、P 、F 四点共圆. 【例2】 如图7-55,在梯形ABCD 中,AD ∥BC ,过B 、C 两点作一圆,AB 、CD 的延长线交该圆于点 E 、 F .求证:A 、D 、E 、F 四点共圆. 【例3】 如图,⊙1O 、⊙2O 相交于A 、B 两点,P 是BA 延长线上一点,割线PCD 交⊙1O 于C 、D , 割线PEF 交⊙2O 于E 、F ,求证:C 、D 、E 、F 四点共圆. P E C B A D F P F D C B A E

【例4】 如图7-56,在△ABC 中,AD =AE ,BE 与CD 交于点P ,DP =EP ,求证:B 、C 、E 、D 四点共 圆. 【例5】 如图,已知ABC △是⊙O 的内接三角形,⊙O 的直径BD 交AC 于E ,AF BD ⊥于F ,延长 AF 交BC 于G ,求证:2AB BG BC =?. 【例6】 如图7-63,在ABCD □的对角线上,任取一点P ,过点P 作AB 、CD 的公垂线EG ,又作AD 、 BC 的公垂线FM .求证:EF //GM . 【例7】 如图7-66,四边形ABCD 是⊙O 的内接四边形,DE ⊥AC ,AF ⊥BD ,点E 、F 是垂足.求证: EF //BC . O G F E C D B A

【例8】 如图7-60,已知△ABC ,AB 、AC 的垂直平分线交AC 、AB 的延长线于点F 、E .求证:E 、F 、 C 、B 四点共圆. 【例9】 如图,已知:60ABD ACD ∠=∠=o , 1 902 ADB BDC ∠=∠-∠o .求证:ABC △是等腰三角形. 二. 综合提高 【例10】 如图7-61,在⊙O 中,AB ∥CD ,点P 是AB 的中点,CP 的延长线交⊙O 于点F ,又点E 为弧 BD 上任一点,连EF 交AB 于点G .求证:P 、G 、E 、D 四点共圆. 【例11】 如图7-62,在△ABC 中,∠BAC 为直角,AB =AC ,BM =MC ,过M 、C 任作一圆,与AC 交于 点E ,BE 与圆交于F 点,求证:AF ⊥BE . C D B A

初中数学圆的经典测试题及解析

初中数学圆的经典测试题及解析 一、选择题 1.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( ) A .3cm B .2cm C .23cm D .4cm 【答案】A 【解析】 【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可. 【详解】 解:如图所示,正六边形的边长为2cm ,OG ⊥BC , ∵六边形ABCDEF 是正六边形, ∴∠BOC=360°÷6=60°, ∵OB=OC ,OG ⊥BC , ∴∠BOG=∠COG= 12 ∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG= 12BC=12×2=1cm , ∴OB=sin 30 BG o =2cm , ∴OG=2222213OB BG -=-=, ∴圆形纸片的半径为3cm , 故选:A . 【点睛】

本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键. 2.如图,正方形ABCD内接于⊙O,AB=22,则?AB的长是() A.πB.3 2 πC.2πD. 1 2 π 【答案】A 【解析】 【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可. 【详解】连接OA、OB, ∵正方形ABCD内接于⊙O, ∴AB=BC=DC=AD, ∴???? AB BC CD DA ===, ∴∠AOB=1 4 ×360°=90°, 在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2, ∴?AB的长为902 180 π′ =π, 故选A. 【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键. 3.如图,在平面直角坐标系中,点P是以C271为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()

初中数学竞赛:共圆点问题

初中数学竞赛:共圆点问题 同在一个圆上的许多点称为共圆点,或者说这些点共圆.证明这些点共圆常常利用以下一些方法思考: (1)要证明若干点共圆,先设法发现其中以某两点为端点的线段恰为一直径,然后证明其他点对这条线段的视角均为直角. (2)要证明四点共圆,可证明以这点为顶点的四边形的对角互补,或证某两点视另两点所连线段的视角相等. (3)如果两线段AB,CD相交于E点,且AE·EB=CE·ED,则A,B,C,D四点共圆. (4)若相交直线PA,PB上各有一点C,D,且PA·PC=PB·PD,则A,B,C,D四点共圆. (5)若四边形一个外角等于其内对角,则四边形的四顶点共圆. (6)要证明若干点共圆,先证其中四点共圆,然后再证其余点都在此圆上. 共圆点问题不但是几何中的重要问题,而且也是直线形和圆之间度量关系或位置关系相互转化的媒介. 例1 设⊙O1,⊙O2,⊙O3两两外切,Y是⊙O1,⊙O2的切点,R,S分别是⊙O1,⊙O2与⊙O3的切点,连心线O1O2交⊙O1于P,交⊙O2于Q.求证:P,Q,R,S四点共圆.分析如图3-54,连YR,则∠PRY=90°,所以∠PRS为钝角,设法证明∠Q与∠PRS互补,则P,R,S,Q共圆. 证连RY,PR,RS,SQ,并作切线RX,则在四边形PRSQ中, 所以 所以P,Q,R,S四点共圆.

例2 设△ADE内接于圆O,弦BC分别交AD,AE边于F,G, 分析欲证F,D,E,G四点共圆,由于已知条件中交弦较多,因此,用圆幂定理的逆定理,若能证出AF·AD=AG·AE成立,则F,D,E,G必共圆. 径,所以∠FDN=∠FMN=90°, 所以F,D,N,M四点共圆,所以 AD·AF=AN·AM. 同理,AG·AE=AN·AM,所以 AD·AF=AG·AE, 所以F,D,E,G四点共圆. 例3 在锐角△ABC中,BD,CE是它的两条高线,分别过B,C引直线DE的垂线,BF⊥DE于F,CG⊥DE于G,求证:EF=DG(图3-56). 分析由已知,四边形BCGF为直角梯形,FG为一腰,要证EF=DG,易想,若OH为梯形中位线,则OH⊥FG于H,如果证得EH=HD,则FE=DG便是显然的了. 证过BC中点O,作OH⊥DE于H.因为BD⊥AC于D,CE⊥AB于E,所以

林初中2017届中考数学压轴题专项汇编:专题20简单的四点共圆(附答案)

专题20 简单的四点共圆 破解策略 如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有: 1.若四个点到一个定点的距离相等,则这四个点共圆. 如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的 圆上. D 【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2. 【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值. (2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°. 2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.

D 【答案】(1)略;(2)AD ;(3)AD=DE·tanα. 【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE. (2)同(1),可得A,D,B,E四点共圆,∠AED=∠ABD=30°,所以AD DE =tan30°, 即AD= 3 DE. 3.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,∠CDE为外角,若∠B=∠CDE,则A,B,C,D四点在同一个圆上. 【答案】略 4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆. 如图,点A,D在线段BC的同侧,若∠A=∠D,则A,B,C,D四点在同一个圆上.

初中数学竞赛圆历届考题

初中数学竞赛《圆》历届考题 1(04).D 是△ABC 的边AB 上的一点,使得AB =3AD ,P 是△ABC 外接圆上一 点,使得ACB ADP ∠=∠,求PD PB 的值. 解:连结AP ,则ADP ACB APB ∠=∠=∠, 所以,△APB ∽△ADP , …………………………(5 分) ∴AD AP AP AB =, 所以223AD AD AB AP =?=, ∴AD AP 3=, …………………………(10 分) 所以 3==AD AP PD PB . …………………………(15分) 2、(05)已知点I 是锐角三角形ABC 的内心,A1,B1,C1点I 关于边BC ,CA ,AB 的对称点。若点B 在△A1B1C1圆上,则∠ABC 等于( ) A 、30° B 、45° C 、60° D 、90° 答:C 解:因为IA1=IB1=IC1=2r (r 为△ABC 的内切圆半径),所以 点I 同时是△A1B1C1的外接圆的圆心,设IA1与BC 的交点为D ,则IB =IA1 =2ID , 所以∠IBD =30°,同理,∠IBA =30°,于是,∠ABC =60° 3.(06)正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QP=QO ,则 QA QC 的值为( ) (A )132-(B )32 (C )23+(D )23+ 答:D . 解:如图,设⊙O 的半径为r ,QO=m ,则QP=m ,QC=r +m , QA=r -m .在⊙O 中,根据相交弦定理,得QA ·QC=QP ·QD . 即 (r -m )(r +m )=m ·QD ,所以 QD=m m r 2 2-.连结DO ,由勾股定理,得QD 2=DO 2 B 1 C 1 (第3题图)

最新整理初三数学数学竞赛平面几何讲座:四点共圆问题.docx

最新整理初三数学教案数学竞赛平面几何讲座:四点 共圆问题 第四讲四点共圆问题 “四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路. 1“四点共圆”作为证题目的 例1.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q四点共圆. 分析:设PQ,MN交于K点,连接AP,AM. 欲证M,N,P,Q四点共圆,须证 MK KN=PK KQ, 即证(MC′-KC′)(MC′+KC′) =(PB′-KB′) (PB′+KB′) 或MC′2-KC′2=PB′2-KB′2.① 不难证明AP=AM,从而有 AB′2+PB′2=AC′2+MC′2. 故MC′2-PB′2=AB′2-AC′2 =(AK2-KB′2)-(AK2-KC′2) =KC′2-KB′2.② 由②即得①,命题得证. 例2.A、B、C三点共线,O点在直线外,

O1,O2,O3分别为△OAB,△OBC, △OCA的外心.求证:O,O1,O2, O3四点共圆. 分析:作出图中各辅助线.易证O1O2垂直平分OB,O1O3垂直平分OA.观察△OBC及其外接圆,立得∠OO2O1=∠OO2B=∠OCB.观察△OCA及其外接圆,立得∠OO3O1=∠OO3A=∠OCA. 由∠OO2O1=∠OO3O1O,O1,O2,O3共圆. 利用对角互补,也可证明O,O1,O2,O3四点共圆,请同学自证. 2以“四点共圆”作为解题手段 这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等 例3.在梯形ABCD中,AB∥DC,AB>CD,K,M分别在AD,BC上,∠DAM=∠CBK. 求证:∠DMA=∠CKB. 分析:易知A,B,M,K四点共圆.连接KM, 有∠DAB=∠CMK.∵∠DAB+∠ADC =180°, ∴∠CMK+∠KDC=180°. 故C,D,K,M四点共圆∠CMD=∠DKC. 但已证∠AMB=∠BKA, ∴∠DMA=∠CKB. (2)证线垂直 例4.⊙O过△ABC顶点A,C,且与AB,

(专题精选)初中数学圆的易错题汇编及答案

(专题精选)初中数学圆的易错题汇编及答案 一、选择题 1.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定... 是直角的是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据作图痕迹,分别探究各选项所做的几何图形问题可解. 【详解】 解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角. 选项B 中,AO 为BC 边上的高,则AOB ∠是直角. 选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角. 故应选C 【点睛】 本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键. 2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( ) A .3 B .36ππ C .312π D .48336ππ 【答案】C 【解析】 【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.

【详解】 连接OE ,OF . ∵BD=12,AD :AB=1:2, ∴AD=43 ,AB=83,∠ABD=30°, ∴S △ABD =×43×12=243,S 扇形= 603616,633933602OEB S ππ?==??=V ∵两个阴影的面积相等, ∴阴影面积=() 224369330312ππ?--=- . 故选:C 【点睛】 本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积. 3.如图,在平面直角坐标系中,点P 是以C (﹣2,7)为圆心,1为半径的⊙C 上的一个动点,已知A (﹣1,0),B (1,0),连接PA ,PB ,则PA 2+PB 2的最小值是( ) A .6 B .8 C .10 D .12 【答案】C 【解析】 【分析】 设点P (x ,y ),表示出PA 2+PB 2的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可. 【详解】 设P (x ,y ), ∵PA 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2, ∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2, ∵OP 2=x 2+y 2, ∴PA 2+PB 2=2OP 2+2, 当点P 处于OC 与圆的交点上时,OP 取得最值,

全国初中数学竞赛《圆》历届真题

点,使得 ∠ADP = ∠ACB ,求 的值. 所以 PB = = 3 . …………………………(15 分) 点 I 关于边 BC ,CA ,AB 的对称点。若点 B 在△A1B1C1 的外C 接 ( 初中数学竞赛《圆》历届考题 1(04) .D 是△ABC 的边 AB 上的一点,使得 AB =3AD ,P 是△ABC 外接圆上一 PB PD 解:连结 AP ,则 ∠APB = ∠ACB = ∠ADP , 所以,△APB ∽△ADP , …………………………(5 分) ∴ AB AP = AP AD , 所以 AP 2 = AB ? AD = 3 A D 2 , ∴ AP = 3 A D , …………………………(10 分) AP PD AD 2、 (05)已知点 I 是锐角三角形 ABC 的内心,A1,B1,C1 分别是 B A 1 圆上,则∠ABC 等于( ) 1 I D A 、30° B 、45° C 、60° D 、90° A C 答:C 解:因为 IA1=IB1=IC1=2r (r 为△ABC 的内切圆半径),所以 B 1 点 I 同时是△A1B1C1 的外接圆的圆心,设 IA1 与 BC 的交点为 D ,则 IB =IA1 =2ID , 所以∠IBD =30°,同理,∠IBA =30°,于是,∠ABC =60° 3. 06) 正方形 ABCD 内接于⊙O ,点 P 在劣弧 AB 上,连结 DP ,交 AC 于点 Q .若 QP=QO , 则 QC QA 的值为( ) D C (A ) 2 3 - 1 (B ) 2 3 (C ) 3 + 2 (D ) 3 + 2 O 答:D . Q 解:如图,设⊙O 的半径为 r ,QO=m ,则 QP=m ,QC=r +m , A B QA=r -m .在⊙O 中,根据相交弦定理,得 QA ·QC=QP ·QD . P (第 3 题图)

高二数学讲义四点共圆

高二数学竞赛班二试平面几何讲义 第五讲 四点共圆(一) 班级 姓名 一、知识要点: 1. 判定“四点共圆”的方法: (1)若对角互补,则四点共圆; (2)若线段同一侧的两点对线段的张角相等,则四点共圆; (3)圆的割线定理成立,则四点共圆; (4)圆的相交弦定理成立,则四点共圆; 2. “四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路. 二、例题精析: 例1. 在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK. 求证:∠DMA =∠CKB. (第二届袓冲之杯初中竞赛) A B C D K M ··

例2.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q 四点共圆. (第19届美国数学奥林匹克) 例3.A、B、C三点共线,O点在直线外,O1,O2,O3分别为△OAB,△OBC, △OCA的外心.求证:O,O1,O2, O3四点共圆. (第27届莫斯科数学奥林匹克) A B C K M N P Q B′ C′ A B C O O O O 1 2 3 ? ?

三、精选习题: 1.⊙O1交⊙O2于A,B两点,射线O1A交⊙O2于C点,射线O2A 交⊙O1于D点.求证:点A是△BCD的内心. 2.△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2;同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2.

九年级数学四点共圆例题讲解

九年级数学四点共圆例题讲解 知识点、重点、难点 四点共圆就是圆得基本内容,它广泛应用于解与圆有关得问题.与圆有关得问题变化多,解法灵活,综合性强,题型广泛,因而历来就是数学竞赛得热点内容。 在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆得有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。因此,掌握四点共圆得方法很重要。 判定四点共圆最基本得方法就是圆得定义:如果A、B、C、D四个点到定点O得距离相等,即OA=OB=OC =OD,那么A、B、C、D四点共圆. 由此,我们立即可以得出 1、如果两个直角三角形具有公共斜边,那么这两个直角三角形得四个顶点共圆。 将上述判定推广到一般情况,得: 2、如果四边形得对角互补,那么这个四边形得四个顶点共圆。 3、如果四边形得外角等于它得内对角,那么这个四边形得四个顶点共圆。 4、如果两个三角形有公共底边,且在公共底边同侧又有相等得顶角,那么这两个三角形得四个顶点共圆。 运用这些判定四点共圆得方法,立即可以推出: 正方形、矩形、等腰梯形得四个顶点共圆。 其实,在与圆有关得定理中,一些定理得逆定理也就是成立得,它们为我们提供了另一些证明四点共圆得方法.这就就是: 1、相交弦定理得逆定理:若两线段AB与CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。 2.割线定理得逆定理:若相交于点P得两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、 C、D四点共圆。 3、托勒密定理得逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD就是圆内接四边形。 另外,证多点共圆往往就是以四点共圆为基础实现得一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际就是同一个圆。 例题精讲 例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。已知P、D、C、E四点共圆,P、E、A、F 四点共圆,求证:B、D、P、F四点共圆。 证明连PD、PE、PF.由于P、D、C、F四点共圆,所以∠BDP = ∠PEC.又由于A、E、P、F四点共圆,所以∠PEC =∠AFP.于就是∠BDP= ∠AFP,故B、D、P、F四点共圆。 例2:设凸四边形ABCD得对角线AC、BD互相垂直,垂足为E,证明:点E关于AB、BC、CD、DA得对称点共圆。 为1 2 ,此变换把E关于AB、BC、 证明以E为相似中心作相似变换,相似比 CD、DA得对称点变为E在AB、BC、CD、DA上得射影P、Q、R、S(如图)、只需证明PQRS就是圆内接四边形。 由于四边形ESAP、EPBQ、EQCR及ERDS都就是圆内接四边形(每个四边形都有一组对角为直角),由E、P、B、Q共圆有∠EPQ = ∠EBQ、由E、Q、C、R共圆有∠ERQ=∠ECQ,于就是∠EPQ+∠ERQ = ∠EBQ+∠ECQ=90°、同理可得∠EPS +∠ERS =90°、从而有∠SPQ+∠QRS =180°,故PQRS就是圆内接四边形。 例3:梯形ABCD得两条对角线相交于点K,分别以梯形得两腰为直径各作一圆,点K位于这两个圆之外,证明:由点K向这两个圆所作得切线长度相等。 证明如图,设梯形ABCD得两腰为AB与CD,并设AC、BD与相应二圆得第二个交点分别为M、N、由于∠AMB、∠CND就是半圆上得圆周角,所以∠AM B=∠CND = 90°.从而∠BMC =∠BNC=90°,故B、M、N、C四点共圆,因此∠MNK=∠ACB.又∠ACB =∠KAD,所以∠MNK =∠KAD、于就是M、N、D、A四点共圆,因此KM·KA = KN·KD、由切割线定理得K向两已知圆所引得切线相等。 例4:如图,A、B为半圆O上得任意两点,AC、BD垂直于直径EF,BH⊥OA,求证:DH=AC、证法一在BD上取一点A',使A'D = AC,则ACDA'就是矩形。连结A'H、AB、OB、由于BD⊥EF、BH⊥OA,所以∠BDO =∠B HO=90°、于就是D、B, H、O四点共圆,所以∠HOB =∠HDB、由于∠AHB =∠AA'B = 90°,所以A、H、A'、B四点共圆。故∠DA'H=∠OAB,因此∠DHA'=∠OBA、而OA = OB,所以∠OBA=∠OAB,于就是∠DHA'=∠D A'H、所以DH=DA',故DH =

20年苏教版初中数学《圆有关的最值问题》专题

圆有关的最值问题 一、求解方法: 1.根据“三角形三边关系”求解: -≤≤+ a b c a b 2.动中有静,抓住不变量求解. 3.旋转必产生圆,很多情况在相切位置产生最值. 4.四点共圆(补充). 五个基本判断方法: (1)若四个点到一个定点的距离相等,则这四个点共圆. (2)若一个四边形的一组对角互补(和为180。),则这个四边形的四个点共圆. (3)若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆. (4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆. (5)同斜边的直角三角形的顶点共圆, 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

三、中考展望与题型训练 例一、圆外一点与圆的最近点、最远点 1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是. 例二、正弦定理 2.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为. 3.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.例三、不等式、配方法 4.如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x (2<x<4).当x为何值时,PD?CD的值最大?最大值是多少?

初中数学竞赛——圆3.与圆有关的比例线段

初二数学超前班八年级 第3讲与圆有关的比例线段 知识总结归纳 一.相交弦定理 圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB和CD交于O ⊙内一点P,则PA PB PC PD ?=?. 二.相交弦定理的推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项. 三.切割线定理 如图,在O ⊙中,AB是O ⊙的切线,AD是O ⊙的割线,则2 AB AC AD =? 四.割线定理 如图,在O ⊙中,PB PD 、是O ⊙的割线,则PA PB PC PD ?=? A O ? D C B A P

初二数学超前班 八年级 2 思维的发掘 能力的飞跃 典型例题 一. 相交弦定理 【例1】 如图,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = _______cm . 【例2】 如图,在O ⊙中,弦AB 与半径OC 相交于点M ,且OM MC =, 1.54AM BM ==,,求OC 的长. 【例3】 如图,O ⊙中半径OC 与弦AB 相交于点P ,351AP BP CP ===,,,则O ⊙的半径为_______; 如果另一条弦CD 平分AB ,C 到AB 中点的距离为2,则CD =_______. 【例4】 如图,在O ⊙中,P 为弦AB 上一点,PO PC ⊥,PC 交O ⊙于C ,那么( ). A .2OP PA P B =? B .2P C PA PB =? C .2PA PB PC =? D .2PB PA PC =? O ? B P C A D

中考复习:四点共圆问题

第四讲 四点共圆问题 “四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路. 1 “四点共圆”作为证题目的 例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M , N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆. 分析:设PQ ,MN 交于K 点,连接AP ,AM . 欲证M ,N ,P ,Q 四点共圆,须证 MK ·KN =PK ·KQ , 即证(MC ′-KC ′)(MC ′+KC ′) =(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2 . ① 不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2 =(AK 2-KB ′2)-(AK 2-KC ′2) =KC ′2-KB ′2. ② 由②即得①,命题得证. 例2.A 、B 、C 三点共线,O 点在直线外, O 1,O 2,O 3分别为△OAB ,△OBC , △OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆. 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC 及其外接圆,立得∠OO 2O 1=2 1∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=2 1∠OO 3A =∠OCA . 由∠OO 2O 1=∠OO 3O 1?O ,O 1,O 2,O 3共圆. 利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证. 2 以“四点共圆”作为解题手段 这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等 例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK . 求证:∠DMA =∠CKB . 分析:易知A ,B ,M ,K 四点共圆.连接KM , 有∠DAB =∠CMK .∵∠DAB +∠ADC =180°, ∴∠CMK +∠KDC =180°. 故C ,D ,K ,M 四点共圆?∠CMD =∠DKC . A B C K M N P Q B ′C ′A B C O O O O 123??A B C D K M ··

四点共圆(习题)

圆内接四边形与四点共圆 思路一:用圆的定义:到某定点的距离相等的所有点共圆。→若连在四边形的三边的中垂线相交于一点,那么这个四边形的四个顶点共圆。(这三边的中垂线的交点就是圆心)。 产生原因:圆的定义:圆可以看作是到定点的距离等于定长的点的集合。 基本模型: AO=BO=CO=DO ? A、B、C、D四点共圆(O为圆心) 思路二:从被证共圆的四点中选出三点作一个圆,然后证另一个点也在这个圆上,即可证明这四点共圆。→要证多点共圆,一般也可以根据题目条件先证四点共圆,再证其他点也在这个圆上。 思路三:运用有关性质和定理: ①对角互补,四点共圆:对角互补的四边形的四个顶点共圆。 产生原因:圆内接四边形的对角互补。 基本模型: ∠ + = 180 B)? A、B、C、D四点共圆 ∠D 180 = ∠ + ∠D A(或0 ②张角相等,四点共圆:线段同侧两点与这条线段两个端点连线的夹角相等,则这两个点和线段的两个端点共四个点共圆。 产生原因:在同圆或等圆中,同弧所对的圆周角相等。 方法指导:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角(即:张角)相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

∠? A、B、C、D四点共圆 = CAB∠ CDB ③同斜边的两个直角三角形的四个顶点共圆,其斜边为圆的直径。 产生原因:直径所对的圆周角是直角。 ∠D = C? A、B、C、D四点共圆 = ∠ 90 ④外角等于内对角,四点共圆:有一个外角等于其内对角的四边形的四个顶点共圆。产生原因:圆内接四边形的外角等于内对角。 基本模型: ∠? A、B、C、D四点共圆 = ECD∠ B

(完整)初中数学“最值问题”_集锦

“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’,

在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时 A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好? 分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

初中数学竞赛辅导讲义及习题解答第19讲转9讲转化灵活的圆中角60

第十九讲 转化灵活的圆中角 角是几何图形中最重要的元素,证明两直线位置关系、运用全等三角形法、相似三角形法都要涉及角,而圆的特征,赋予角极强的活性,使得角能灵活地互相转化. 根据圆心角与圆周角的倍半关系,可实现圆心角与圆周角的转化;由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的情况下,改变顶点在圆上的位置进行探索;由圆内接四边形的对角互补和外角等于内对角,可将与圆有关的角互相联系起来. 熟悉以下基本图形、基本结论. 注:根据顶点、角的两边与圆的位置关系,我们定义了圆心角与圆周角,类似地,当角的顶点在圆外或圆内,我们可以定义圆外角与圆内角,这两类角分别与它们的所夹弧度数有怎样的关系?读者可自行作一番探讨. 【例题求解】 【例1】 如图,直线AB 与⊙O 相交于A ,B 再点,点O 在AB 上,点C 在⊙O 上,且∠AOC =40°,点E 是直线AB 上一个动点(与点O 不重合),直线EC 交⊙O 于另一点D ,则使DE=DO 的点正共有 个. 思路点拨 在直线AB 上使DE=DO 的动点E 与⊙O 有怎样的位置关系? 分点E 在AB 上(E 在⊙O 内)、在BA 或AB 的延长线上(E 点在⊙O 外)三种情况考虑,通过角度的计算,确定E 点位置、存在的个数. 注: 弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促使与圆有关的角相互转化的基本方法. 【例2】 如图,已知△ABC 为等腰直角三形,D 为斜边BC 的中点,经过点A 、D 的⊙O 与边AB 、AC 、BC 分别相交于点E 、F 、M ,对于如下五个结论:①∠FMC=45°;②AE+AF =AB ;③BC BA EF ED ;④2BM 2=BF ×BA ;⑤四边形AEMF 为矩形.其中正确结论的个数是( ) A .2个 B .3个 C .4个 D .5个 思路点拨 充分运用与圆有关的角,寻找特殊三角形、特殊四边形、相似三角形,逐一验证.

四点共圆问题-(数学竞赛)

P 四点共圆问题 四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式: (1) 证明某四点共圆或者以四点共圆为基础证明若干点共圆; (2) 通过某四点共圆得到一些重要结论,进而解决问题 下面给出与四点共圆有关的一些基本知识 (1) 若干个点与某定点的距离相等,则这些点在一个圆上; (2) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆; (3) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆; (4) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆; (5) 若线段AB CD 、交于E 点,且AE EB CE ED =g g ,则A B C D 、、、四点共圆; (6) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD =g g ,则A B C D 、、、四点共圆。 四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。 例1、已知PQRS 是圆内接四边形,0 90PSR ∠=,过点Q 作PR PS 、的垂线,垂足分别为点H K 、求证:HK 平分QS 例2、给定锐角ABC V ,以AB 为直径的圆与边AB 上的高线' CC 及其延长线交于点M N 、,以AC 为直径的圆与AC 上的高线' BB 及其延长线交于点P Q 、。证明:M P N Q 、、、四点共圆。 例3、在等腰ABC V 中,P 为底边BC 上任意一点,过点P 做两腰的平行线分别与AB AC 、交于点 Q R 、,又点'P 是点P 关于直线QR 的对称点。求证:点'P 在ABC V 分析:

四点共圆例题及答案

证明四点共圆的基本方法 证明四点共圆有下述一些基本方法: 方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆. 方法2 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。) 方法3 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆. 方法4 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理) 方法5 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明. 例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H 四点共圆. 证明菱形ABCD的对角线AC和 BD相交于点O,连接OE、OF、OG、OH. ∵AC和BD 互相垂直, ∴在Rt△AOB、Rt△BOC、Rt△COD、 Rt△DOA中,E、F、G、H,分别是AB、 BC、CD、DA的中点,

即E、F、G、H四点共圆. (2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆. 例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC. 求证:B、E、F、C四点共圆. 证明∵DE⊥AB,DF⊥AC, ∴∠AED+∠AFD=180°, 即A、E、D、F四点共圆, ∠AEF=∠ADF. 又∵AD⊥BC,∠ADF+∠CDF=90°, ∠CDF+∠FCD=90°, ∠ADF=∠FCD. ∴∠AEF=∠FCD, ∠BEF+∠FCB=180°, 即B、E、F、C四点共圆. (3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆. 【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数. 解∵四边形ABCD内接于圆,

人教版初中数学九年级上册17.圆中的最值问题

人教版初中数学 重点知识精选 掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!

拔高专题 圆中的最值问题 一、基本模型构建 常见模型 图(1) 图(2) 思考 图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。 .在直线L 上的同侧有两个点A 、B ,在直线L 上有到A 、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的 对称 点,对称点与另一点的连线与直线L 的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题 例1:如图,A 点是⊙O 上直径MN 所分的半圆的一个三等分点,B 点是弧AN 的中点,P 点是MN 上一动点,⊙O 的半径为3,求AP+BP 的最小值。 解:作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,连接OA ′,AA ′. ∵点A 与A ′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A ′ON=∠AON=60°,PA=PA ′,∵点B 是弧AN 的中点, ∴∠BON=30°,∴∠A ′OB=∠A ′ON+∠BON=90°,又∵OA=OA ′=3, ∴A ′.∵两点之间线段最短,∴PA+PB=PA ′+PB=A ′. 【教师总结】解决此题的关键是确定点P 的位置.根据轴对称和两点之间线段最短的知

识,把两条线段的和转化为一条线段,即可计算。 探究点二:直线与圆上点的距离的最值问题 例2:如图,在Rt △AOB 中,,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),求切线PQ 的最小值 解:连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;根据勾股定理知PQ 2=OP 2-OQ 2, ∴当PO ⊥AB 时,线段PQ 最短,∵在Rt △AOB 中,OA=OB=3 , ∴OA=6,∴OP= =3,∴. ?OA OB AB 【变式训练】如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 是一动点且P 在第一象限内,过P 作⊙O 切线与x 轴相交于点A ,与y 轴相交于点B .求线段AB 的最小值. 解:(1)线段AB 长度的最小值为4, 理由如下: 连接OP , ∵AB 切⊙O 于P , ∴OP ⊥AB , 取AB 的中点C , ∴AB=2OC ; 当OC=OP 时,OC 最短, 即AB 最短, 此时AB=4.

相关文档
相关文档 最新文档