文档库 最新最全的文档下载
当前位置:文档库 › 正交分解法解题指导

正交分解法解题指导

正交分解法解题指导
正交分解法解题指导

正交分解法解题指导

正交分解法的目的和原则

在力的正交分解法中,分解的目的是为了求合力,尤其适用于物体受多个力的情况。

物体受到F 1、F 2、F 3…,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解,则在x 轴方向各力的分力分别为 F 1x 、F 2x 、F 3x …,在y 轴方向各力的分力分别为F 1y 、F 2y 、F 3y …。那么在x 轴方向的合力F x = F 1x + F 2x + F 3x + … ,在y 轴方向的合力F y = F 2y + F 3y + F 3y +…。合力2

2F F

y X

F +=

在运用正交分解法解题时,关键是如何确定直角坐标系。在静力学中,以少分解力和容易分解力为原则;在动力学中,以加速方向和垂直加速度方向为坐标轴建立坐标,这样使牛顿第二定律表达式为:

ma F F x y ==;0

一、在静力学中,运用正交分解法典型例题

例1.物体放在粗糙的水平地面上,物体重50N ,受到斜向上方向与水平面成300角的力F 作用,F = 50N ,物体仍然静止在地面上,如图1所示,求:物体受到的摩擦力和地面的支持力分别是多少?

解题步骤

(1)受力分析 (2)建立直角坐标系,受力分解

(3)沿x 轴和y 轴列方程等式

解:

如图2所示。则:

0030sin ,30cos F F F F y X ==

由于物体处于静止状态时所受合力为零 则在竖直方向(或y 轴方向)有:

G F N =+030sin 030sin F G N -=

根据牛顿第三定律,物体受地面的支持力的大小为

则在水平方向上(或x 轴方向)有:

30cos F f =2:F 1、F 2与F 3三个力共同作用在O 点,如图3所示,F 1、F 2与F 3之间的夹角均为600,求合力。

3:如图所示,一物体通过OA 、OB 两根绳子悬挂于天花板上,已知物体重质量为5Kg ,AB 绳子成1200角,求OA 、OB 、OC 三根绳子分别受力多少

图3

F 1=10N

F 2=10N

F 3=10N

A

B

图2

4:如图所示,斜面倾角为300,图1挡板垂直于斜面,图2挡板竖直。 已知小球质量为10Kg ,求:

(1)图1中挡板和斜面受到的压力大小 (2)图2中挡板和斜面受到的压力大小

5.一质量为m 的物体放在倾角为θ的粗糙斜面上。

(1)如图3,物体静止于斜面上,求物体的受到的摩擦力

(2)如图4,物块由静止开始下滑,求物体受到的摩擦力和物体的下滑的加速度大小

二、在动力学中,运用正交分解法典型例题

1、正交分解法:将力分解到运动方向和垂直运动方向

例1、如图所示,质量为4 kg 的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为20N,与水平方向成30°角斜向上的拉力F 作用时沿水平面做匀加速运动,求物体的加速度是多大?(g 取10 m/s 2)

解析:以物体为研究对象,其受力情况如图所示,建立平面直角坐标系把F 沿两坐标轴方向分解,则两坐标轴上的合力分别为

,

sin cos G F F F F F F N y x -+=-=θθμ

物体沿水平方向加速运动,设加速度为a ,则x 轴方向上的加速度a x =a ,y 轴方向上物体没有运动,故a y =0,由牛顿第二定律得0,====y y x x ma F ma ma F

图2 图1 图3

图,4 V

所以0sin ,cos =-+=-G F F ma F F N θθμ 又有滑动摩擦力N F F μμ=

以上三式代入数据可解得物体的加速度a =0.58 m/s 2

说明:当物体的受力情况较复杂时,根据物体所受力的具体情况和运动情况建立合适的直角坐标系,利用正交分解法来解.

2、合成法:将力合成到运动方向

例2、如图,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg .(g =10m/s 2,sin37°=0.6,cos37°=0.8) (1)求车厢运动的加速度并说明车厢的运动情况. (2)求悬线对球的拉力.

解析:(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应以球为研究对象.球受两个力作用:重力mg 和线的拉力F T ,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出平行四边形如图所示.球所受的合外力为

F 合=mg tan37°

由牛顿第二定律F 合=ma 可求得球的加速度为=?==

37tan g m

F a 合7.5m/s 2 加速度方向水平向右.

车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动. (2)由图可得,线对球的拉力大小为8

.010

137cos ?=

?=

mg F T N=12.5 N 说明:本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果.

二、课堂检测

1.如图所示,悬挂于小车里的小球偏离竖直方向θ角,则小车可能的运动情况是( ) A .向右加速运动 B .向右减速运动 C .向左加速运动 D .向左减速运动

2、如图所示, m =4kg 的小球挂在小车后壁上,细线与竖直方向成37°角。求:

(1)小车以a=g 向右加速;

(2)小车以a=g 向右减速时,细线对小球的拉力F 1和后壁对小球的压力F 2各多大?

三、课后检测

1、一斜面AB 长为10m ,倾角为30°,一质量为2kg 的小物体(大小不计)从斜面顶端A 点由静止开始下滑,如图所示(g 取10 m/s 2)

(1)若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B 点时的速度及所用时间. (2)若给小物体一个沿斜面向下的初速度,恰能沿斜面匀速下滑,则小物体与斜面间的动摩擦因数

μ是多少?

二、课堂检测答案1.AD 2、解:(1)向右加速时小球对后壁必然有压力,球在三个共点力作用下向右加速。合外力向右,F 2向右,因此G 和F 1的合力一定水平向左,所以 F 1的大小可以用平行四边形定则求出:F 1=50N ,可见向右加速时F 1的大小与a 无关;F 2可在水平方向上用牛顿第二定律列方程:F 2-0.75G =ma 计算得F 2=70N 。可以看出F 2将随a 的增大而增大。(这种情况下用平行四边形定则比用正交分解法简单。)

(2)必须注意到:向右减速时,F 2有可能减为零,这时小球将离开后壁而“飞”起来。这时细线跟竖直方向的夹角会改变,因此F 1的方向会改变。所以必须先求出这个临界值。当时G 和F 1的合力刚好等于ma ,所以a 的临界值为g a 4

3

=

。当a=g 时小球必将离开后壁。不难看出,这时F 1=2mg =56N , F 2=0 三、课后检测答案1、解:题中第(1)问是知道物体受力情况求运动情况;第(2)问是知道物体运动情况求受力情况。

(1)以小物块为研究对象进行受力分析,如图所示。物块受重力mg 、斜面支持力N 、摩擦力f , 垂直斜面方向上受力平衡,由平衡条件得:mg cos30°-N =0

沿斜面方向上,由牛顿第二定律得:mg sin30°-f =ma 又f =μN 由以上三式解得a =0.67m/s 2

小物体下滑到斜面底端B 点时的速度:==

as v B 2 3.65m/s 运动时间:5.52==

a

s

t s (2)小物体沿斜面匀速下滑,受力平衡,加速度a =0,有

垂直斜面方向:mg cos30°-N =0 沿斜面方向:mg sin30°-f =0 又f =μN 解得:μ=0.58

力的正交分解法

专题一:物体的受力分析 (一)物体的受力分析 物体之所以处于不同的运动状态,是由于它们的受力情况不同。要研究物体的运动,必须分析物体的受力情况。正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功。 如何分析物体的受力情况呢?主要依据力的概念,从物体所处的环境(有多少个物体接触)和运动状态着手,分析它与所处环境的其他物体的相互联系。具体的分析方法是: 1、确定所研究的物体,然后找出周围有哪些物体对它产生作用。 不要找该物体施于其他物体的力。比如所研究的物体叫A,那么就应该找出“甲对A”和“乙对A”及“丙对A”的力……而“A对甲”或“A对乙”等力就不是A所受的力。也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上。 2、要养成按步骤分析的习惯。 先画重力:作用点画在物体的重心。 其次画接触力(弹力和摩擦力):绕研究对象逆时针(或顺时针)观察一周,看研究对象跟其他物体有几个接触点(面),某个接触点(面)若有挤压,则画出弹力,若还有相对运动或趋势,则画出摩擦力。分析完这个接触点(面)后再依次分析其他接触点(面)。 再画其他场力:看是否有电场、磁场作用,如有则画出场力。 3、画完受力图后再作一番检查。 检查一下画出的每个力能否找出它的施力物体,若没有施力物体,则该力一定不存在。特别是检查一下分析的结果,能否使研究对象处于题目所给的运动状态,否则必然发生了多力或漏力的现象。 4、如果一个力的方向难以确定,可用假设法分析。 先假设此力不存在,观察所研究的物体会发生怎样的运动,然后审查这个力应在什么方向时,研究对象才能满足给定的运动状态。 5、合力和分力不能重复地列为物体所受的力。 力的合成与分解的过程是合力与分力“等效替代”的过程,合力和分力不能同时存在。在分析物体受力情况时,如果已考虑了某个力,那么就不能再考虑它的分力。例如,在分析斜面上物体的受力情况时,就不能把物体所受重力和“下滑力”并列为物体所受的力,因为“下滑力”是物体所受重力在沿斜面方向上的一个分力。 专题二:力的正交分解法 1、定义:把力沿着两个选定的互相垂直的方向分解,叫做力的正交分解法。 说明:正交分解法是一种很有用的方法,尤其适于物体受三个或三个以上的共点力作用的情怳。 2、正交分解的原理 一条直线上的两个或两个以上的力,其合力可由代数运算求得。当物体受到多个力的作

力的正交分解法经典试题内附答案

力的正交分解法经典试题(内附答案) 1.如图1,一架梯子斜靠在光滑竖直墙和粗糙水平面间静止,梯子和竖直墙的夹角为α。当α再增大一些后,梯子仍然能保持静止。那么α增大后和增大前比较,下列说法中正确的是 C A.地面对梯子的支持力增大 B.墙对梯子的压力减小 C.水平面对梯子的摩擦力增大 D.梯子受到的合外力增大 2.一个质量可以不计的细线,能够承受的最大拉力为F。现在把重力G=F 的重物通过光滑的轻质小钩挂在这根细线上,两手握住细线的两端,开始两手并拢,然后沿水平方向慢慢地分开,为了不使细线被拉断,细线的两端之间的夹角不能大于(C ) A.60° B.90° C.120° D .150° 3.放在斜面上的物体,所受重力G可以分解使物体沿斜面向下滑的分力G 1和使物体压紧斜面的分力G 2,当斜面倾角增大时(C ) A. G 1和G 2都增大 B. G 1和G 2都减小 C. G 1增大,G 2减小 D . G 1减小,G2增大 4.如图所示,细绳MO 与NO所能承受的最大拉力相同,长度MO>NO ,则在不断增加重物G 的重力过程中(绳O C不会断)( A ) A.ON 绳先被拉断 B .O M绳先被拉断 C.ON 绳和OM 绳同时被拉断 D.条件不足,无法判断 5.如图所示,光滑的粗铁丝折成一直角三角形,BC 边水平,AC 边竖直,∠AB C=β,AB 、AC 边上分别套有细线系着的铜环,细线长度小于BC,当它们静止时,细线与AB 边成θ角,则 ( D ) A.θ=β B .θ<β C.θ>2 π D .β<θ<2 π θ G C O M N α 图

6.质量为m的木块沿倾角为θ的斜面匀速下滑,如图1所示,那么斜面对物体的作用力方向是 [D ] A.沿斜面向上 B.垂直于斜面向上 C.沿斜面向下 D.竖直向上 7.物体在水平推力F的作用下静止于斜面上,如图3所示,若稍稍增大推力,物体仍保持静止,则 [BC ] A.物体所受合力增大 B.物体所受合力不变 C.物体对斜面的压力增大 D.斜面对物体的摩擦力增大 8.如图4-9所示,位于斜面的物块M在沿斜面向上的力F作用下,处于静止状态,则斜面作用于物块的静摩擦力的(ABCD ) A.方向可能沿斜面向上 B.方向可能沿斜面向下 C.大小可能等于零 D.大小可能等于F

力的合成与分解知识点典型例题

力的合成与分解知识点 典型例题 Document number:PBGCG-0857-BTDO-0089-PTT1998

力的合成与分解典型例题 1.合力 当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力的作用效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力. 2.共点力 如果一个物体受到两个或者更多力的作用,有些情况下这些力共同作用在同一点上,或者虽不作用在同一点上,但他们的力的作用线延长线交于一点,这样的一组力叫做共点力. 3.共点力的合成法则 求几个已知力的合力叫力的合成.力的合成就是找一个力去替代几个已知的力,而不改变其作用效果. 力的平行四边形定则:如右图所示,以表示两个力的有向线段为邻边作平行四边形,这两边夹角的对角线大小和方向就表示合力的大小和方向.(只适用于共点力) 下面根据已知两个力夹角θ的大小来讨论力的合成的几种情况: (1)当0θ=?时,即12F F 、同向,此时合力最大,12F F F =+,方向和两个 力的方向相同. (2)当180θ=?时,即12F F 、方向相反,此时合力最小,12F F F =-,方向 和12F F 、中较大的那个力相同. (3)当90θ=?时,即12F F 、相互垂直,如图,2212F F F =+,1 2 tan F F α= . (4)当θ为任意角时,根据余弦定律,合力2212122cos F F F F F θ=++ 根据以上分析可知,无论两个力的夹角为多少,必然有1212F F F F F -+≤≤成立. 【例1】 将二力F 1、F 2合成F 合,则可以肯定 ( ) A .F 1和F 合是同一性质的力 B .F 1、F 2是同一施力物体产生的力 C .F 合的效果与F 1、F 2的总效果相同 D .F 1、F 2的代数和等于F 合

《正交分解法》专项练习

G 正交分解法解决平衡问题 1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和45o ,求绳AO 和BO 对物体的拉力的大小。 2. 如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60o 角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 3. 要把在山上采的大理石运下来,可以修如图的斜面,如果大理石与路面的动摩擦因数为3 3,那么要使物体在斜面上匀速滑下,需要修倾角θ为多少度的路面面? 4.如图,位于水平地面上的质量为M=100kg 的小木块,在大小为F=400N 方向与水平方向成a=300角的拉力作用下沿地面作匀速直线运动。求: (1) 物体对地面的压力多大? θ

(2)木块与地面之间的动摩擦因数? 5.用与竖直方向成θ=37°斜向右上方,大小为F=200N的推力把一个质量m=10kg的木块压在粗糙竖直墙壁上正好向上做匀速运动。求墙壁对木块的弹力大小和墙壁与木块间的动摩擦因数。 (g=10m/s2,sin37°=0.6,cos37°=0.8) 6.如图所示,水平细杆上套一环A,环A与球B间用一不可伸长轻质绳相连,质量分别为m A=0.4 kg和m B=0.3 kg,由于B球受到水平风力作用,使环A与球B一起向右匀速运动.运动过程中,绳始终保持与竖直方向夹角θ=30°,重力加速度取g=10 m/s2,求: (1)B球受到的水平风力大小; (2)环A与水平杆间的动摩擦因数.

参考答案: 1.T OA =73.2N T OB =51.95N 2.N=327N f=100N 3.300 4.800N 5.0.5 6. 4 7

高中物理牛顿运动定律典型例题精选讲解解析

2012牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛 顿(定义使质量为1kg 的物体产生1m/s 2的加速度的作用力为1N,即1N=1kg.m/s 2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力 的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右 为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, 0 图1

正交分解法的例题解法

正交分解法的例题解法 把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。 用正交分解法求合力的步骤: ①首先建立平面直角坐标系,并确定正方向 ②把各个力向x 轴、y 轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向 ③求在x 轴上的各分力的代数和F x 合和在y 轴上的各分力的代数和F y 合 ④求合力的大小 22)()(合合y x F F F += 合力的方向:tan α=合合 x y F F (α为合力F 与x 轴的夹角) 点评:力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力)。 【例】质量为m 的木块在推力F 作用下,在水平地面上做匀速运动.已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为下列各值的哪个? A .μmg B.μ(mg+Fsin θ) C.μ(mg+Fsin θ) D.F cos θ 解析:木块匀速运动时受到四个力的作用:重力mg 、推力F 、支持力F N 、摩擦力F μ.沿水平方向建立x 轴,将F 进行正交分解如图(这样建立坐标系只需分解F ),由于木块做匀速直线运动,所以,在x 轴上,向左的力等于向右的力(水平方向二力平衡);在y 轴上向上的力等于向下的力(竖直方向二力平衡).即 F cos θ=F μ ① F N =mg+Fsin θ ② 又由于F μ=μF N ③ ∴F μ=μ(mg+Fsin θ) 故B、D答案是正确的.

小结:(1)在分析同一个问题时,合矢量和分矢量不能同时使用。也就是说,在分析问题时,考虑了合矢量就不能再考虑分矢量;考虑了分矢量就不能再考虑合矢量。 (2)矢量的合成分解,一定要认真作图。在用平行四边形定则时,分矢量和合矢量要画成带箭头的实线,平行四边形的另外两个边必须画成虚线。 (3)各个矢量的大小和方向一定要画得合理。 (4)在应用正交分解时,两个分矢量和合矢量的夹角一定要分清哪个是大锐角,哪个是小锐角,不可随意画成45°。(当题目规定为45°时除外)

正交分解法解决平衡问题

正交分解法解决平衡问题 一、解题思路 1、先对物体进行受力分析 2、建立直角坐标系,把不在坐标轴上的力分解在坐标轴上,(简单原则:让尽量多的力在轴上) 3、根据平衡条件,在x轴上和y轴上分别列出两个等式,并联立解出等式。 二、例题 例1:如图所示,一质量为m的物体恰好能沿倾角为θ的斜面匀速下滑,求: (1)物体与斜面间的压力; (2)物体与斜面间的动摩擦因数,并说明它与物体质量m的关系。 例2:如图所示,半圆柱固定在水平面上,质量为m的物块静置于圆柱体上的A处,O为横截面的圆心,OB为竖直的半径,∠BOA=300,求圆柱体对物块的支持力和摩擦力。 例3:如图所示,一质量为m,横截面为直角三角形的斜劈ABC,AB边靠在竖直墙面上。F是垂直于斜面的推力。(1)现物块静止不动。斜劈受到的摩擦力大小为多大?(2)若斜劈与墙壁之间 的动摩擦因数为u,要使斜劈匀速下滑,则F为多大?

【作业】: 1、如图所示,一个质量为10kg的物体,在沿斜面方向推力的作用下,沿斜面向上匀速运动。已知斜面倾角为370,物体与斜面间的动摩擦因数为0.2。(已知sin370=0.6,cos370=0.8,g取 10m/s2)。求推力的大小。 2、如图所示,重500N的物体在与水平方向成300的拉力F作用下,向右匀速运动,物体与地面之间的动摩擦因数u=0.2。求: (1)物体与地面之间的压力; (2)拉力F的大小。 3、如图所示,质量为4kg的物体与竖直墙面间的动摩擦因数为0.2,它在受到与水平方向成370角斜向上的推力F作用时,沿竖直墙面匀速上滑。(已知sin370=0.6,cos370=0.8,g取10m/s2)。求: (1)物体与竖直墙面之间的压力; (2)推力F。

用正交分解法巧解牛顿第二定律问题

a 图1 用正交分解法巧解牛顿第二定律问题 牛顿第二定律阐明了物体的加速度与物体所受合外力和质量的定量关系,即ma F =合。由力的独立作用原理可知,当物体同时受到几个力作用时,每个力对物体都会独立产生一个加速度,物体实际运动的加速度等于各个力单独作用时产生加速度的矢量和。在实际问题中,当物体同时受到多个力作用而产生加速度时,一般采用正交分解法解题。先根据物体受力情况确定y x 、轴方向,再应用牛顿第二定律列方程求解。 通常正交分解法坐标轴方向的确定有下列两种情况。 1、沿加速度方向和垂直加速度方向建立坐标轴,将物体受到的作用力沿x 轴、y 轴正交分解,分别求得x 轴、y 轴上的合力y x F F 、,根据力的独立作用原理可得ma F x =,0=y F 。 2、当物体受到几个相互垂直的力作用时,沿两个相互垂直的作用力方向建立坐标轴,分别对不在坐标轴上的其他作用力和加速度进行正交分解,求得x 轴、y 轴上的合力y x F F 、和分加速度y x a a 、,根据力的独立作用原理可得x x ma F =,y y ma F =。 例1如图1所示,细线的一端系一质量为m 的小球,另一端固定在倾角为 45=θ的光滑斜面体顶端,斜面体放在水平面上,斜面体静止时小球紧靠在斜面上,细线与斜面平行。在斜面体以加速度g a 2 1 = 水平向右做匀加速运动的过程中,求小球受到细线的拉力T 和斜面的支持力N F 大小(重力加速度为g )。 解析令斜面体以加速度0a 水平向右做匀加速运动时,小球刚好飘起来,斜面对小球的支持力恰好为零,对小球受力分析如图2所示,沿加速度方向和垂直加速度方向建立坐标轴,对拉力T 进行正交分解, 根据牛顿第二定律有 沿加速度方向0cos ma T =θ① 垂直加速度方向mg T =θsin ② 联立①②解得g a =0 由于斜面体的加速度g a 2 1 = 小于0a ,故小球紧靠在斜面上,没有飘起来。对小球受力分析,沿斜面方向和垂直斜面方向建立坐标轴,分别对重力mg 和加速度a 进行正交分解如图3所示, 得 图2

正交分解法解题指导

正交分解法解题指导 在高中物理学习中,正确应用正交分解法能够使一些复杂的问题简单化,并有效的降低解题难度。力的正交分解法在整个动力学中都有着非常重要的作用,那么同学们如何运用力的正交法解题呢? 一、 正交分解法的目的和原则 把力沿着两个经选定的互相垂直的方向分解叫力的正交 分解法,在多个共点力作用下,运用正交分解法的目的是用代数运算公式来解决矢量的运算。在力的正交分解法中,分解的目的是为了求合力,尤其适用于物体受多个力的情况,物体受到F 1、F 2、F 3…,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解,则在x 轴方向各力的分力分别为 F 1x 、F 2x 、F 3x …,在y 轴方向各力的分力分别为F 1y 、F 2y 、F 3y …。那么在x 轴方向的合力F x = F 1x + F 2x + F 3x + … ,在y 轴方向的合力F y = F 2y + F 3y + F 3y +…。合力2 2 y x F += ,设合力与x 轴的夹角为θ,则x y F F = θtan 。在运用 正交分解法解题时,关键是如何确定直角坐标系,在静力学中,以少分解力和容易分解力为原则;在动力学中,以加速方向和垂直加速度方向为坐标轴建立坐标,这样使牛顿第二定律表达式为:ma F F x y ==;0 二、 运用正交分解法解题步骤 在运用正交分解法解题时,一般按如下步骤:㈠以力的作用点为原点作直角坐标系,标出x 轴和y 轴,如果这时物体处于平衡状态,则两轴的方向可根据自己需要选择,如果力不平衡而产生加速度,则x 轴(或y 轴)一定要和加速度的方向重合;㈡将与坐标轴成角度的力分解成x 轴和y 轴方向的两个分力,并在图上标明,用符号F x 和F y 表示;㈢在图上标出与x 轴或与y 轴的夹角,然后列出F x 、F y 的数学表达式。如:F 与x 轴夹角分别为θ,则θθsin ;cos F F F F y x ==。与两轴重合的力就不需要分解了;㈣列出x 轴方向上和各分力的合力和y 轴方向上的各分力的合力的两个方程,然后再求解。

高中物理牛顿运动定律典型例题精选讲解

牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示, F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s 2 的加速度的作用力为 1N,即1N=1kg.m/s 2 . 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300 ,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右为x 轴正向, 竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, F N -mg=masin300 因为 56=mg F N ,解得5 3 =mg F f . 练习2.一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a ,如图3-1-15所示.在物体始终相对于斜 面静止的条件下,下列说法中正确的是( ) A .当θ一定时,a 越大,斜面对物体的正压力越小 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当a 一定时,θ越大,斜面对物体的正压力越小 D .当a 一定时,θ越大,斜面对物体的摩擦力越小 练习3.一物体放置在倾角为θ的斜面上,斜面固定于在水平面上加速运动的小车中,加速度为a ,如图3—1-16所示,在物体始终相对于斜面静止的条件下,下列说法中正确的是() A .当θ一定时,a 越大,斜面对物体的正压力越大 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当θ一定时,a 越大,斜面对物体的正压力越小 D .当θ一定时,a 越大,斜面对物体的摩擦力越小 问题2:必须弄清牛顿第二定律的瞬时性。 1.物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力.若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;或合外力变为零,加速度也立即变为零(物体运动的加速度可以突变). 2.中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性: A .轻:即绳(或线)的质量和重力均可视为等于零,由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等. B .软:即绳(或线)只能受拉力,不能承受压力(因绳能变曲),由此特点可知,绳与其物体相互间作用力的方向总是沿着绳子且背离受力物体的方向. C .不可伸长:即无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变. 30a F m g F f 图1 x y x a a 图图

力的正交分解专项练习(含详细答案)

力的正交分解专项练习(含详细答案) 1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和40o ,求绳AO 和BO 对物体的拉力的大小。 2. 如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60o 角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 3. (8分)如图6所示,θ=370 ,sin370 =0.6,cos370 =0.8。箱子重G =200N ,箱子与地面的动摩擦因数μ=0.30。要匀速拉动箱子,拉力F 为多大? 4.(8分)如图,位于水平地面上的质量为M 的小木块,在大小为F 、方向与水平方向成a 角的拉力作用下沿地面作匀速直线运动。求: (1 ) 地面对物体的支持力? (2) 木块与地面之间的动摩擦因数?

5.(6分)如图10所示,在倾角为α=37°的斜面上有一块竖直放置的档板,在 档板和斜面之间放一个重力G=20N 的光滑球,把球的重力沿垂直于斜面和垂直于档板的方向分解为力F 1和F 2,求这两个分力F 1和F 2的大小。 6.(6分)长为20cm 的轻绳BC 两端固定在天花板上,在中点系上一重60N 的重物,如图11 所示: (1)当BC 的距离为10cm 时,AB 段绳上的拉力为多少? (2)当BC 的距离为102cm 时.AB 段绳上的拉力为多少? 7.质量为m 的物体在恒力F 作用下,F 与水平方向之间的夹角为θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则物体受摩擦力大小为多少? 8.如图所示重20N 的物体在斜面上匀速下滑,斜面的倾角为370,求: (1)物体与斜面间的动摩擦因数。 (2)要使物体沿斜面向上匀速运动,应沿斜面向上施加一个多大的推力? (sin370=0.6, cos370=0.8 )

牛顿第二定律练习题经典好题

4.3牛顿第二定律练习题(经典好题) 正交分解法1: 例.1.如图5所示:三个共点力,F 1=5N ,F 2=10N ,F 3=15N , θ=60°,它们的合力的x 轴方向的分量F x 为________N , y 轴方向的分量F y 为N ,合力的大小为N ,合力方向与x 轴正方向夹角为。 12.(8分)如图6所示,θ=370,sin370=0.6,cos370=0.8。 箱子重G =200N ,箱子与地面的动摩擦因数μ= 0.30。要匀速拉动箱子,拉力F 为多大? 2如图所示,质量为m 的物体在倾角为θ的粗糙斜面下匀 速下滑,求物体与斜面间的滑动摩擦因数。 3.(6分)如图10所示,在倾角为α=37°的斜面上有一块竖直 放置的档板,在档板和斜面之间放一个重力G=20N 的光滑球,把 球的重力沿垂直于斜面和垂直于档板的方向分解为力F 1和F 2,求 这两个分力F 1和F 2的大小。 4.质量为m 的物体在恒力F 作用下,F 与水平方向之间的夹角为 θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则 物体受摩擦力大小为多少? : 5如图所示,物体的质量kg m 4.4=,用与竖直方向成?=37θ的斜向右上方的推力F 把该物体压在竖直墙壁上,并使它沿墙壁在竖直方向上做匀速直线运动。物体与墙壁间的动摩擦因数5.0=μ,取重力加速度2/10s m g =,求推力F 的大小。(6.037sin =?,8.037cos =?6如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体, 当绳与水平面成60o 角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支 持力和摩擦力。 正交分解法2: 1如图所示,一个人用与水平方向成=角的斜 θ60

正交分解法例题及练习

正交分解法 在运用正交分解法解题时,一般按如下步骤: ㈠ 以力的作用点为原点作直角坐标系,标出x 轴和y 轴,如果这时物体处于平衡状态,则两轴的方向可根据自己需要选择,如果力不平衡而产生加速度,则x 轴(或y 轴)一定要和加速度的方向重合; ㈡将与坐标轴成角度的力分解成x 轴和y 轴方向的两个分力,并在图上标明,用符号F x 和F y 表示; ㈢在图上标出与x 轴或与y 轴的夹角,然后列出F x 、F y 的数学表达式。如:F 与x 轴夹角分别为θ,则 θθsin ;cos F F F F y x ==。与两轴重合的力就不需要分解了; ㈣列出x 轴方向上和各分力的合力和y 轴方向上的各分力的合力的两个方程,然后再求解。 一、 运用正交分解法典型例题 例1.物体放在粗糙的水平地面上,物体重50N ,受到斜向上方向与水平面成300角的力F 作用,F = 50N ,物体仍然静止在地面上,如图1所示,求:物体受到的摩擦力和 地面的支持力分别是多少? 解析:对F 进行分解时,首先把F 按效果分解成竖直向上的分力和 水平向右的分力, 对物体进行受力分析如图2 所示。F 的效果可以由分解的水平方向分力F x 和竖直方向的分力F y 来代替。则: 030sin ,30cos F F F F y X == 由于物体处于静止状态时所受合力为零,则在竖直方向有: G F N =+030sin 030sin F G N -= 则在水平方向上有: 030cos F f = 例2.如图3所示,一物体放在倾角为θ的光滑斜面上,求使物体下滑的力和使物体压紧斜面的力。 解析:使物体下滑的力和使物体压紧斜面的力都是由重力引起的,把重力分解成两个互相垂直的两个力,如图4所示,其中F 1 为使物体下滑的力,F 2为物体压紧斜面的力,则: θ θcos sin 21G F G F == 3 F 1 G 图4 F 2 θ θ 300 图1 y x f F G N 图2 α

高中物理公式集锦以及典型例题分析合集

一、力学 胡克定律:f = kx 重力:G = mg 滑动摩擦力:f = μN 求F 1、F 2的合力的公式:θcos 2212221F F F F F ++=合 两个分力垂直时:2221F F F +=合 万有引力:F =G 221r m m G = 6.67×10-11 N ·m 2 / kg 2 万有引力=向心力 '422 222mg ma r T m r m r v m r Mm G =====πω 2R Mm G mg = GM gR =2 黄金代换式 第一宇宙速度:s km gR r GM v /9.7=== 第二宇宙速度:v 2=11.2km /s , 第三宇宙速度:v 3=16.7km /s 牛二定律: t p ma F ??==合 匀变速直线运动:v t = v 0 + a t S = v o t +12 a t 2 as v v t 2202=- 初速为零的匀加速直线运动, 在1s 、2s ……内的位移比为12:22:32……n 2 在第1s 内、第 2s 内……位移比为1:3:5……(2n-1) 在第1m 内、第2m 内……时间比为1:()21-:(32-)……(n n --1) 连续相邻的相等的时间间隔内的位移差:? s = a T 2 CheckBox1

匀速圆周运动公式 线速度:V = t s =2πR T =ωR=2πf R 向心加速度:a =v R R T R 222244===ωππ2 f 2 R 角速度:ω=φπ πt T f ==22 向心力:F= ma = m v R m 2=ω2 R = m 422πT R =42πm f 2R 平抛:水平分运动:水平位移:x= v o t 水平分速度:v x = v o 竖直分运动:竖直位移:y =2 1g t 2 竖直分速度:v y = g t 功 : αcos Fs W = 动能: 22 1mv E k = 重力势能:E p = mgh (与零势面有关) 动能定理: W 合= ?E k = E k 2 - E k 1 = 21222 121mv mv - 机械能守恒: mgh 1 +222212 121mv mgh mv += 功率:P = W t =Fv cos α (t 时间内的平均功率) 物体的动量 P=mv, 力的冲量 I=Ft 动量定理:F 合t=mv 2-mv 1 动量守恒定律:11v m +m 2v 2 = m 1v 1’+m 2v 2’ 简谐振动的回复力 F=-kx 加速度x m k a -=

16正交分解法例题及练习

3045 A B O G 正交分解法专题训练 1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和45o ,求绳AO 和BO 对物体的拉力的大小。 … 2.如图所示,轻绳AC 与天花板夹角α=300,轻绳BC 与天花板夹角β=600.设AC 、BC 绳能承受的最大拉力均不能超过100N ,CD 绳强度足够大,求CD 绳下端悬挂的物重G 不能超过多少 . 3.质量为m 的物体在恒力F 作用下,F 与水平方向之间的夹角为θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则物体受摩擦力大小为多少 》 300 [ 600

4.如图所示,物体的质量kg m 4.4=,用与竖直方向成?=37θ的斜向右上方的推力F 把该物体压在竖直墙壁上,并使它沿墙壁在竖直方向上做匀速直线运动。物体与墙壁间的动摩擦因数 5.0=μ,取重力加速度2 /10s m g =,求推力F 的大小。(6.037sin =?,8.037cos =?) ; . 5.如图,物体A 的质量为m ,斜面倾角α,A 与斜面间的动摩擦因数为μ,斜面固定,现有一个水平力F 作用在A 上,当F 多大时,物体A 恰能沿斜面匀速向上运动 : 6.质量为m 的物体,用水平细绳AB 拉住,静止在倾角为θ的光滑固定斜面上,求物体对斜面压力的大小,如图1(甲)。 > θ

" 7.如图所示重20N的物体在斜面上匀速下滑,斜面的倾角为370,求:(sin370=, cos370= ) (1)物体与斜面间的动摩擦因数。 (2)要使物体沿斜面向上匀速运动,应沿斜面向上施加一个多大的推力 / 8.如图所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 ; ¥

高中物理必修一牛顿第二定律典型例题

高一物理牛顿第二定律典型例题讲解与错误分析 【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动. 【答】 D. 【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少? 【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度. (1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0. (2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为: 它的方向与反向后的这个力方向相同.

【例3】沿光滑斜面下滑的物体受到的力是 [ ] A.力和斜面支持力 B.重力、下滑力和斜面支持力 C.重力、正压力和斜面支持力 D.重力、正压力、下滑力和斜面支持力 【误解一】选(B)。 【误解二】选(C)。 【正确解答】选(A)。 【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。若理解为对斜面的正压力,则是斜面受到的力。 在用隔离法分析物体受力时,首先要明确研究对象并把研究对象从周围物体中隔离出来,然后按场力和接触力的顺序来分析力。在分析物体受力过程中,既要防止少分析力,又要防止重复分析力,更不能凭空臆想一个实际不存在的力,找不到施力物体的力是不存在的。 【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将 [ ] A.不断增大 B.不断减少 C.先增大后减少 D.先增大到一定数值后保持不变 【误解一】选(A)。

典型共点力平衡问题例题

典型共点力作用下物体的平衡例题 [[例1]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。 极限法 [例2]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 例3]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。当细绳的端点挂上重物G,而圆环将要开始滑动时,试问 (1)长为30cm的细绳的张力是多少? (2)圆环将要开始滑动时,重物G的质量是多少? (3)角φ多大? [分析]选取圆环作为研究对象,分析圆环的受力情 况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、 摩擦力f的作用。 [解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有 μN-Tcosθ=0, N-Tsinθ=0。

设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。 (1)如图2所示选取坐标轴,根据平衡条件有 Gcosθ+Tsinθ-mg=0, Tcosθ-Gsinθ=0。 解得T≈8N, (2)圆环将要滑动时,得m G g=Tctgθ,m G=0.6kg。 (3)前已证明φ为直角。 例4]如图1所示,质量为m=5kg的物体放在水平面上,物体与水平面间的动摩擦因数求当物体做匀速直线运动时,牵引力F的最小值和方向角θ。 [分析]本题考察物体受力分 析:由于求摩擦力f时,N受F制约, 而求F最小值,即转化为在物理问 题中应用数学方法解决的实际问 题。我们可以先通过物体受力分析。 据平衡条件,找出F与θ关系。进 一步应用数学知识求解极值。 [解]作出物体m受力分析如图2,由平衡条件。 ∑F x=Fcosθ-μN=0(1) ∑F y=Fsinθ+N-G=0(2) 由cos(θ-Ф)=1即θ—Ф=0时

4正交分解法例题及练习.docx

正交分解法 1. 如图10所示,在倾角为a 二37。的斜血上有一块竖直放置的档板,在档板和斜血之 间放一个重力G=20N 的光滑球,把球的重力沿垂直于斜面和垂直于档板的方向分解为 力F ]和F2,求这两个分力比和F2的大小。 2. 如图所示,一个重为G 的圆球,被一段细绳挂在竖直光滑墙上,绳与竖直墙的月 夹角为a ,则 绳子的拉力和墙壁对球的弹力各是多少? 3. 如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与 竖直方向的夹角分别为30°和40°,求绳AO 和BO 对物体的拉力的大 小。 4. 氢气球被水平吹来的风吹成图示的情形,若测得绳子与水平面的夹角 为 37。,已知气球受到空气的浮力为15N,忽略氢气球的重力,求:1. 气球受到的水平风力多大? 2.绳子对氢气球的拉力多大? 5. 如图所示,轻绳AC 与天花板夹角<?=30°,轻绳BC 与天花板夹角0二60°.设4C 、 BC 绳能承受的最大拉力均不能超过100N, CD 绳强度足够大,求CD 绳下端悬挂 的物 重G 不能超过多少? 6?物体放在粗糙的水平地面上,物体重50N,受到斜向上方向与水平面成30°角的力F 作用,F = 50N,物 体仍然静止在地面上,如图1所示,求:物体受到的摩擦力和地面的支持力分别 是多 少? 7.(双选题)质量为m 的木块在与水平方向成。角的推力F 的作用下,在水平地 面上作匀速运 动,已知木块与地面间的摩擦因数为那么木块受到的滑动摩擦力为: A. B. C. D. &质量为m 的物体在恒力F 作用下,F 与水平方向之I'可的夹角为0,沿天花板向右做 匀速运动,物体与顶板间动摩擦因数为卩,则物体受摩擦力大小为多少? Umg u (mg+Fsin()) U (mg-Fsin 0 ) Feos 9 图1

相关文档