文档库 最新最全的文档下载
当前位置:文档库 › 基于单片机水PH值的测量

基于单片机水PH值的测量

基于单片机水PH值的测量
基于单片机水PH值的测量

《专业综合实习》

报告

设计题目:水的PH值测量

专业:农电、电气

年级:07级

指导教师:许秀英

学生:白羽鹤、陈岩、丁红艳、郭瑞、韩锋、刘兆横、冷昊男、李冰、马纪、彭延林、孙灵川、徐泽霖、周金玲。

1.课程设计目的

PH值水的性质的重要参数之一,水无论在哪个领域都是非常重要的物质,水的PH值不仅仅表示水的酸碱程度,它更体现了水质的状况,以及水质对人身体健康是否有益等等。所以,对水的PH值进行测量是十分重要的实验。本实验就是要测量出水的PH值。

2.课程设计题目描述和要求

(1)学生通过对本次实验目的的了解,明确实验目的及实验要得到的结果;

(2)通过学生进行小组讨论的形式,共同分析、共同查找资料、分工合作来确定这次实验所需要的元件,以及实验原理图。

(3)在元件和实验原理图确定之后,根据实验要求制作实物。

(4)对实物进行检测,输入相应的程序。

(5)要求用自制的PH值计能够对水进行准确测量。

3.课程设计报告内容

3.1实验元器件的选择

3.1.1 PH传感器 E-201C

E-201C 型可充式PH电极。 E-201C

PH复合电极、E-201C PH复合电极由PH玻璃电极和银一氯化银参比电极复合而成,外壳是聚碳酸酯压制而成,它是PH计的测量关键元件,用以测量水溶液中氢离子深度的PH值,它广泛用于化工业,医药工业和科研事业中检测PH的地方。

工作环境

环境温度:5-40℃环境相对温度≤85%

使用维护注意事项

1、电极在初次使用或久置不用时,把电极球浸泡在3.3N氯化钾溶液中法活化2小时。

2、测量时,应先在蒸馏水中洗净,并用滤纸揩干,防止杂质带进,电极球泡和液络部应同时浸在被测溶液内。

3、E-201 PH复合电极,不须加外参比溶液。

4、E-201C 为可充式PH复合电极,须添加3.3N KCL外参比溶液。

5、上述2种电极都有应避免长期浸泡在蒸馏水或蛋白质溶液和酸性氯化物溶液中,并防止与有机硅油脂接触。

6、附标准溶液的配制:

①PH4.00、pH9.18两种标准溶液按袋装剂量配制。

②3.3N氯化钾溶液的配制:在右手天平上称取246克分析纯氯化钾,溶

于1000毫升去离子水中即成。

测量范围:0-14pH 测量温度:5-60℃

零点(pH):7±1 电阻(MΩ):≤250

百分理论斜率PTS:≥97 碱误差(MV):碱误差≤15

重复性(pH):≤0.017

3.1.2 液晶显示器 12864

基本参数:

液晶屏类型 STN FSTN

模块显示效果:

黄绿底黑字

蓝底白字白底黑字视角 6点钟 12点钟

驱动方式 1/64 DUTY 1/9 BIAS

背光 LED白色 LED黄绿色

控制器 KS0108或兼容 ST7920 T6963C

数据总线 8 位并口/6800 方式串口

温度特性工作温度:-20℃~+70℃ 储藏温度:-30℃~+80℃

点阵格式 128 x 64

基本用途:

该点阵的屏显成本相对较低,适用于各类仪器,小型设备的显示领域。

液晶模组使用注意事项:

1 当您在你的产品设计中使用本液晶模组,注意液晶的视角与你的产品用途相一致。

2 液晶屏是玻璃为基础的,跌落或与硬物撞击会引起液晶屏破裂或粉碎。尤其是边角处。

3 尽管在液晶表面的偏振片有抑制反光的表层,应当小心不要划伤表面,一般推荐在液晶表面采用透明塑胶材料的保护屏。

4 如果液晶模组储藏在低于规定的温度以下,液晶材料会凝结而性能恶化。如果液晶模组储藏在高于规定的温度以上,液晶材料的分子排列方向会转变为液态,可能无法恢复到原来的状态。超出温度和湿度范围,会引起偏振片剥落或起泡。因此,液晶模组应储藏在规定的温度范围。

5 如液晶表面遇口水或滴水,应立即擦除,避免长时间过后引起色彩变化或留下污点。水蒸气会引起ITO电极腐蚀。

6 如果需要清洁液晶屏表面,应该用棉或软布轻快地擦拭,仍不能清除时,呵气之后再擦拭。

7 液晶模组的驱动应遵照规定的额定指标,避免故障及永久损坏。对液晶材料施加直流电压,会引起液晶材料迅速恶化,应该确保提供交流波形的M信号的连续应用。特别是,在电源开关时应遵照供电顺序,避免驱动锁存及直流直接加至液晶屏。

8 机械注意事项:

a) 液晶模组是在高精度下调试安装的。避免外力撞击,不要对其改变或修改。

b) 不要篡改金属框的任何突出部分。

c) 不要在PCB上打孔或改变外形,不要移动或修改元件。

d) 不要碰到导电橡胶,尤其是在插入背光板时。(如EL背光)。

e) 在安装液晶模组时,确保PCB没有受到扭曲或弯曲力等强制力。导电橡胶的接触是非常精密的,在原基础上轻微的错位会导致像素丢失。

f) 避免在金属卡位部加压,否则会导致导电橡胶变形而失去接触,造成像素丢失。

9 静电:由于液晶模组内部装配了CMOS电路,必须采取下列措施避免静电。

a) 作业员

穿防静电服,否则人体会产生静电。

任何时候人体的任何部分不应与模组的导电部分接触,

如:集成电路的引脚,PCB上的铜引线,接口部分的端子。

b) 设备

由于脱离或摩擦等可能引起设备产生静电,如人员,烙铁,工作台等。

将设备与地以适当的电阻连接(1x108 ohm)。

只有合理接地的烙铁才可使用。

如果使用电批,电批应良好接地并与转接器(电刷)隔离。

通常应该观测工作服,工作凳的防静电测量,对于工作凳,建议使用导电橡胶垫。

c) 地板

地板是将设备及人员产生的静电进行释放的重要部分。可能会由于地板绝缘导致静电无法释放。设置地板接地(1x108 ohm)。

d) 湿度

适当的湿度可以减少静电产生的几率。一般相对湿度应保持在50%以上。

e) 运输与储藏

由于人和包装材料可能会因为脱离或摩擦等引发静电,包装材料需要作防静电处理。模组应存放在防静电袋或其他防静电容器中保存。

f) 焊接

仅对I/O端子焊接。只能使用合理接地并没有漏电的烙铁。使用内充焊锡膏的低温焊锡丝。

如果使用助焊剂,应遮盖液晶表面,防止焊剂溅污。之后去除焊剂残留物。

焊接温度:280°C+10°C

焊接时间:3-4 秒。

g) 其它:与液晶屏表面贴和的保护膜是为防止表面划伤或污染,在剥离保护膜时,应使用静电消除器。静电消除器也应安装在工作台上,以防产生静电。

10 运行

a) 驱动电压应控制在规定的范围内,超出范围会缩短液晶使用寿命。

b) 液晶的响应时间会随温度的降低而增大。

c) 当温度高于操作温度范围时,液晶显示会变黑或深蓝色,这可能会导致“列”出现断裂。不论怎样,不要挤压显示区域。

d) 操作过程中机械扰动(如在显示区域挤压)可能会导致“列”出现断裂。

11 如果损坏的玻璃层中流出液体,用水和肥皂清洗接触到人体部位,虽然毒性非常低,仍然需要随时提醒注意。

12 拆解液晶模组会引起永久性的损坏,应该严格禁止。

13 液晶会有影像滞留余辉,为避免影像余辉不要长时间显示固定图案。影像余辉不是液晶恶化,当显示图案改变以后会自动消除。

14 不要使用具有挥发性的环氧树脂及硅粘合剂等,以防因此导致偏振片变色。

15 避免将液晶模组长时间暴露在阳光或强紫外线照射下。

16 液晶模组的亮度可能会由于CCFL引线对金属壳的耦合分流而受到影响。逆变器的设计应该充分考虑这部分的漏电。有必要全面评估液晶模组和逆变器安装在主机设备中的情况,确保达到亮度要求。

3.1.3 单片机 AT89S51

AT89S51 为 ATMEL 所生产的可电气烧录清洗的 8051 相容单芯片,其内部程序代码容量为4KB

AT89S51主要功能列举如下:

1、为一般控制应用的 8 位单芯片

2、晶片内部具时钟振荡器(传统最高工作频率可至 12MHz)

3、内部程式存储器(ROM)为 4KB

4、内部数据存储器(RAM)为 128B

5、外部程序存储器可扩充至 64KB

6、外部数据存储器可扩充至 64KB

7、32 条双向输入输出线,且每条均可以单独做 I/O 的控制

8、5 个中断向量源

9、2 组独立的 16 位定时器 10、1 个全多工串行通信端口

11、8751 及 8752 单芯片具有数据保密的功能 12、单芯片提供位逻辑运算指令 (二)、AT89S51各引脚功能介绍:

VCC :

AT89S51 电源正端输入,接+5V 。 VSS :

电源地端。 XTAL1:

单芯片系统时钟的反相放大器输入端。 XTAL2:

系统时钟的反相放大器输出端,一般在设计上只要在 XTAL1 和 XTAL2 上接上一只石英振荡晶体系统就可以动作了,此外可以在两引脚与地之间加入一 20PF 的小电容,可以使系统更稳定,避

免噪声干扰而死机。 RESET :

AT89S51的重置引脚,高电平动作,当要对晶片重置时,只要对此引脚电平提升至高电平并保持两个机器周期以上的时间,AT89S51便能完成系统重置的各项动作,使得内部特殊功能寄存器之内容均被设成已知状态,并且至地址0000H 处开始读入程序代码而执行程序。 EA/Vpp :

"EA"为英文"External Access"的缩写,表示存取外部程序代码之意,低电平动作,也就是说当此引脚接低电平后,系统会取用外部的程序代码(存于外部EPROM 中)来执行程序。因此在8031及8032中,EA 引脚必须接低电平,因为其内部无程序存储器空间。如果是使用 8751 内部程序空间时,此引脚要接成高电

平。此外,在将程序代码烧录至8751内部EPROM时,可以利用此引脚来输入21V 的烧录高压(Vpp)。

ALE/PROG:

ALE是英文"Address Latch Enable"的缩写,表示地址锁存器启用信号。AT89S51可以利用这支引脚来触发外部的8位锁存器(如74LS373),将端口0的地址总线(A0~A7)锁进锁存器中,因为AT89S51是以多工的方式送出地址及数据。平时在程序执行时ALE引脚的输出频率约是系统工作频率的1/6,因此可以用来驱动其他周边晶片的时基输入。此外在烧录8751程序代码时,此引脚会被当成程序规划的特殊功能来使用。

PSEN:

此为"Program Store Enable"的缩写,其意为程序储存启用,当8051被设成为读取外部程序代码工作模式时(EA=0),会送出此信号以便取得程序代码,通常这支脚是接到EPROM的OE脚。AT89S51可以利用PSEN及RD引脚分别启用存在外部的RAM与EPROM,使得数据存储器与程序存储器可以合并在一起而共用64K的定址范围。

PORT0(P0.0~P0.7):

端口0是一个8位宽的开路极(Open Drain)双向输出入端口,共有8个位,P0.0表示位0,P0.1表示位1,依此类推。其他三个I/O端口(P1、P2、P3)则不具有此电路组态,而是内部有一提升电路,P0在当做I/O用时可以推动8个LS的TTL负载。如果当EA引脚为低电平时(即取用外部程序代码或数据存储器),P0就以多工方式提供地址总线(A0~A7)及数据总线(D0~D7)。设计者必须外加一锁存器将端口0送出的地址栓锁住成为A0~A7,再配合端口2所送出的A8~A15合成一完整的16位地址总线,而定址到64K的外部存储器空间。

PORT2(P2.0~P2.7):

端口2是具有内部提升电路的双向I/O端口,每一个引脚可以推动4个LS 的TTL负载,若将端口2的输出设为高电平时,此端口便能当成输入端口来使用。P2除了当做一般I/O端口使用外,若是在AT89S51扩充外接程序存储器或数据存储器时,也提供地址总线的高字节A8~A15,这个时候P2便不能当做I/O来使用了。

PORT1(P1.0~P1.7):

端口1也是具有内部提升电路的双向I/O端口,其输出缓冲器可以推动4个LS TTL负载,同样地若将端口1的输出设为高电平,便是由此端口来输入数据。如果是使用8052或是8032的话,P1.0又当做定时器2的外部脉冲输入脚,而P1.1可以有T2EX功能,可以做外部中断输入的触发脚位。

PORT3(P3.0~P3.7):

端口3也具有内部提升电路的双向I/O端口,其输出缓冲器可以推动4个TTL负载,同时还多工具有其他的额外特殊功能,包括串行通信、外部中断控制、计时计数控制及外部数据存储器内容的读取或写入控制等功能。

其引脚分配如下:

P3.0:RXD,串行通信输入。

P3.1:TXD,串行通信输出。

P3.2:INT0,外部中断0输入。

P3.3:INT1,外部中断1输入。

P3.4:T0,计时计数器0输入。

P3.5:T1,计时计数器1输入。

P3.6:WR:外部数据存储器的写入信号。

P3.7:RD,外部数据存储器的读取信号。

3.1.4 AD 转换器 ADC0809

ADC0809 是带有8 位A/D 转换器、8 路多路开关以及微处理机兼容的控制逻辑的CMOS 组件。它是

逐次逼近式A/D 转换器,可以和单片机直接接口。

(1)ADC0809 的内部逻辑结构

由下图可知,ADC0809 由一个8 路模拟开关、一个地址锁存与译码器、一个A/D 转换器和一

个三态输出锁存器组成。多路开关可选通8 个模拟通道,允许8 路模拟量分时输入,共用

A/D 转换器进行转换。三态输出锁器用于锁存A/D 转换完的数字量,当OE 端为高电平时,才

可以从三态输出锁存器取走转换完的数据。

(2). ADC0809 引脚结构

ADC0809 各脚功能如下:

D7-D0:8 位数字量输出引脚。

IN0-IN7:8 位模拟量输入引脚。

VCC:+5V 工作电压。

GND:地。

REF(+):参考电压正端。

REF(-):参考电压负端。

START:A/D 转换启动信号输入端。

ALE:地址锁存允许信号输入端。

EOC:转换结束信号输出引脚,开始转换时为低电平,当转换结束时为高电平。OE:输出允许控制端,用以打开三态数据输出锁存器。

CLK:时钟信号输入端(一般为500KHz)

3.1.1 其它元器件

1 单排插针 2.54-11(1×40)

2 插座28P-IC(普宽)

3 插座40P-IC(普宽)

4 插座14P-IC(普宽)

5 轻触按键KFC-A06

6 电位器3296W

7 电源座DC005 2.1

8 实验板72-41独孔

9 蜂鸣器ZJ0950C-03DY

10 三极管9013(npn)

11 晶振金属

12 排阻9A102J(1/8W)

13 电阻1/4W碳膜

14 电阻1/4W碳膜

15 电解电容22uF、100uF(50V)

16 瓷片电容30pF、150pF

3.2 实验电路图及程序

温度补偿电路

语言源程序

#include

unsigned char code dispbitcode[]={0xfe,0xfd,0xfb,0xf7,

0xef,0xdf,0xbf,0x7f};

unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00};

unsigned char dispbuf[8]={10,10,10,10,10,0,0,0}; unsigned char dispcount;

sbit ST="P3"^0;

sbit OE="P3"^1;

sbit EOC="P3"^2;

unsigned char channel="0xbc";//IN3

unsigned char getdata;

void main(void)

{

TMOD=0x01;

TH0=(65536-4000)/256;

TL0=(65536-4000)%256;

TR0=1;

ET0=1;

EA=1;

P3=channel;

while(1)

{

ST=0;

ST=1;

ST=0;

while(EOC==0);

OE=1;

getdata=P0;

OE=0;

dispbuf[2]=getdata/100;

getdata=getdata%10;

dispbuf[1]=getdata/10;

dispbuf[0]=getdata%10;

}

}

void t0(void) interrupt 1 using 0 {

TH0=(65536-4000)/256;

TL0=(65536-4000)%256;

P1=dispcode[dispbuf[dispcount]]; P2=dispbitcode[dispcount]; dispcount++;

if(dispcount==8)

{

dispcount=0;

}

4.总结

从我们开始了课程设计开始,时至今日基本完成了实训要求。从最初的茫然,到慢慢的进入状态,再到对思路逐渐的清晰,整个写作过程难以用语言来表达。历经了几周的奋战,紧张而又充实的课程设计终于落下了帷幕。回想这段日子的经历和感受,我感慨万千,在这次毕业设计的过程中,我拥有了无数难忘的回忆和收获。

首先,在老师的指导以及全组同学共同努力下,我们完成了PH测量计的制作,并能够检测水的PH值。

在这段时间我学会了许多知识,对常用的电子元器件有了深入的了解。

其次,我通过和本小组成员在一起讨论问题,彼此加深了了解,增进了我们之间的友谊。同时我们也与老师有了更加深厚的师生情。

参考书目:

[1] 宏晶科技.STC89C51RC/RD+系列单片机器件手册.2007

[2] 何立民.高级单片机教程.北京:北京航空航天大学出版社.2000

[3] 郭天祥.51单片机C语言教程.北京:电子工业出版社.2009

[4] 何立民.单片机初级教程.北京:北京航空航天大学出版社.2000

[5] Sensirion 公司.SHT11 数据手册.

[6] 孟臣, 李敏温湿度传感器SHT11及其在单片机系统的应用

[7] 康光华.电子技术基础(第五版) . 北京:高等教育出版社,2007年6月

[8] 谭浩强. C 程序设计[M].北京:清华大学出版社,1999 年12 月第2 版

水的pH值调整及计算

水的pH值调整及计算 碳酸化合物的一级电离 [ H+][HCO3] CO2 = K1 推导公式为: CO2 [ H+] = K1 [HCO3] 已知25℃时,K1=4.45×10-7,Pk = 6.35 ,可以得出 pH = 6.35+Lg[HCO3] - Lg[CO2] 如果pH值大于8.3,产生二级电离 [HCO3] [ H+] = K2 [CO32-] 已知25℃时,K2=4.69×10-11,Pk = 10.329 ,可以得出pH = 10.329+Lg[HCO3]- Lg[CO32-] 1、原水中CO2二氧化碳的计算 CO2 = 注:式中pH(R) 为原水 的pH值 举例运算:如用户填入HCO3(以CaCO3计)为350mg/L(以CaCO3计),那么原水中的CO2二氧化碳含量计算为: CO2 =350÷(10 7.0-6.3)=350÷100.7=69.83 mg/L(以CO2计) 注:用户没有进行pH值的调整的需求,可直接根据公式计算输出结果。如果用户调整pH 值,则需重新计算。因为加入硫酸和盐酸后会改变HCO3、SO4、Cl 的离子含量,影响CO2含量。所以当用户需要调整pH值,则Feed CO2含量需重新计算。 原理如下:H2SO4+2HCO3- 2CO2+2H2O+SO42- HCl+HCO 3- CO 2 +H 2 O+Cl- 以盐酸为例: HCl+HCO 3- CO 2 +H 2 O+Cl- 36.5 61 44 18 35.5 每加1mg/L的盐酸(100%)产生1.205mg/L的CO2,同时减少1.37mg/L的HCO3(以CaCO3计)。 推导公式为: [HCO3] pH=6.35+Lg R = 6.35+Lg [CO2] CO2= [HCO3] ×10 6.3-pH 代入公式中 [HCO3]-1.37[HCL] HCO3(以CaCO3计)

单片机相位差测试仪研究报告

_____________________ 个人资料整翌_仅限学习使用_ 基于单片机的相位差测试仪的研究 摘要 提出了一种基于8051单片机开发的低频数字相位差测量仪的设计。系统以单片机8051 及计数器,显示管为核心,构成完备的测量系统。可以对1Hz?1000Hz频率范围的信号进行 频率、相位等参数的精确测量,测相绝对误差不大于1°采用数码管显示被测信号的频率、相位差。硬 件结构简单,程序简单可读写性强,软件采用汇编语言实现,效率高。与传统的电路系统相比,其有处理速度快、稳定性高、性价比高的优点。 关键词:相位差;单片机;计数器;数码显示管 Designsof Low frequency Digital PhaseMeasurement Based on Single Chip Abstract A new ki nd of low - freque ncy digital phase measureme nt in strume nt is reside nted which is based on 8051.This is a complete system whose core is based on sin gle chip 8051 and arithmometer

and charactr on .It may measure the freque ncy and phase of the sig nal which beg in from 1 Hz to _____________________ 个人资料整翌_仅限学习使用_ 1000Hz, absolute error is not more than 1 The data are displayed on numeral displayer. Hardware structure is simple and software is realized by compiling Ianguage. Compared with traditional circuit, it has many adva ntages of faster process ing speed, good stability and high ratio betwee n property and price. Keyword: phase difference single-chip compute; . Arithmometer;charactron tube 目录

单片机数字相位差计的设计

XXXXXX项目式教学 设计报告 课程名称:电路综合设计 项目名称:单片机数字相位差计的设计专业班级: 学生姓名: 指导教师: 开课时间: 报告成绩:

数字相位差计的设计与实现 摘要 随着数字电子技术的发展,由数字逻辑电路组成的控制系统逐渐成为现代检测技术中的主流,数字测量系统也在工业中越来越受到人们的重视。 在实际工作中,常常需要测量两列频率相同的信号之间的相位差,来解决实践中出现的种种问题。例如,电力系统中电网合闸时,要求两电网的电信号之间的相位相同,这时需要精确测量两列工频信号之间的相位差。如果两列信号之间的相位差达不到相同,会出现很大的电网冲激电流,对供电系统产生巨大的破坏力,所以必须精确地测量出两列信号之间的相位差。本设计由STC89C51构成的最小系统,通过外围扩展,精确测量工频电压的相位差,采用LCD1602显示相位差,功耗小,精确度高,稳定性能好,读数方便且不需要经常调试。 关键词:单片机、低频、相位差、LCD

一、绪论 1.1课题的意义 众所周知,相位是交变信号的三要素之一,而相位差则是研究两个相同频率交流信号之间关系的重要参数。相位差的测量是电气测量的一项基本内容,其含义为测量两个同频率周期信号的相位差值。 例如某一电路系统输入信号与输出信号之间的相位差,三相交流电两个相电压或两个线电压之间的相位差,相电压与相电流之间的相位差等。 又如,在自动控制理论中,系统的相频特性为在不同频率正弦信号作用下,系统的输出信号与输入信号之间的相位和频率的函数关系。 此外,同频率正弦信号的相位差测量在工业自动化、智能控制及通讯电子等许多领域都有着广泛的应用。如电工领域中的电机功角测试,等等。 因此相位差的测量是研究网络相频特性中不可缺少的重要方面。 1.2课题要求 本设计研究了一种可测20Hz-20kHz 内波形(正弦波、三角波、矩形波)数字相位差测量仪的设计方法。主要内容是以STC89C51为控制核心,实现对音频范围内的正弦交流信号的相位的测量,可测的信号相位差在0~360? 度范围内,测量精度可达0.1? 。两路信号(同频、不同相)通过过零比较器电路整形成矩形波信号,再通过鉴相器,D 触发器二分频得到相位差信号。这样就构成了相位测量系统的测量电路。再将该相位差信号送入单片机的外部中断端口,通过单片机对数据的处理,最后方可得到所要测量的相位差,并在液晶上显示出测量结果。 二、相位测量方案论证与选择 2.1设计方案论证 方案1:相位——电压转换法 相位--电压转换式数字相位计的原理框图如图2-1

相位差检测

目录 一、题目要求 ........................................................ 错误!未定义书签。 二、方案设计与论证 ............................................ 错误!未定义书签。 移相电路 ......................... 错误!未定义书签。 检测电路 ......................... 错误!未定义书签。 显示电路 ......................... 错误!未定义书签。 三、结构框图等设计步骤................. 错误!未定义书签。 设计流程图........................ 错误!未定义书签。 电路图 ........................... 错误!未定义书签。 移相电路图................... 错误!未定义书签。 检测电路图................... 错误!未定义书签。 显示电路图................... 错误!未定义书签。 四、仿真结果及相关分析................. 错误!未定义书签。 移相效果 ......................... 错误!未定义书签。 相位差波形........................ 错误!未定义书签。 相位差度数........................ 错误!未定义书签。 五、误差分析........................... 错误!未定义书签。 误差分析 ......................... 错误!未定义书签。 六、总结与体会......................... 错误!未定义书签。 七、参考文献........................... 错误!未定义书签。 八、附录............................... 错误!未定义书签。 元器件清单........................ 错误!未定义书签。

单片机测量频率,占空比,相位差

单片机测量频率,占空比,相位差 1、 频率及占空比的测量 如上图所示,当脉冲的上升沿来临时,将定时器打开;紧接着的下降沿来临时,读取定时器的值,假设定时时间为t1;下一个上升沿来临时关闭定时器,读取定时器的值,假设定时时间为t2。t1即为1个周期内高电平的时间,t2即为脉冲的周期。t1/t2即为占空比,1/t2即为频率。 C 语言程序如下: TH0=0; //定时器高位,初值设为0 TL0=0; //定时器低位,初值设为0 T0_num=0; //定时器溢出次数,初值设为0 while(pulse); //pulse 为脉冲的输入引脚 while(!pulse); //等待上升沿来临 TR0=1; //打开定时器 while(pusl1); //等待下降沿来临 th1=TH0;tl1=TL0;num1=T0_num; //保存定时器值 while(!pusl1); //等待上升沿来临 TR0=0; //关闭定时器 th2=TH0;tl2=TL0;num2=T0_num; //保存定时器值 2、 相位差的测量 上升沿打开定时器 下降沿读取定时器值并保存 下一个上升沿关 闭定时器,读取 定时器值并保存

测量相位差的电路如上所示,待测量的两路脉冲分别作为两个D触发器的时钟输入,两个D触发器的输入端D及S端都接高电平,第一个D触发器的输出接第二个D触发器的R端,第二个D触发器的互补输出端接第一个D触发器的R端。从下面的波形图可以看出,第一个D触发器输出的脉冲信号的占空比乘以2π即为相位差。这样就将测量两路方波信号的相位差转化为测量一路方波 信号的占空比,就可以按照前面介绍的测量占空比的方法来测量了。

水质管理——PH值的调整方法

水质管理——PH值的调整方法 调整PH的目的 养鱼先养水,这句话大家不陌生,但是怎么理解这句话的真正含义呢?我的理解是:养水是指养殖用水的内在质量。我们用来“养水”的办法很多,比如,建立健全的硝化系统,培养出优质硝化细菌,水中添加氧气,和各类营养成分,通过检测毒素和微量元素而达到控制水中各种物质的含量,我们也可以借助其他一些手段间接观测水的质量。比如pH值(KH GH NH3+NH4 NO2 NO3 )测量。 那我们测量pH值得目的是什么呢?为什么要测量ph值?如果pH值不合乎我们鱼类的最佳生存要求怎么办?是不是直接调节pH值或是加入一些物质调节就可以呢?下面我与大家一起思考。 在我们养鱼水中,如果pH值出现了波动,那肯定是水质出现了变化而带动了pH值发生了变化,如果此时直接调节pH值再标准也不能解决水质的问题,虽然pH值调到了正常,但是水中的硝酸盐或其他有毒物质不但不会减少的,相反有的会因为pH的变动而加速累计。 关于水质的好坏与pH值的测量,我引用一句话说明,可能不是很恰当,但愿能说明白问题,——“醉翁之意不在酒,而在于水体之中”。我们监测pH值的目的也不是在于单纯调节指数的高和低,,而是通过其指数的高低知道水质的变化情况,从而调整好水质,用调整好的水来改变pH值。所以现在很多鱼友测量pH值的目的,是为了调节pH值而调节pH值,是非常错误的,是不懂其养水的原理而为之。 尤其是调节跌酸水质,更不能单单的从pH值上下手,他需要一个有主有次综合的办法去调理水质,首先要弄明白在养殖水中跌酸的的根本原因是什么,再从根本上下手。看看是否因为硝化细菌数量增多,氧化作用下生成的硝酸过多,溶于水后产生H+使水质变酸,最终积累下硝酸盐水质老化的原因,还是因为其他什么原因。只有找到根本原因才能对症下药。 硝化系统引起的跌酸 在弄明白了跌酸的主要原因后,针对其做出动作,而不是一概而论的。 先谈谈主要的吧——硝化系统过强而引起的跌酸: 在治理本质的基础上(降低硝化作用)的同时,还要注意一些辅助手段,减少氨源,(换水)加强水体KH值,KH值不等于暂时硬度,他是形成暂时硬度的必要条件,它在水中的作用主要是缓冲PH值的变化,KH值之所以起到缓冲作用,是因为HCO3能发生可逆的水解平衡反映。 请看:HCO3-+H2O ---> H2CO3+OH- KH值与水的硬度更没有关系。 比如饲养密度,喂食量,以及适量的换水等等,从根本上调理水质达到各项指标,只要把水质慢慢的调理到我们所要的地步,pH值也会慢慢的到达我们预期的数值。(我说的这些,是

数字相位差测量仪的设计

目录 1.设计任务书。 2.设计方案概述。 3.V/f变换测量相位差角的工作原理。 4.电路的组成及参数选择。 4.1整形电路及信号C的形成。 4.2滤波电路的参任务计划书。 4.3V/f变换电路的设计。 4.4 89C52内部资源的利用。 5.应用实例。 6.结论。 7.总结。 一、设计任务书 (一)任务 设计仿真一数字相位计 (二)主要技术指标与要求: (1)输入信号频率为0HZ~250HZ可调 (2)输入信号的幅度为0.5V (3)采用数码管显示结果,相位精确到0.1° (4)采用外部5V直流电源供电 (三)对课程设计的成果的要求(包括图表) 设计电路,安装调试或仿真,分析实验结果,并写出设计说明书。要求图纸布局合理,符合工程要求,所有的器件的选择要有计算依据。 二、设计方案概述 根椐设计任务书的要求,我们参考了一些相关资料书,经过小组的讨论分析,提出了一种用v/f变换测量交流电的相位差的新方法:首先产生出其幅度正比与相位差大小的直流电,再有v/f变换器转换成反映相位差大小的频率信号,在单片机的配合下,最终得到相位差。这种方法具有分辨率高,适应与大范围的各种输入频率等优点。 正弦交流电电信号相位差的测量可以用多种方法实现。比较直接的数字式测量方法是在已知信号周期的前提下用定时的方法测得相位差角对应的时间,然后根据已知的周期将其换算成相位差角度。但

是,这种方法的测量精度依赖于定时器的精度和分辨率。在信号频率较高或频率虽不高但相位差较小时,都可以出现较大的误差。另外,由于直接测量得到的是时间,相位差角要由这一中间结果与信号的周期运算后才能得到,所以周期的测量不可缺少,其测量的精度也将影响相位差的精度。 在此用一种新的思路进行相位差的测量,用v/f变换器把相位差转换成一个其频率与之成正比的脉冲列,通过计算在一定时间内的脉冲个数测量相位差角。这种测量方法与信号的周期无关,可以得到较高的精度。题达到了0.1的测量精度,与此同时工业运行控制中现场操作,修改和设置等问题也得到了很好的解决,以上这些都在工业运行中得到了厂方的认可。存在的问题主要是本仪器通用性很不强,很难在更大的范围应用和推广,只能运用与某些特定的企业。今后的工作主要硬件和软件的改进上,列入增加一些通用行很强的功能模块。 3.V/f变换测量相位差角的工作原理 首先将输入的两个同频率但存在着相位差的信号进行整形,使之变成方波。如图1示A和B 再对A,B进行异或处理, 异或输出信号C 的脉冲宽度则反映相位差角.C 的脉宽T1对应的电角度是相位差角,C 的周期T2 是信号周期T 的1/2.如果信号角频率为w 则T1= /w. C为幅值为U 的方波其平均值Ud=UT1/T2=U 由此可见,C 的平均值( 亦即直流分量)仅与相位差角和脉冲幅 度有关与信号周期无关

水的电离和溶液pH值计算

水的电离与溶液pH 值的计算 一、水的电离 水是极弱的电解质,发生微弱的(自偶)电离。 H 2O + H 2O →H 3O + + OH - 简写: H 2O → H + + OH - 实验测定:25℃ c (H +)=c (OH -)=17 10-?mol/L 100℃ c (H +)= c (OH -)= 1610-?mol/L 二、水的离子积(K w ) 实验测定:25℃ K w = c (H +)·c (OH -)=11410 -?(定值)(省去单位) 100℃ K w = c (H +)·c (OH -)=112 10 -? 影响因素: 1)温度:温度越高,K w 越大,水的电离度越大。 对于中性水,尽管K w 温度升高,电离度增大,但仍是中性水,[H +]=[OH -]. 2)溶液酸碱性:中性溶液,c (H +)=c (OH -)=17 10-?mol/L 酸性溶液:c (H +)> c (OH -),c (H +)>1?10-7mol/L c (OH -)<1?10-7mol/L 碱性溶液:c (H +)< c (OH -),c (H +)<1?10-7mol/L c (OH -)>1?10-7mol/L c (H +)越大,酸性越强;c (OH -)越大,碱性越强。 三、溶液pH 值的计算 1.pH 的计算公式: (1)c (H +)=C 酸α酸(弱酸) c (H +)= nC 酸 c (OH -)=C 碱α 碱(弱碱) c (OH -)= nC 碱 (2) K w = c (H +)c (OH -),c (H +)= )(OH K c w c (OH -)=) (+H Kw c (3) pH=-lgc (H +) pOH=-lgc (OH -) (4) pH + pOH = 14(25℃) 2.酸或碱溶液及稀释后的p H 值的计算(25℃) 1) 酸强碱溶液(单一溶液)p H 值的计算 例1.求0.1mol/L 的H 2SO 4的pH 值。 例2. 0.1mol/L 醋酸溶液中的c (OH -)?(25℃,已知该醋酸的电离度为1.32%)

(完整版)循环水pH调节和加酸量问题

关于循环水pH调节和加酸量问题 加酸调pH是帮助循环水有效阻垢的辅助措施,当补充水为高硬、高碱水系(如北方地下水)和要求浓缩倍数高的循环水系统、药剂阻垢难以达到理想的效果时,目前普遍采用此处理方法,以保证水质的稳定。美国Nalco,Betz等世界知名水处理公司,过去和现在为中石化、化工部大化肥等厂提供的配方仍以加酸处理配方为主、其处理效果为各厂所认同。 贵厂加酸量可根据循环水每天碱度(CaCO3)测定值计算投加,方法有二,可任选其一。 循环冷却水调pH时加酸量的计算 循环冷却水用硫酸调pH时,其硫酸加入量有两种计算方法,可以选任一种方法计算投加。 (1)根据分析室测定循环水酚酞碱度时,盐酸标准溶液的耗量计算为系统硫酸投加量: 硫酸(98%)投加量=(V1C/2×100)×1000×98×(V/1000)×(100/98)=( V1CV/2) (kg)(6-2-1) 式中:V1—测定酚酞碱度时,盐酸标准溶液消耗的体积,ml; C—盐酸标准溶液的浓度,mol/L; V—冷却水系统容积,m3; 100—测定酚酞时取样体积,mL; 100/98—由100%换算为98%硫酸的系数;98-硫酸摩尔质量,g。 贵厂用30%盐酸时,则将公式 盐酸(30%)投加量

=(V1C/×100)×1000×36.5×(V/1000)×(100/30) =(1.22 V1CV)(kg) 贵厂保有水量按400 m3计,则加首次30%盐酸量为488V1C(kg) 例:系统容积V=8000 m3,测定酚酞碱度盐酸耗量V1=1.3 mL,盐酸标准溶液浓度C=0.05 mol/L,求硫酸(98%)加入量。 解:硫酸(98%)加入量(kg)=( V1CV/2)=1.3×0.05×8000/2=260 答:根据该系统酚酞碱度测定值,其硫酸(98%)加入量为260 kg。 说明: ⑴以酚酞碱度测定值作为加酸量的依据是较合理的。因此时酚酞由红色变无色,水的pH大约为8.3。当pH值﹤8.3时,水中只有HCO3-碱度存在,碳酸盐(如CaCO3)成垢趋势极微。 ⑵根据上述计算,现场实际加硫酸(98%)250 kg,pH值由8.65降至8.4,碱度由325 mg/L降至285 mg/L,硫酸实际加入量与计算量基本相符。但此硫酸加入量仅为系统首次加入量,未考虑飞溅、排污等损失的硫酸量。所以上述加酸量实际偏低,而排污等损失的酸量计算见本节第二例。 (2)循环冷却水系统的加酸量 循环冷却水加酸调pH值,是为提高浓缩倍数及阻垢的需要。根据酸碱中和原理,理论上加酸量等于碱度降低量。如果循环水加酸前后的碱度差△M,则: △M=M 前-M 后 M前为循环水调pH值前的碱度,M后为调pH值后的碱度,M前、M后可由现场实测或由“自然pH值与碱度计算”相关公式计算求得。如用98%硫酸调pH值,循环水单位用量为: A=49△M/(50×0.98×1000)=△M/1000 (6-2-2)

水的PH值

水的PH值 PH值得定义是水中氢离子浓度的负对数。通俗讲,PH值时表示水中酸碱性强弱的一项指标。 对于纯水,用精密仪器仍可测出它有微弱的导电能力,即可电离很小浓度的H+和OH-,在22℃时,测的纯水中氢离子浓度和氢氧根离子浓度都是10-7mol/L。水溶液中氢离子浓度和氢氧根离子浓度的乘积为一常数,叫做水的离子积,其值为10-14.水溶液中氢离子增加,氢氧根离子就减少,氢离子大于氢氧根离子时,叫酸性溶液。氢离子等于氢氧根离子时,叫中性溶液。当氢离子小于氢氧根离子时,叫碱性溶液。为了方便,常用PH值来表示溶液的酸碱度。 在纯水中,PH小于7时为酸性溶液,大于7为碱性溶液,等于7为中性溶液。由于不同温度下水的电离作用不一样,因而同一水样在不同温度下测得的PH值时不同的,所以规定25℃为测定温度值,通常用PH值测量仪都没有温度补偿装置。 锅炉水PH值偏高是什么原因 在汽包炉中,又是炉水的PH值显著上升到超过PO43-浓度所对应的PH理论值。测定的碱度中,酚酞碱度大于甲基橙碱度。很明显,炉水中存在着大量的游离NaOH。游离NaOH的来源之一是补给水,来源之二是凝结水,当炉水中游离NaOH过高时,应查明原因,使制水系统尽量减少漏钠。如凝汽器泄露,应及早堵漏。采取措施后,若PH值仍过高时,可向炉水中添加磷酸氢二钠来调节水的PH值。 PH值不符合标准,对锅炉的危害 炉水的PH值应不低于9.0,这是因为:(1)当PH值低时,金属表面的保护膜遭到破坏,水对金属的腐蚀加剧;(2)当炉水的PH值相当高是,磷酸根与钙离子才能生成容易排出的水渣;(3)PH值高,才能抑制炉水中硅酸盐的水解,使炉水中硅酸盐维持在最低水平,这样可减少蒸汽中硅酸盐溶解携带量。 3-浓度在规定范围时,如但锅炉水中的PH值也不能太高,因为当卤水中PO 4 炉水的PH值仍很高,这表明炉水中游离的NaOH较多,容易引起碱性腐蚀和应力腐蚀。这可能使炉水产生泡沫而影响蒸气品质。对于铆接和胀接锅炉。碱度过高还会引起苛性脆化。因此,需对炉水的碱度进行监督。 炉水磷酸盐含量不合格,是什么原因造成?如何处理? 如发现炉水磷酸盐浓度不合格,可能是以下原因引起的: (1)由于磷酸盐的加入量过大或不足引起的,有时也因加药设备管路的堵塞,或是加药设备不完善造成的。处理此类故障时,首先要检查好加药设备,疏通管道,调整好磷酸盐的加量。当磷酸根过高时,应注意对蒸气质量的监督,并加大锅炉排污量。(2)有时,由于给水硬度较高,消耗了部分磷酸盐而引起磷酸根不足,此时,首先要消除或降低给谁的硬度,以使磷酸盐的消耗不致过多,在增加药量以提高锅炉水的磷酸根浓度。(3)磷酸三钠纯度不够,含Na2CO3量过多,应加强药品纯度化验和监督。(4)注意观察该炉运行中是否存在磷酸盐暂时消失现象,如有在机组启动和停运时较为明显,磷酸盐的加入量应适当控制,否则,等机组运行正常后会使磷酸根含量升高。

外墙门窗淋水试验记录表格模板

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 外墙门窗淋水试验记录表格模板 试水(水池游泳池、污水池、沉砂池)淋水试验(幕墙、外墙门窗)蓄水试验(卫生间、厨房、阳台)闭水试验(管道排水管道、污水管道)外墙门窗淋水试验记录表单位(子单位)工程名称总承包施工单位分包项目施工单位门窗形式工程地点总包项目经理分包施工负责人淋水方式精心整理GD2301SZ060□□淋持水续部时位间施工员施工班组长施工单位自检结论项目专业质量员:年月日验收单位验收结论专业监理工程师: (建设单位项目专业技术负责人)年月日幕墙抗渗漏淋水试验记录 1/ 21

精心整理单位(子单位)工程名称总承包施工单位分包项目施工单位试验日期序号试验方法淋水部位GD2301SZ064□□工程地点总承包项目经理分包施工负责人水压检测部位检测结果施工单位自检结论施工员施工班组长项目专业质量员:年月日验收单位验收结论专业监理工程师: (建设单位项目专业技术负责人)年月日

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 精心整理工程名称签证单编号图号施工现场签证单工程部位签证原因GD2201SZ006□□签证内容经办人:项目经理:施工单位(单位公章)年月日监理单位意见:建设单位意见:年月日(单位公章)年月日(单位公章) 3/ 21

单片机测量方波的频率、占空比及相位差的方法

单片机测量方波的频率、占空比及相位差的方法 1、 频率及占空比的测量 如上图所示,当脉冲的上升沿来临时,将定时器打开;紧接着的下降沿来临时,读取定时器的值,假设定时时间为t1;下一个上升沿来临时关闭定时器,读取定时器的值,假设定时时间为t2。t1即为1个周期内高电平的时间,t2即为脉冲的周期。t1/t2即为占空比,1/t2即为频率。 C 语言程序如下: TH0=0; //定时器高位,初值设为0 TL0=0; //定时器低位,初值设为0 T0_num=0; //定时器溢出次数,初值设为0 while(pulse); //pulse 为脉冲的输入引脚 while(!pulse); //等待上升沿来临 TR0=1; //打开定时器 while(pusl1); //等待下降沿来临 th1=TH0;tl1=TL0;num1=T0_num; //保存定时器值 while(!pusl1); //等待上升沿来临 TR0=0; //关闭定时器 th2=TH0;tl2=TL0;num2=T0_num; //保存定时器值 上升沿打开定时器 下降沿读取定时器值并保存 下一个上升沿关 闭定时器,读取 定时器值并保存

2、相位差的测量 测量相位差的电路如上所示,待测量的两路脉冲分别作为两个D触发器的时钟输入,两个D触发器的输入端D及S端都接高电平,第一个D触发器的输出接第二个D触发器的R端,第二个D触发器的互补输出端接第一个D触发器的R端。从下面的波形图可以看出,第一个D触发器输出的脉冲信号的占空比乘以2π即为相位差。这样就将测量两路方波信号的相位差转化为测量一路方波信号的占空比,就可以按照前面介绍的测量占空比的方法来测量了。

水的电离及pH的计算

水的电离及pH的计算 1、常温下,某溶液中由水电离出的c(H+)和c(OH-)的乘积是1×10-20,该溶液的pH是______________。 2、常温下,等体积的①pH=0的H2SO4溶液、②0.05 mol·L-1的Ba(OH)2溶液发生电离的水的物质的量之比是__________。 3、已知NaHSO4在水中的电离方程式为:NaHSO4===Na++H++SO2-4。某温度下,向pH =6的蒸馏水中加入NaHSO4晶体,保持温度不变,测得溶液的pH为2,对于该溶液,水电离出来的c(H+)=_________mol·L-1,该温度下加入等体积pH=______的NaOH溶液可使反应后的溶液恰好呈中性。 4、常温时,纯水中由水电离的c(H+)=a,pH=1的盐酸中由水电离的c(H+)=b,0.2 mol·L-1的盐酸与0.1 mol·L-1的氢氧化钠溶液等体积混合后,由水电离的c(H+)=c,则a、b、c的关系是_________。 5、按要求回答下列各题: (1)在25 ℃时,某溶液中由水电离出的c(H+)=1×10-12mol·L-1,则该溶液的pH为________。 (2)已知在100 ℃的温度下,水的离子积K W=1×10-12,该温度下,将pH=10的苛性钠溶液a L与pH=1的稀硫酸b L混合(假设混合后溶液体积的微小变化忽略不计),试通过计算填写以下不同情况时两种溶液的体积比。 ①若所得混合液为中性,则a∶b=________; ②若所得混合液的pH=2,则a∶b=________。 6、现有常温下的六份溶液: ①0.01 mol/L CH3COOH溶液;②0.01 mol/L HCl溶液;③pH=12的氨水;④pH=12的NaOH溶液;⑤0.01 mol/L CH3COOH溶液与pH=12的氨水等体积混合后所得溶液;⑥ 0.01 mol/L HCl溶液与pH=12的NaOH溶液等体积混合所得溶液。 (1)其中水的电离程度最大的是________(选填序号,下同),水的电离程度相同的是________; (2)若将②、③混合后所得溶液pH=7,则消耗溶液的体积:②________③(选填“>”、“<”或“=”); 7、在不同温度下的水溶液中c(H+)=10x mol·L-1,c(OH-)=10y mol·L-1,x与y的关系如图 所示。请回答下列问题: (1)曲线Ⅰ代表的温度下,水的离子积为________,曲线Ⅰ 所代表的温度________(填“高于”、“低于”或“等于”) 曲线Ⅱ所代表的温度。你判断的依据是 _________________________________________。 (2)曲线Ⅰ所代表的温度下,0.01 mol·L-1的NaOH溶液的pH为________。

单片机测量占空比、方波的频率及其相位差方法论

单片机测量方波的频率、占空比及相位差的方法 1.2 脉冲频率测量 频率测量实际上就是在1s内对脉冲个数进行计数,计数值就是信号频率。令定时器T0工作在方式1,得到100ms的定时间隔,再进行软件计数10次,形成一个1s的测量闸门信号。在测量闸门信号期间令计数器T1工作在计数方式1,对脉冲信号的频率计数,计数值存入COUNT、COUNT+1和COUNT+2单元,计数值通过6位动态数码管显示出来。 1.3 扩展测量范围原理 上述系统被测脉冲宽度范围最大为65535us,扩展计数器的位数可提高脉冲宽度的测量范围。令定时器T1工作在方式1定时,GATE=1,用COUNT单元,COUNT+1单元即定时器T1的计数单元TH1和TL1组成一个32位的计数器对脉冲宽度进行测量。并且在定时器T1溢出时,给COUNT+2赋值#01H,并将THI和TH0置零,重新开始计数。以扩展系统测量范围使可以达到130ms的任务要求。同时在进行频率测量时,当计数器T1溢出时,给COUNT+2赋值#01H,并将THI和TH0置零,重新开始计数。以扩展系统测量范围使可以达到100KHZ的任务要求。 第2章测量系统的硬件设计 由于是在实验箱测试本系统,且实验箱上的芯片已经连接固定好了,不能调整,所以以LAP 2000模拟系统的逻辑波形作为输入信号。因此硬件只需选用8051芯片以及六位LED数码管。在单片机应用系统中,为了便于对LED显示器进行管理,需要建立一个显示缓冲区。显示缓冲区DISBUF是片内RAM的一个区域,占用片内RAM的70H至75H单元,它的作用是存放要显示的字符,其长度与LED的位数相同。显示程序的任务是把显示缓冲区中待显示的字符送往LED显示器显示。 1、频率及占空比的测量

水处理PH调节工操作规程

PH调节工操作规程 1、接班检查古灰贮存量和各池液位及碱水、酸水总沟格栅拦堵塞情况,每班至少清理一次,若堵塞情况严重可适当增加清理次数。 2、调节酸水、碱水以恒定的酸碱比输送到吹脱池,将水量控制在吹脱池的4/5,以便于进行曝气。 3、调节石灰水流量,控制老线中和池PH为5-8,一沉池为7-10,新线中和池为5-8,一沉池为7-10,当报警装置铃响时,看仪表显示值偏高或偏低,来决定关小或开大阀门,使PH值在允许范围内波动。 4、检查酸碱泵出水管压力和各泵运转情况,各泵每班至少清理一次,视情况增加清理次数。 5、将化好的石灰打入石灰贮桶约2/3处,开压缩空气进行搅拌,取石灰水样于100mL量筒中,静置半小时,沉降比为20%,则石灰浓度为5%左右,如沉降比高于20%,则往石灰贮桶中加水稀释,若沉降比低于20%,则往石灰贮桶中投加生石灰。直至沉降比为20%为止。 二00八年一月拟制:唐丽娟审核:徐金祥批准:吴玉芳

生化操作规程 1、吹脱池按工艺要求控制进水流量,并做好记录。 2、吹脱池曝气阀门控制气水比为10﹕1。 3、每小时用PH计检查中和池、一沉池和PH值,发现PH异常及时与PH调节工联系。 4、发现一沉池的PH超标,按应急方案处理。 5、根据进水的流量,按要求调节药剂的流量,如水量为0.06m/S,则药剂流量为1500转/秒。 6、每小时用PH计检测按触氧化池的DO值,并做好记录。 7、每小时检查加药池、二沉池、反应池的加药量,并检测二沉池的PH值和出水DO值,并做好记录。 8、每两小时检查罗茨风机的运转情况,油位控制在1/2-2/3,电流控制90KW风机小于164A,75KW风机小于139.7A,表压控制为0.06-0.07Mpa,并做好记录。 附:PH计、溶氧仪的使用方法。 (一)PH计: 1、打开保护盖,并将电极拉出(注:请轻轻拉出电极,以免拉断连线)。 2、用蒸馏水清洗电极并揩干。 3、将电极置于待测溶液中,稍搅动后静止放置至显示值稳定,即为该溶液的PH值。

外墙门窗淋水试验记录表(可编辑)

外墙门窗淋水试验记录表 试水(水池游泳池、污水池、沉砂池)淋水试验(幕墙、外墙门窗) 蓄水试验(卫生间、厨房、阳台) 闭水试验(管道排水管道、污水管道) 外墙门窗淋水试验记录表GD2301SZ060□□单位(子单位)工程名称工程地点总承包施工单位总包项目经理分包项目施工单位分包施工负责人门窗形式淋水方式淋 水 部 位持 续 时 间 施工单位自检结论施工员施工班组长验收 单位 验收 结论 专业监理工程师:

(建设单位项目专业技术负责人) 年月日 项目专业质量员: 年月日幕墙抗渗漏淋水试验记录GD2301SZ064□□单位(子单位)工程名称工程地点总承包施工单位总承包项目经理分包项目施工单位分包施工负责人试验日期水压序号试验方法淋水部位检测部位检测结果 施工单位自检结论施工员施工班组长验收 单位 验收 结论 专业监理工程师: (建设单位项目专业技术负责人) 年月日 项目专业质量员: 年月日

施工现场签证单 GD2201SZ006□□ 工程名称签证单编号工程部位图号签证原因签 证 内 容 经办人: 项目经理: 施工单位(单位公章) 年月日监理单位意见: 年月日 (单位公章)建设单位意见: 年月日 (单位公章) 沉井(箱)施工记录GD2301SZ008□□工程名称施工单位班次出土量m3 出勤人数工日含水量 % 气候温度oC 刃脚编号 1 2 3 4 刃脚标高 m 平均标高 m 下沉量 mm 平均值 mm 土的类别该土层开始标高 m 机械设备管路等情况 刃脚掏空情况井内各孔土面标高及锅底情况倾斜和水平位移的情况备注 施工单位自检结论施工员施工 班组长

验收 单位 验收 结论 专业监理工程师: (建设单位项目专业技术负责人) 年月日 项目专业质量员: 年月日 记录员签名:年月日地基钎探记录GD2301SZ021□□单位(子单位)工程名称工程地点施工总承包单位总承包项目经理桩基分包单位分包项目经理钎探方式直径钎探日期探 点 编 号锤击数合计0 ~.30 cm 30 ~ 60 cm 60~ 90 cm 90~120 cm 120~150 cm 150~180 cm 180 ~ 210 cm

循环水系统中PH值的调整

循环水系统中PH值的调整 PH值是循环水系统的主要运行指标之一,一般煤气站循环水的pH值是在6.5~7.5之间。所以基本上属于中性的,但在用加酸进行煤气站循环水处理时,其PH值就要明显下降,一般在处理水中加酸调整到PH值=3~4时,效果就明显的提高,此水返回系统,势必造成系统pH值下降。 当系统内PH值下降时,需要较长时间才能恢复,因为PH值的调整不是简单的代数加和的平均值,如1吨PH=7的水和1吨PH=5的水加和后,不会达到2吨PH=6的水,经试验,当PH下降至3时,需要用15倍PH=7的水加入,才能使混合液的PH值恢复到PH=6.1。 由此可见,在投酸时应严格根据水系统的PH值而定,当系统的PH值下降时,应适当减少投酸的水处理量,使系统维持到PH=6以上。 PH值是循環水系統的主要運行指標之一,一般煤氣站循環水的pH值是在6.5~7.5之間。所以基本上屬於中性的,但在用加酸進行煤氣站循環水處理時,其PH值就要明顯下降,一般在處理水中加酸調整到PH值=3~4時,效果就明顯的提高,此水返回系統,勢必造成系統pH值下降。 當系統內PH值下降時,需要較長時間才能恢復,因為PH值的調整不是簡單的代數加和的平均值,如1噸PH=7的水和1噸

PH=5的水加和後,不會達到2噸PH=6的水,經試驗,當PH下降至3時,需要用15倍PH=7的水加入,才能使混合液的PH值恢復到PH=6.1。 由此可見,在投酸時應嚴格根據水系統的PH值而定,當系統的PH值下降時,應適當減少投酸的水處理量,使系統維持到PH=6以上。 PH值是循环水系统的主要运行指标之一,一般煤气站循环水的pH值是在6.5~7.5之间。所以基本上属于中性的,但在用加酸进行煤气站循环水处理时,其PH值就要明显下降,一般在处理水中加酸调整到PH值=3~4时,效果就明显的提高,此水返回系统,势必造成系统pH值下降。 当系统内PH值下降时,需要较长时间才能恢复,因为PH值的调整不是简单的代数加和的平均值,如1吨PH=7的水和1吨PH=5的水加和后,不会达到2吨PH=6的水,经试验,当PH下降至3时,需要用15倍PH=7的水加入,才能使混合液的PH值恢复到PH=6.1。 由此可见,在投酸时应严格根据水系统的PH值而定,当系统的PH值下降时,应适当减少投酸的水处理量,使系统维持到PH=6以上。 PH值是循環水系統的主要運行指標之一,一般煤氣站循環水的

基于单片机的数字相位差测量仪

171  科技创新导报 Science and Technology Innovation Herald 学 术 论 坛 基于单片机的数字相位差测量仪 刘玉宾 刘许亮 (黄河水利职业技术学院 河南开封 475004) 摘 要:该系统采用单片机作为控制中心,应用了过零检测电路、锁相环倍频技术、计数电路、译码显示电路,实现了正弦信号相位差检测及相位差值显示,分辨率为1°,能满足低频信号相位差值测量要求。关键词:相位差 锁相环 过零检测 单片机中图分类号:TV21文献标识码:A文章编号:1674-098X(2007)11(c)-0171-02 在波形检测中,若采用示波器观察两路正弦波,则只能显示正弦信号相对位置,信号的相位差值不能量化显示。为了解决这个问题,本文介绍了一种通用性强、分辨率较高、能显示相位差值的测量系统。该系统采用了单片机作为控制中心,应用锁相环倍频电路、计数电路、译码显示电路,实现了正弦信号相位差检测及相位差值显示。 1 工作原理概述 该系统实现了对两路正弦信号的相位差检测,并显示相位差值,分辨率为1°。1.1 系统构成 选用89C52单片机作为各个工作模块的控制中心。采用过零比较电路将正弦信号转化为TTL电平信号,以实现和单片机接口。相位差值的测量,采用可预置数十进制计数器进行计数。计数器计数值的输出即为相位差值,通过译码电路译码显示。1.2 信号流程描述 基准信号reference_S1,频率f,经过过零比较,产生频率为f的TTL电平方波信号square_S1。square_S1经过360倍倍频,输出multiply_S1,频率为360f。将multiply_S1作为计数电路的计数脉冲,同时将square_S1连接到单片机的外部中断INT0;另一路正弦信号S2,经过零比较,输出的TTL电平方波信号square_S2接到单片机的外部中断INT1。当单片机外部中断INT0响应,即检测到square_S1的下降沿时,接通计数脉冲控制开关,multiply_S1送往计数器;外部中断INT1响应,即检测到square_S2的下降沿时,断开计数脉冲控制开关,将计数器值送往BCD译码器,驱动数码管显示两路正弦信号的相位差值。1.3 相位差值计算 Δp=(Δt/T)×360Δt=t1-t0=t3-t2T=1/f 其中:Δp为相位差值; f为信号reference_S1频率; Δt为两路信号的时间差。 2 硬件电路设计 硬件系统由控制电路、过零比较电路、倍频电路、计数电路、译码显示电路五部分构成。采用单片机89C52作为整个系统的控制中心,主要完成对square_S1、square_S2下降沿的检测,并对控制计数脉冲开关。过零比较电路则采用工作于+5V单电源方式,转换速率高,开环增益高的LM2901比较器实现。为了达到对输入信号相位值分辨率为1°的精度,采用74HC4046锁相环和CD4040组成360倍频电路,以满足系统要求。计数电路用可预置数的十进制计数器74LS190,可直接将计数值送往CD4511译码驱动显示。 硬件系统结构框如图2。2.1 时序逻辑控制电路 在系统中,单片机外部中断INT0、外部中断INT1检测square_S1、square_S2的下降沿,分别进入外部中断INT0和外部中断INT1服务程序。在INT0中断服务程序中,将计数脉冲控制开关打开,计数器开始计数,同时译码器的锁存端有效;当进入INT1中断服务程序时,计数脉冲控制开关关闭,停止计数,译码器译码,驱动数码管显示。2.2 过零比较部分 正弦信号过零比较采用LM2901芯片,该芯片能对微弱信号进行比较、放大、整形为TTL电平信号。LM2901工作于+5V单电源方式,转换速率高,开环增益高。LM2901构成的过零比较器电路如图3所示。2.3 倍频技术 倍频技术采用锁相环实现,74HC4046为锁相电路,将CD4040接成360进制的计数器,计数器的进位位通往74HC4046的3脚输入端,作为锁相环的反馈回路。 锁相的意义是相位同步的自动控制,能够完成两个电信号相位同步的自动控制闭环系统叫做锁相环,简称PLL。锁相环主要由相位比较器(PC)、压控振荡器(VCO)、低通滤波器三部分组成,如图4所示。 N进制的计数器的进位位作为锁相环的反馈回路,square_S1为74HC4046锁相电路 的另一输入端。square_S1和反馈回路信号的相位比较后自动调节,使得74HC4046的输出端的频率变化,直到74HC4046的两路输入端的输入信号的相位锁定为一恒定值。当基准信号频率输入改变时,74HC4046的相位比较器输出电压发生改变,控制内部的压控震荡器的震荡频率作相应的改变,经过N进制反馈回路后,通往锁相电路输入端,直到74HC4046的两路输入端的输入信号的相位锁定为一恒定值,实现输出信号频率为输入信号的N倍。 74HC4046构成的倍频电路如图5所示。 3 软件设计 3.1 软件结构及功能描述 系统软件共分3个功能模块。 (1)初始化程序模块:该模块对单片机的外部中断进行初始化设置以及译码器、计数器初始状态设置。 (2)外部中断INT0服务程序:该模块控制计数器清零操作、译码器锁存、接通计数脉冲控制开关。 (3)外部中断INT1服务程序:该模块控制计数脉冲开关断开、译码器数据送往显示电路显示。 3.2 软件流程图及源代码 单片机是整个系统的控制中心,通过检测前向通道的信号,对计数电路、译码显示电路进行逻辑控制。其软件设计控制流程如图6所示,部分程序段如下。 初始化程序模块: MAIN:CLR P1.0;断开计数脉冲开关SETB P1.1 ;*******************CLR P1.1 ;74LS190_PL送一负脉冲,置数为0 SETB P1.1 ;*******************CLR P1.2 SETB P1.2 ; CD4511_LE锁存有效CLR F0SETB ET0 MOV TMOD, #0 1 H

相关文档