文档库 最新最全的文档下载
当前位置:文档库 › 高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式 3.2 一般形式的柯西不等式

高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式 3.2 一般形式的柯西不等式

高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式 3.2 一般形式的柯西不等式
高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式 3.2 一般形式的柯西不等式

二 一般形式的柯西不等式

庖丁巧解牛

知识·巧学

一、二维形式的柯西不等式

定理1 (二维形式的柯西不等式)

已知a 1,a 2,b 1,b 2∈R ,则(a 1b 1+a 2b 2)2≤(a 12+a 22)2(b 12+b 22)2

,当且仅当a 1b 2-a 2b 1=0时取等号.由二维形式的柯西不等式推导出两个非常有用的不等式: 对于任何实数a 1,a 2,b 1,b 2,以下不等式成立:

2

2212221b b a a +?+≥|a 1b 1+a 2b 2|; 2

22

12

22

1b b a a +?+≥|a 1b 1|+|a 2b 2|.

联想发散

不等式中等号成立?a 1b 2-a 2b 1=0.这时我们称(a 1,a 2),(b 1,b 2)成比例,如果b 1≠0,b 2≠0,那么a 1b 2-a 2b 1=0?

2

2

11b a b a =

.若b 1·b 2=0,我们分情况说明:①b 1=b 2=0,则原不等式两边都是0,自然成立;②b 1=0,b 2≠0,原不等式化为(a 12

+a 22

)b 22

≥a 22

b 22

,也是自然成立的;③b 1≠0,b 2=0,原不等式和②的道理一样,自然成立.正是因为b 1·b 2=0时,不等式恒成立,因此我们研究柯西不等式时,总是假定b 1b 2≠0,等号成立的条件可以写成

2

2

11b a b a =

,这种写法在表示一般形式(n 维)的柯西不等式等号成立的条件时更是方便、简洁的.

定理2 (柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 学法一得

定理2 中等号成立的充分必要条件是向量α和β平行(如α,β为非零向量,则定理2中等号成立的充分必要条件为向量α与β的夹角为0或π,即α与β对应的坐标分量成比例),从而可以推知定理1中等号成立的充分必要条件为

2

2

11b a b a =(b i 为零时,a i 为零,i=1,2).

定理 3 (二维形式的三角不等式)设

x 1,x 2,y 1,y 2∈R ,那么

2212212

2222121)()(y y x x y x y x -+-≥+++.

二维形式的三角不等式的变式:用x 1-x 3代替x 1,用y 1-y 3代替y 1,用x 2-x 3代替x 2,用y 2-y 3代替y 2,代入定理3,得2

322

312

312

31)()()()(y y x x y y x x -+-+-+-

221221)()(y y x x -+-≥

二、一般形式的柯西不等式 定理 设a i ,b i ∈R (i=1,2, …,n),则(

∑∑∑===≤n

i i

n

i i

n

i i

i b

a b a 1

2

1

2

1

2

)

(.

当数组a 1,a 2,…,a n ,b 1,b 2,…,b n 不全为0时,等号成立当且仅当b i =λa i (1≤i≤n).

即(a 1b 1+a 2b 2+…+a n b n )2≤(a 12+a 22+…+a n 2)2(b 12+b 22+…+b n 2)2

(a i ,b i ∈R ,i=1,2,…,n )中等号成立的条件是

2

211b a b a =

=…=n n b a

. 记忆要诀

这个式子在竞赛中极为常用,只需简记为“积和方小于和方积”.等号成立的条件比较特殊,要牢记.此外应注意在这个式子里不要求各项均是正数,因此应用范围较广. 一般形式的柯西不等式有两个很好的变式:

变式 1 设a i ∈R ,bc>0(i=1,2, …,n),则∑∑∑≥=i

i n

i i i

b a b a 212

)(,等号成立当且仅当

b i =λa i (1≤i≤n).

变式2 设a i ,b i 同号且不为0(i=1,2,…,n ),则∑∑∑≥=i i i n

i i

i

b a a b a 212

)(,等号成立当且仅当b 1=b 2=…=b n .

深化升华

要求a i ,b i 均为正数.当然,这两个式子虽常用,但是记不记住并不太重要,只要将柯西不等式原始的式子记得很熟,这两个式子其实是一眼就能看出来的,这就要求我们对柯西不等式要做到活学活用.

柯西不等式经常用到的几个特例(下面出现的a 1, …,a n ;b 1, …,b n 都表示实数)是:

(1)a 12+a 22+…+a n 2=1,b 12+b 22+…+b n 2

=1,则|a 1b 1+a 2b 2+…+a n b n |≤1;

(2)a 1a 2+a 2a 3+a 3a 1≤a 12+a 22+a 32

;

(3)(a 1+a 2+…+a n )2≤n(a 12+a 22+…+a n 2

);

(4)(a+b)(

a 1+b

1)≥4=(1+1)2

,其中a 、b∈R +; (5)(a+b+c)(a 1+b 1+c

1)≥9=(1+1+1)2

,其中a 、b 、c∈R +.

柯西不等式是一个重要的不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位. 典题·热题

知识点一: 用柯西不等式证明不等式 例1 设a 1>a 2>…>a n >a n+1,求证:

1

1132211

111a a a a a a a a n n n -+-++-=-++ >0.

思路分析:这道题初看起来似乎无法使用柯西不等式,但改变其结构就可以使用了,我们不妨改为证: (a 1-a n+1)·[

1

32211

11+-++-+-n n a a a a a a ]>1.

证明:为了运用柯西不等式,我们将a 1-a n+1写成

a 1-a n+1=(a 1-a 2)+(a 2-a 3)+ …+(a n -a n+1),于是

[(a 1-a 2)+(a 2-a 3)+…+(a n -a n+1)]·(

1

3221111+-+

+-+-n n a a a a a a )≥n 2

>1. 即(a 1-a n+1)·(

1

32211

11+-+

+-+-n n a a a a a a )>1, ∴

11132211

111++->

-++-+-n n n a a a a a a a a , 故

1

1132211

111a a a a a a a a n n n -+

-++-+-++ >0. 方法归纳

我们进一步观察柯西不等式,可以发现其特点是:不等式左边是两个因式之和,其中每一个因式都是项平方和,右边是左边中对立的两两乘积之和的平方,证题时,只要能将原题凑成此种形式,就可以引用柯西不等式来证明. 知识点二: 用柯西不等式证明条件不等式 例2 (经典回放)设x 1,x 2, …,x n ∈R +,求证:

1

2

3221x x x x x x x x n

n +

+++ ≥x 1+x 2+…+x n . 思路分析:在不等式的左端嵌乘以因式(x 2+x 3+…+x n +x 1),也即嵌以因式(x 1+x 2+…+x n ),由柯西不等式即可得证.

证明:(1

2

3221x x x x x x x x n

n +

+++ )·(x 2+x 3+…+x n +x 1) =[(

2

1x x )2

+(

22x x )2+…+(n

n x x 1-)2

+(1x x n )2] [(2x )2

+(3x )2

+…+(n x )2

+(1x )2

≥(

2

1x x ·2x +

22

x x ·3x +…+n

n x x 1-·n x +1x x n ·1x ) =(x 1+x 2+…+x n )2

,

于是1

2

322

1x x x x x x x x n

n +

+++ ≥x 1+x 2+…+x n . 巧解提示

柯西不等式中有三个因式

∑∑∑===n

i i

i n

i i

n

i i

b

a b a 1

1

2

1

2

,,,而一般题目中只有一个或两个因式,

为了运用柯西不等式,我们需要设法嵌入一个因式(嵌入的因式之和往往是定值),这也是利用柯西不等式的技巧之一.

知识点三: 用柯西不等式求函数的极值

例3 已知实数a,b,c,d 满足a+b+c+d=3,a 2+2b 2+3c 2+6d 2

=5,试求a 的最值. 思路分析:本题求极值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以应用柯西不等式来解. 解:由柯西不等式得,有 (2b 2

+3c 2

+6d 2

)(

6

1

3121++)≥(b+c+d)2, 即2b 2

+3c 2

+6d 2

≥(b+c+d)2

.

由条件可得,5-a 2≥(3-a)2

. 解得,1≤a≤2,当且仅当

6

/163/132/12d

c b =

=时等号成立. 代入b=1,c=

31,d=61

时,a max =2; b=1,c=32,d=3

1

时,a min =1.

巧妙变式

为了给运用柯西不等式创造条件,经常引进一些待定的参数,其值的确定由题设或者由等号成立的充要条件共同确定,也有一些三角极值问题我们可以反复运用柯西不等式进行解决.而有些极值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.这多次反复运用柯西不等式的方法也是常用技巧之一. 如:已知a,b 为正常数,且0

π,求y=x b

x a cos sin +的最小值. 解:利用柯西不等式,得

)(3232323

2b a b a +=+(sin 2x+cos 2x)

≥(3a sinx+3b cosx)2

. 当且仅当

3

3

cos sin b

x

a

x

=

时等号成立.

于是

3323

2a b a ≥+sinx+3b cosx.

再由柯西不等式,得

323

2b a +(

x

b

x a cos sin +) ≥(3a sinx+3b cosx)(x

b x a cos sin +) ≥(x

b x

b x a x a cos cos sin sin 66

+)2=(a 32+b 32

)2

. 当且仅当

3

3

cos sin b

x

a

x

=

时等号成立.

从而y=x b x a cos sin +≥(a 32+b 32)32

. 于是y=x

b x a cos sin +的最小值是(a 32

+b 32

)32

. 问题·探究 思想方法探究

问题 试探究用柯西不等式导出重要公式.如n 个实数平方平均数不小于这n 个数的算术平均

数,即若a 1,a 2,…,a n ∈R ,则n

a a a n a a a n

n 2

2221

21+++≤+++ . 探究过程:由柯西不等式可知

(a 1+a 2+…+a n )2≤(a 1·1+a 2·1+…+a n ·1)2≤(a 12+a 22+…+a n 2)·(12+12+…+12)=(a 12+a 22

+…+a n 2

)·n,

所以

n

a a a n 2

21)(+++ ≤a 12+a 22

+

…+a n 2

,

n

a a a n a a a n

n 2

2

22

1

21+++≤+++ . 不等式n

a a a n a a a n

n 2

2

22

1

21+++≤+++ ,把中学教材中仅有关于两个正数的“算术平均”,“几何平均”问题拓广到了“二次幂平均”问题,即

n

n a a a 21≤n

a a a n a a a n

n 2

2

22

121

+++≤+++ ,这不仅拓宽了中学生的眼界,而且为解决许多不等式的问题开辟了一条新路.

探究结论:柯西不等式不仅在高等数学中是一个十分重要的不等式,而且它对初等数学也有很好的指导作用,利用它能方便地解决一些中学数学中的有关问题. 交流讨论探究

问题 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,试交流讨论使用柯西不等式的技巧,试举例归纳.

探究过程:人物甲:构造符合柯西不等式的形式及条件可以巧拆常数,如:设a 、b 、c 为正

数且各不相等.求证

c

b a a

c c b b a ++>+++++9

222.我们可以如此分析:∵a、b 、c 均为正,∴为证结论正确只需证2(a+b+c)[a

c c b b a +++++111]>9.而2(a+b+d)=(a+b)+(b+c)+(c+a),又9=(1+1+1)2

.

人物乙:构造符合柯西不等式的形式及条件可以重新安排某些项的次序,如:a 、b 为非负数,a+b=1,x 1,x 2∈R +,求证(ax 1+bx 2)(bx 1+ax 2)≥x 1x 2.我们可以如此分析:不等号左边为两个二项式积,a,b∈R -,x 1,x 2∈R +,直接用柯西不等式做得不到预想结论,当把第二个小括号的两项前后调换一下位置,就能证明结论了.

人物丙:构造符合柯西不等式的形式及条件可以改变结构,从而能够使用柯西不等式,如:若a>b>c ,求证

c b b a -+-11≥c

a -4

.我们可以如此分析:初式并不能使用柯西不等式,改造结构后便可使用柯西不等式了.∵a -c=(a-b)+(b-c),a>c,∴a -c>0,∴结论改为(a-c)(

c

b b a -+-1

1)≥4. 人物丁:构造符合柯西不等式的形式及条件可以添项,如:若a,b,c∈R +,求证

b a

c a c b c b a +++++≥23

.我们可以如此分析:左端变形c b a ++1+a c b ++1+b a c ++1=(a+b+c)(b a a c c b +++++111),∴只需证此式≥2

9

即可.

探究结论:使用柯西不等式的技巧主要就是使用一些方法(巧拆常数、重新安排某些项的次序、添项等)构造符合柯西不等式的形式及条件.

柯西不等式的应用(整理篇)

柯西不等式的证明及相关应用 摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy )不等式: ()2 2211n n b a b a b a +++Λ()()2 222122221n n b b b a a a ++++++≤ΛΛ()n i R b a i i Λ2,1,,=∈ 等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=) 现将它的证明介绍如下: 方法1 证明:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++=Λ =()()() 2 222122112222212n n n n b b b x b a b a b a x a a a +++++++++++ΛΛΛ 由构造知 ()0≥x f 恒成立 又22120n n a a a +++≥Q L ()()() 0442 2221222212 2211≤++++++-+++=?∴n n n n b b b a a a b a b a b a ΛΛΛ 即()()() 22221222212 2211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当且仅当()n i b x a i i Λ2,10==+ 即12 12n n a a a b b b ===L 时等号成立 方法2 证明:数学归纳法 (1) 当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式 当2=n 时 右式 ( )()()()2 2 22 22222212 1211222112a a b b a b a b a b a b =++=+++ ()()()2 22 1122121212222a b a b a a b b a b a b ≥++=+=左式 故1,2n =时 不等式成立 (2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()() 22 221222212 2211k k k k b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当 i i ma b =,m 为常数,k i Λ2,1= 或120k a a a ====L 时等号成立 设A=22221k a a a +++Λ B=2 2221k b b b +++Λ 1122k k C a b a b a b =+++L 2 C AB ≥∴

高中数学教学论文 柯西不等式的证明与应用

柯西不等式的证明及其应用 摘要:柯西不等式是一个非常重要的不等式,本文用六种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 Summar y: Cauchy's inequality is a very important inequality, this article use six different methods to prove the Cauchy inequality, and gives some Cauchy inequality in inequality, solving the most value, solving equations, trigonometry and geometry problems in the areas of application, the last used it proved that point to the straight line distance formula, better explains the Cauchy inequality. Keywords :Cauchy inequality, proof application 不等式是数学的重要组成部分,它遍及数学的每一个分支。本文主要介绍著名不等式——柯西不等式的证明方法及其在初等数学解体中 的应用。柯西不等式是一个非常重要的不等式,本文用几种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用。

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

人教版数学高二作业第三讲二、一般形式的柯西不等式

一、基础达标 1.已知a 21+a 22+…+a 2n =1,x 21+x 22+…+x 2 n =1,则a 1x 1+a 2x 2+…+a n x n 的最大 值是( ) A.1 B.2 C.3 D.4 解析 (a 1x 1+a 2x 2+…+a n x n )2≤(a 21+a 22+…+a 2n )·(x 21+x 22+…+x 2n )=1×1=1. 当且仅当a i =x i =n n (i =1,2,…,n )时,等号成立. 故a 1x 1+a 2x 2+…+a n x n 的最大值是1. 答案 A 2.n 个正数的和与这n 个正数的倒数的和的乘积的最小值是( ) A.1 B.n C.n 2 D.1n 解析 设n 个正数是x 1,x 2,…,x n , 由柯西不等式,得 (x 1+x 2+…+x n )? ????1x 1+1 x 2+…+1x n ≥? ? ???x 1·1x 1+x 2·1x 2+…+x n ·1x n 2 =(1+1+…+1)2=n 2. 当且仅当x 1=x 2=…=x n 时,等号成立. 答案 C 3.若则a 21+a 22+…+a 2 n =5,则a 1a 2+a 2a 3+…+a n -1a n +a n a 1的最小值为( ) A.-25 B.-5 C.5 D.25 解析 由柯西不等式,得(a 21+a 22+…+a 2n )(a 22+a 23+…+a 2n +a 21)≥(a 1a 2+a 2a 3 +…+a n -1a n +a n a 1)2, ∴|a 1a 2+a 2a 3+…+a n -1a n +a n a 1|≤5. ∴-5≤a 1a 2+a 2a 3+…+a n -1a n +a n a 1≤5,

不等式知识点详解

考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │ §06. 不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +≤(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.

高中数学:柯西不等式的几种用法

高中数学:柯西不等式的几种用法 1、熟记模型,直接应用 ()+21212 11,2111i n n a R i n a a a n a a a ∈=?? ++++++≥ ???例 ,求证 2、灵活变通,巧妙应用 22x y R x y x y ∈≤+≤例2、已知 ,,且3+26, 求证: 12 22223,3,,,2365,2. a b c d a b c d R a b c d a + ++=?∈ ?+++=?≤≤例、,且满足:求证:1 35,2 x ≤≤<例4、设求证: 3、以n 为目标,在“1”上下功夫 22212 12 n n i a a a a a a a R n ++++++∈≤例5、 +441,,18 a b R a b a b ∈+=≥例6、若 求证:+ ()12122 22221212,1111.n n n n a a a a a a n a a a a a a n ++++??????++++++≥ ? ? ???????例7、已知 ,,都是正数,且=1, 求证: 4、以分式的各项分母为目标,配对约分为桥梁。 ()22212a b c a b c R a b c a b c b a c + ∈++≥+++++例8、若、、,证明: ()()()333 111132 a b c abc a b c b a c c a b =≥+++例9设、、为正实数,且满足, 证明:++(IMO32届赛题) 5、 去伪存真,再寻对策

11111223421231 n n n n n n ∈≥->-+例10、 设N 且 2 求证:1-+-++ 6、综合中寻机应用,技高一筹 ,,,0,1, 131313131 a b c d abcd a b c d b c d a >≥+++≥++++例11、已知求证: (){}()() 1212222111,, ,2,,,1,1,1.2015n n n n n i i i i i i i a a a n a a n a εεεε===≥∈-??????+≤+ ? ? ??????? ∑∑∑例12、已知是实数,证明:可以选取使得:年全国联赛二试

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

2019-2020年高中数学第三讲柯西不等式与排序不等式3.3排序不等式达标训练新人教A版选修

2019-2020年高中数学第三讲柯西不等式与排序不等式3.3排序不等式达 标训练新人教A 版选修 基础·巩固 1.如下图所示,矩形OPAQ 中,a 1≤a 2,b 1≤b 2,则阴影部分的矩形的面积之和_________空白部分的矩形的面积之和. 思路分析:这可沿图中线段MN 向上翻折比较即知.当然由图我们可知,阴影面积=a 1b 1+a 2b 2,而空白面积=a 1b 2+a 2b 1.根据顺序和≥反序和可知答案. 答案:≥ 2.设a 、b 、c 为某一三角形三边长,求证: a 2(b+c-a)+ b 2(c+a-b)+ c 2(a+b-c)≤3abc. 思路分析:运用排序原理,关键是弄出有序数组,通常从函数的单调性质去寻找,如f(x)=x 2在R +单调递增,f(x)=在R +单调递减. 证明:不妨设a≥b≥c,易证a(b+c-a)≤b(c+a -b)≤c(a+b -c). 由排序原理得a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c) ≤a·b(c+a -b)+b·c(a+b -c)+c·a(b+c -a)=3abc. 3.对a,b,c∈R +,比较a 3+b 3+c 3与a 2b+b 2c+c 2a 的大小. 思路分析:将式子理解为积的形式a 2·a+b 2·b+c 2·c,a 2b+b 2c+c 2a,再依大小关系可求解. 解:取两组数a,b,c ;a 2,b 2,c 2. 不论a,b,c 的大小顺序如何,a 3+b 3+c 3都是顺序和,a 2b+b 2c+c 2a 都是乱序和; 故由排序原理可得a 3+b 3+c 3≥a 2b+b 2c+c 2a. 4.求证:正实数a 1,a 2,…,a n 的任一排列为a 1′,a 2′,…,a n ′,则有≥n. 思路分析:本题考查如何将和的形式构造为积的形式,本题关键是将n 理解为n 个1相加,而把1理解为x·的形式.这种方法有普遍的应用,应该加以重视. 证明:取两组数a 1,a 2,…,a n ;,,…,. 其反序和为=n ,原不等式的左边为乱序和,有≥n. 5.已知a,b,c∈R +,求证:≥a 10+b 10+c 10. 思路分析:可以发现左右两边的次数相等,因此,应该进行适当的拼凑,使其成为积的形式. 证明:不妨设a≥b≥c>0,则>0且a 12≥b 12≥c 12>0, 则ab c bc b ab a ab c ca b bc a 12 1212121212++≥++ c c b b a a a c c b b a 11 1111111111++≥++==a 10+b 10+c 10. 6.设a 1,a 2, …,a n 是1,2, …,n 的一个排列,求证: n n a a a a a a n n 1322113221-++≤-+++ .

一般形式的柯西不等式 教案

澜沧拉祜族自治县第一中学教案 【一般形式的柯西不等式】 学科:数学 年级:高三 班级:202、203 主备教师:沈良宏 参与教师:郭晓芳、龙新荣 审定教师:刘德清 一、教材分析:柯西不等式是人教A 版选修 4-5不等式选讲中的内容,是学生继均值不等式后学习的又一个经典不等式,它在教材中起着承前启后的作用。一方面可以巩固不等式的基本证明方法,和函数最值的求法,另一方面为后面学习三角不等式与排序不等式奠定基础。本节课的核心内容是柯西不等式一般形式的推导及其简单应用。 二、教学目标: 1、知识与技能:.认识柯西不等式的几种不同形式,理解其几何意义; 2、过程与方法:通过柯西不等式与其它基本不等式的关系,感悟柯西不等式的美; 3、情感、态度与价值观:在运用柯西不等式分析、解决问题的过程中,体会柯西不等式的应用方法. 三、教学重点:柯西不等式的一般形式、变形以及它与一些基本不等式的关系,柯西不等式的使用方法. 四、教学难点:在具体问题中怎样使用柯西不等式. 五、教学准备 1、课时安排:1课时 2、学情分析:学生不仅已经掌握了不等式证明的基本方法,还具备了一定的观察、分析、逻辑推理的能力。通过对两种方法的证明,让学生体会对柯西不等式的向量形式和代数法证明的不同之处. 3、教具选择:多媒体 实物展台 六、教学方法:启发引导、讲练结合法 七、教学过程 1、自主导学:一、创设问题情境,检查课后学习情况: 问题1:你知道二维形式的柯西不等式吗?有几种形式? 定理1:(二维柯西不等式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++, 等号当且仅当bc ad =时成立. 定理2:(向量形式)设α ,β 为平面上的两个向量,则αβαβ? ≥,其中等号当且仅 当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 问题2:你会用柯西不等式证明下面的两个不等式吗? (1)222a b ab +≥ (2)2221()2 a b a b ++≥ 解析: (1)2222222222))()(2),)(2)a b a b ab ab ab a b ab +++=+∵((≥∴(≥

二维形式的柯西不等式知识点梳理

课题:二维形式的柯西不等式 备课教师:沈良宏参与教师:郭晓芳、龙新荣审定教师:刘德清 1、教学重点:二维形式柯西不等式的证明思路,二维形式柯西不等式的应用. 2、教学难点:二维形式柯西不等式的应用. 3、学生必须掌握的内容: 1.二维形式的柯西不等式 若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立. 2.柯西不等式的向量形式 设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立. 3.二维形式的三角不等式 设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2. 注意: 1.二维柯西不等式的三种形式及其关系 定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式. 根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示. 2.理解并记忆三种形式取“=”的条件 (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当存在实数k,α=kβ或β=0时取等号. (3)三角形式中当P1,P2,O三点共线且P1,P2在原点O两旁时取等号. 3.掌握二维柯西不等式的常用变式 (1) a2+b2·c2+d2≥|ac+bd|. (2) a2+b2·c2+d2≥|ac|+|bd|. (3) a2+b2·c2+d2≥ac+bd. (4)(a+b)(c+d)≥(ac+bd)2. 4.基本不等式与二维柯西不等式的对比 (1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式. (2)基本不等式具有放缩功能,利用它可以比较大小,证明不等式,当和(或积)为定值时,可求积(或和)的最值,同样二维形式的柯西不等式也有这些功能,利用二维形式的柯西不等式求某些特殊函数的最值非常有效. 4、容易出现的问题: 在二维形式的柯西不等式相关要点中,对式子(a2+b2)(c2+d2)≥(ac+bd)2取等号的条件容易忽略,由于式子过长容易弄错各个数据之间的对应关系,使用公式时容易混淆公式中数据之间的关系,数据位置易出错。 5、解决方法:

高中数学基本不等式专题复习

第11课:基本不等式与双√函数 一、双√函数 形如.0,0,>>+=q p x q px y 图像如右图所示: (1)0>x 时,当p q x =时取到pq y 2min =; (2)值域: (3)当0,0<-+=x x x y 正确解法: 两者联系: (1)基本不等式去等号时的值即为双勾函数的拐点,

(2)凡是利用“积定和最小”求最值的函数均可换元为双勾函数! 三、利用基本不等式求最值 类型一:形如()()0,1≠++ +=c a d cx b ax y 采取配积为定! 1、求??? ??>-+ =455434x x x y 的最小值 2、求??? ??<-+=455433x x x y 的最大值 3、求()π,0,sin 2sin ∈+ =x x x y 的最小值的值域 4、求()的最小值01 1>-+=x e e y x x 的最小值 类型二:形如()0,2≠+++=c a d cx c bx ax y 采取配凑——分离术! 1、求0,92>++=x x x x y 的最小值 2、求0,192>+++=x x x x y 的最小值 3、求?? ????-∈+++=1,31,12122x x x x y 的值域 4、求4,1822-<+++=x x x x y 的最值

一般形式的柯西不等式全面版

课 题:§3.2一般形式的柯西不等式 教学目标:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并 应用其解决一些不等式的问题.. 教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想. 教学过程: 一、复习引入: 1. 提问:二维形式的柯西不等式、三角不等式? 几何意义? 答案:22222()()()a b c d ac bd ++≥+2. 思考:如何将二维形式的柯西不等式拓广到三维?四维呢? 答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++。。。。。。 二、讲授新课: 1. 一般形式的柯西不等式: ① 提问:由平面向量的柯西不等式||||||αβαβ?≤ ,如何得到空间向量的三维形式的柯西不等式及代数形式? ② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈ ,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 讨论:什么时候取等号? 联想:设1122n n B a b a b a b =+++,222 12n A a a a =++ ,22212n C b b b =+++ ,则有 20B AC -≥,可联想到一些什么? ③ 讨论:如何构造二次函数证明n 维形式的柯西不等式?(注意分类) 要点:令2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+()(222 12()n b b b +++???+ ,则 22 21122 ()()())0n n f x a x b a x b a x b =++++???+≥+(. 又222120n a a a ++???+>,从而结合二次函数的图像可知, []2 2221122122()4()n n n a b a b a b a a a ?=+++-++? 22212()n b b b +++ ≤0 即有要证明的结论成立. ④分析什么时候等号成立? 二次函数f x ()有唯一零点时,判别式0?=,这时不等式取等号; 00i i a x b ?=?+=0i b ?=或i i a kb =(1,2,,i n = ) 定理4:(一般形式的柯西不等式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任意实数,则: 21 1 2 1 2)(∑∑∑===≥n i i i n i i n i i b a b a ,当且仅当0=i b (=i 1,2,…,n )或存在 一个数k ,使得i i a kb =(1,2,,i n = )时等号成立。 ⑤探究:一般形式的三角不等式是怎样的?(可以让学生课后去探究) 利用一般形式的柯西不等式,容易推导出一般形式的三角不等式: (,,1,2,,)i i x y R i n ∈= 具体证法为:展开2 ,然后由柯西不等式推出展开式中的,进而完成全部证明。教学中可由学生探究具体证明过程,以加强其对一般形式柯西不等式与一般形式三角不等式之间联系的认识。 ⑤ 变式:222212121()n n a a a a a a n ++≥++???+ . (讨论如何证明) 2. 柯西不等式的应用:

不等式选讲知识点归纳及近年高考真题

不等式选讲知识点归纳及近年高考真题 考点一:含绝对值不等式的解法 例1.(2011年高考辽宁卷理科24)已知函数f (x )=|x-2|-|x-5|. (I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x+15的解集. 解:(I )3, 2,()|2||5|27,25,3, 5.x f x x x x x x -≤?? =---=-<+-=a x a x x f (1)当1=a 时,求不等式23)(+≥x x f 的解集;(2)如果不等式0)(≤x f 的解集为{} 1-≤x x ,求a 的值。

(完整word版)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知 a 、 b 、 c 、d 为实数,求证 (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ① 提出定理 1:若 a 、 b 、 c 、 d 为实数,则 (a 2 b 2 )( c 2 d 2 ) (ac bd )2 . 证法一:(比较法) (a 2 b 2 )(c 2 d 2 ) ( ac bd ) 2 = .= ( ad bc) 2 0 证法二:(综合法) (a 2 b 2 )( c 2 d 2 ) a 2c 2 a 2 d 2 b 2c 2 b 2d 2 ( ac bd ) 2 ( ad bc) 2 ( ac bd) 2 . (要点:展开→配方) ur (a,b) , r ur a 2 b 2 r c 2 d 2 . 证法三:(向量法)设向量 m n (c,d ) ,则 | m | , | n | ur r ur r ur r ur r ur r ur r ∴.. ∵ m ? n ac bd ,且 mgn | m |g| n |gcos m,n ,则 | mgn | | m |g| n | . 证法四:(函数法)设 f ( x) ( a 2 b 2 ) x 2 2( ac bd ) x c 2 d 2 ,则 f ( x) ( ax c)2 (bx d )2 ≥ 0 恒成立 . ∴ [ 2(ac bd)] 2 4(a 2 b 2 )( c 2 d 2 ) ≤ 0,即 .. ③二维形式的柯西不等式的一些变式: a 2 b 2 g c 2 d 2 | ac bd | 或 a 2 b 2 g c 2 d 2 | ac | | bd | 或 a 2 b 2 g c 2 d 2 ac bd . 2:设 ur ur ur ur | | ur ur ④ 提出定理 , 是两个向量,则 | g || | . 即柯西不等式的向量形式(由向量法提出 ) ur ur ur , → 讨论:上面时候等号成立?( 是零向量,或者 共线) ⑤ 练习:已知 a 、 b 、 c 、d 为实数,求证 a 2 b 2 c 2 d 2 (a c)2 (b d) 2 . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理 3:设 x , y , x , y R ,则 2 2 2 2 2 2 . 1 12 2 x 1 y 1 x 2 y 2 ( x 1 x 2 ) ( y 1 y 2 ) 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若 x 1 , y 1 , x 2 , y 2 , x 3 , y 3 R ,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结: 二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程 : (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ; x 12 y 1 2 x 2 2 y 2 2 ( x 1 x 2 ) 2 ( y 1 y 2 )2 3. 如何利用二维柯西不等式求函数 y x 1 2 x 的最大值 ? 要点:利用变式 | ac bd | a 2 b 2 g c 2 d 2 . 二、讲授新课: 1. 教学最大(小)值: ① 出示例 1:求函数 y 3 x 1 10 2x 的最大值? 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式: y 3x 1 10 2x → 推广: y a bx c d e fx,( a,b,c,d ,e, f R ) ② 练习:已知 3x 2 y 1,求 x 2 y 2 的最小值 . 解答要点:(凑配法) x 2 y 2 1 ( x 2 y 2 )(3 2 22 ) 1 (3 x 2 y) 2 1 . 13 13 13 2. 教学不等式的证明: ① 出示例 2:若 x, y R , x y 2 ,求证: 1 1 2 . x y 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点: 1 1 1 ( x y)( 1 1 ) 1 [( x )2 ( y )2 ][( 1 ) 2 (1)2 ] x y 2 x y 2 x y

高中数学知识点精讲精析 排序不等式

2 排序不等式 先来看一个问题: 设有10个人各拿一只水桶去接水,若水龙头注满第i 个人的水桶需要i a 分钟,且这些i a 各不相同。那么,只有一个水龙头时,应如何安排10个人接水的顺序,才能使它们等待的总时间最少?这个最少的总时间等于多少? 解决这一问题,就需要用到排序不等式的有关内容。在没有找到合理的解决办法之前,同学们可以猜测一下,怎样安排才是最优的接水顺序? 为了解决这一问题,先来了解排序不等式。 一般地,设有两组正数n a a a ,,,21 与n b b b ,,,21 ,且n a a a ≤≤≤ 21,n b b b ≤≤≤ 21. 若将两组中的数一对一相乘后再相加, 则其和同序时最大,倒序时最小.即 (倒序)(乱序)(同序)1 12121221121b a b a b a b a b a b a b a b a b a n n n i n i i n n n +++≥+++≥+++- 其中n i i i ,,,21 是n ,,2,1 的任一个排列,等号当且仅当n a a a === 21或 n b b b === 21时成立。 下面采用逐步调整法证明排序不等式。 证明:考察任意和式n i n i i b a b a b a s +++= 2121。 若1i b 是1b ,则转而考察2i b ; 若1i b 不是1b ,而某一k i b 是1b 。将1i b 与k i b 调整位置,得 n k i n i k i i b a b a b a b a s +++++=' 1221 则 0))(()()(111111≥--=-+-=-'i k i i k i i b b a a b b a b b a s s k k 这就是说,当把第一项调整为11b a 后,和不会减少。同样,可将第二项调整为22b a ,…,

柯西不等式(原始版)题型分类

柯西不等式(原始版)的习题分类 柯西不等式已经成为高考当中的新贵,去年全国卷II 的选修4-5不等式选讲,已经出现了柯西不等式命题,因此对柯西不等式几种典型习题加以分类,有助于知识的掌握。 一、柯西不等式(原始版) 1、()()()22211222 1222 1b a b a b b a a +≥++,当且仅当向量()21,a a a = ,()21,b b b = 同向时候成立,如果0,21≠b b 时,那么当且仅当2 211b a b a =时成立。 2、()() ()2 332211232221232221b a b a b a b b b a a a ++≥++++,当且仅当321321::::b b b a a a =时等号成立。 3、2 11212 ??? ??≥?∑∑∑===n k k k n k k n k k b a b a ,当且仅当n n b b b b a a a a :...::::...:::321321=时等号成立。 由以上柯西不等式(原始版)来看,柯西不等式是齐次,不等式左右两边的式子的次数相等,因此做题的时候可以抓住这个关键进行应用。 二、常见题型 1、()常数次次≥-?11。 例1、已知1=+b a ,且0,>b a ,求b a 11+的最小值。 解析:这道题的方法非常多,利用二元的均值定理可以求解,但是应用柯西不等式更加方便。考虑最后求解的形式一定是k b a ≥+11,k 为某个常数,那么不等式左边1-次,右边为0次,并不相等,所以左边要乘以 b a +,这样左边变成了()??? ? ?++b a b a 11,次数就成为了0,就可以应用柯西不等式。 ()41111112=??? ? ???+?≥+??? ??+=+b b a a b a b a b a ,当且仅当21==b a 时等号成立,所以b a 11+的最小值为4。 显然以上对例1的求解,柯西不等式比均值定理更为简单,有些优势,而且柯西不等式的应用范围更加广泛。 例2、若0,,>c b a ,求证()9111≥++??? ? ?++c b a c b a 。 解析:可以直接应用柯西不等式 ()91111112=??? ? ???+?+?≥++??? ??++c c b b a a c b a c b a ,当且仅当1===c b a 时等号成立。 练习: 1、已知0,,>c b a ,证明: c b a c b a ++≥++9111。 2、已知0,,>c b a ,证明:() c b a a c c b b a ++≥+++++29111。 提示:()()()()a c c b b a c b a +++++=++2。

相关文档
相关文档 最新文档