文档库 最新最全的文档下载
当前位置:文档库 › 耐盐性丙烯酸系吸水树脂的研究进展_张恩瑞

耐盐性丙烯酸系吸水树脂的研究进展_张恩瑞

耐盐性丙烯酸系吸水树脂的研究进展_张恩瑞
耐盐性丙烯酸系吸水树脂的研究进展_张恩瑞

果树耐盐性研究进展

果树耐盐性研究进展 摘要:果树在长期的进化过程中,形成了丰富的遗传多样性,存在大量特异的 资源,蕴藏着珍贵的特有基因。加强对这些资源遗传多样性研究,挖掘有价值基因,阐明果树耐盐蛋白的功能及调控机制在科学研究上具有重要的意义。植物耐 盐性是一个受多基因控制的数量性状,克隆耐盐相关基因,通过遗传工程手段提 高果树的抗盐性,培育耐盐碱果树品种还有待进一步的努力。 关键词:果树;耐盐性;研究;进展 1 果树耐盐机制 1.1 渗透调节 盐胁迫下,果树的渗透调节主要通过积累无机离子和小分子有机物质实现的,特别是轻度和中度盐胁迫条件下主要由渗透调节作出响应,从而降低根际区土壤 水势。对积累无机离子获得渗透调节的果树来讲,排盐越有效,其主动渗透调节 的能力越差。参与果树渗透调节的无机离子主要有Na+、K+和Cl-,但这几种离子 在不同的果树中是不同的。有些果树选择K+而排除Na+,有些果树选择Na+而排 除K+。虽然盐胁迫可引起Cl-含量的增加,但有人认为Cl-是作为平衡Na+或K+电 荷的物质被动进入细胞内,对植物的渗透调节作用不大。果树体内积累更多的无 机离子将影响果实的品质,有机物质的积累显得更为重要。在果树中发现有多种 相溶性有机物质,如含N化合物(脯氨酸、甜菜碱、氨基酸、多胺)和糖类及其 衍生化合物等。这些相溶性物质可以维持细胞膨压,而且能稳定细胞中酶分子的 活性构象,保护酶免受盐离子的直接伤害,以及能量和N的利用库。 1.2 离子的选择 吸收盐土植物和淡土植物根系细胞质都不能忍受高浓度的盐,因此在盐条件 下这些植物或者是限制过多的盐进入(即拒盐),或者是把Na+离子分配到各个 不同组织中从而便利代谢功能(即分配原理)。限制过多的Na+进入到根系细胞 或者木质部的一种途径是维持一个最佳的细胞质K+/Na+比值。一般地,在轻度或 中度盐害条件下,拒盐是十分有效的,但是高盐条件下盐土植物通过分配原理抵 抗盐胁迫。拒盐是相对的,无论是耐盐还是盐敏感的果树,细胞内都含有一定浓 度的Na+。与植物拒盐性非常相关的是果树对离子的选择吸收。由Na+引起的K+ 吸收减少是众所周知的竞争过程。较高的K+/Na+选择性与柑橘的耐盐性有关。除 了离子的选择还可对离子比进行选择运输。盐胁迫下耐盐的油橄榄品种具有较高 的K+/Na+比,梢K+/Na+高于根K+/Na+。 1.3 离子区域化 盐胁迫下,果树吸收Na+、Cl-等离子必须累积于液泡中,否则会干扰细胞质 及叶绿体等细胞器中的生理生化代谢。盐分积累于液泡中是维持细胞质中高 K+/Na+的最有效机理之一。一个盐敏感的大麦品种细胞质中Na+离子水平是耐盐 品种的10倍。中度盐胁迫条件下,一些植物似乎对主要的离子(如K+、Ca2+、Mg2+和NO-3)产生选择性,将其分配到幼叶;在重度盐胁迫条件下,对NO-3没有吸收。盐离子区域化依赖离子的跨膜运输。 2 果树对盐胁迫的生理应答 2.1 细胞膜透性 膜系统是植物盐害的主要部位,细胞膜是感受逆境胁迫最敏感的部位之一。 葡萄、枣和苹果叶片的细胞膜透性均随NaCl胁迫浓度的升高而增大。发现水杨酸可以降低NaCl胁迫下阿月浑子叶片的电解质渗漏率,降低相对含水量以减轻盐害。

高吸水性树脂的制备

高吸水性树脂的制备 :伟然学号:0908010121 摘要:本文介绍了高吸水性树脂的分类、性能及在各面的应用。对高吸水性树脂的合成法进行了综述。 关键词:高吸水性合成树脂;合成法 Abstract: This paper introduces the way to classify super absorbent polymers and the application and properties of super absorbent polymers. Summarizing means about synthetizing super absorbent polymers. Key words: super absorbent polymers; means about synthetizing 1 高吸水性树脂的简介 高吸水性树脂也称超强吸水性聚合物(Super absorbent polymers),简写为SAP。它是一种含有羧基、羟基等强亲水性基团,并具有一定交联度的水溶胀型的高分子聚合物,不溶于水也不溶于有机溶剂,能够吸收自身重量的几百倍甚至上千倍的水,且吸水膨胀后生成的凝胶具有良好的保水性和耐候性,一旦吸水膨胀成水凝胶,即使加压也难以将水分离出来。 1.1 SAP的分类 按原料来源可分为淀粉类、纤维素类、合成树脂类和其它天然高分子类。按亲水化法可分为四大系列,分别是亲水性单体的聚合物,疏水性聚合物的羧甲基化反应物,疏水性聚合物接枝聚合亲水性单体共聚物,含腈基、酯基、酰胺基的高分子水解反应物。按交联法分类为用交联剂进行网状化反应、自交联网状化反应、放射线照射网状化反应和水溶性聚合物导入疏水基或结晶结构等四种。按亲水基团的种类可分为含有羧酸、磺酸、磷酸类的阴离子系,叔胺、季铵类的阳离

耐盐性高吸水性树脂的研究进展

2003 -62? 现代化工 ModemCheII.icalIndustw 第23卷增刊 2003年 利盐牲高吸水牲榭脂硇研夯进展 曹丽琴徐世美封顺王吉德 (新疆大学化学与化I学院,新疆鸟鲁木齐830046) 摘要:评莲了改善高吸水性树脂耐盐性所采用的多种方法,包括耐盐非离子型亲水基和耐盐交联荆以及耐盐离子基团的引入.高吸术性树脂与无机水凝眭、离子变欹树脂的共混等。指出今后应改进台成方法与工艺,蜘采用固相合成、模板合成方法及盘式合成工艺,选择新的引发体系,利用物理方法如。co及微波进行照射引发。此外,还应重视耐盐机理的研究。 关键词:高暖水性树脂;耐盐性;接枝共聚 中圈分类号:田317立献标识码:^文章缩号:02”一4320(2003)sl一0062—03 Pr(曙嘲sofsalt-tole啪tsIIp盯absorbent耻slns cA0厶一却,盖u鼽i-榭i,删髓“n,册uvC^-出 (couegeofchemig时肌dcheⅢic丑lEn画needng,Xinji肌gunive乃畸.U珊q;830046,C|Iilla)AbstHct:ManymetllodBt0i。叩IDveⅡ”8Bhtole瑚tabdity“叫p盯止舯rbent聪8i珊a忙review耐,jncl讪Ilg llle舢Tlg0flI-e删?saltIIon.ioI血hydm出licg。oup,枷一sahcro鸫Hnked89衄b且工ld州一BaIIionio缈up,肌dⅡ忙m试雌oftlle8uP盱ab一∞rbentresinwi血in讲g矗Ⅱi。gdaIldjon_exch叫ge瑚inItisindicaledtll砒the如tllm咖dyBlloIlldbeconcenhtedonimPmvi“gtheprepa枷o“process姻andtechllol0盯iⅡchlding吐le础dpha8e岬Ⅱ仲sis,Ⅱ砖tcmphte8y。l血衄i8,舳weⅡ聃山edbk竹petecI-nok科;砌ecdIlgnewre丑cdoninitiator8ys把ms,珊iI-gpbyBicalme血0d8鲫ch酗∞ComdiB60Ⅱ且T-d山eⅡlicrowaveimdia60nme山od.Funh唧。陀,Ⅱle柏ll幻1emntInechallism幽oIddk画veⅡmo陀眦州on K卵肿rds:sup盯丑b帅由ent陀Bin;g‘anpolymed洲on;“ttnlerant 高吸水性树脂是一种新型功能高分子材料,已广泛用于医疗卫生、建筑、农林园艺、土壤改良以及石油化工和环境保护等众多领域Llj。尤其是目前在我国西部地区,发展滴水灌溉技术,配套应用高吸水性树脂,可减少灌溉水的消耗,降低植物死亡率,提高土壤肥力,提高植物生长速度。尽管高吸水性树脂可吸收自身质量几百倍甚至几千倍的水,但当水中含盐时,其吸水率降到原来的2%一10%【2J,而高吸水性树脂的使用环境一般都有盐类存在,如土壤、尿、血等动物和人体体液,因此提高其耐盐性对其作用的发挥有着极其重要的意义。 一般认为高吸水性树脂吸水机理是因其吸水后形成水凝胶而产生的多孔网状结构,以及亲水基的张网作用而导致的渗透功能L3“J,盐的存在使聚合物链同性斥力减弱,也使离子浓度梯度减少,造成吸水率显著下降。然而,目前对于高吸水性树脂的耐盐性研究并不多,且集中在丙烯酸类接枝耐盐性非离子型亲水基,其他方法报道相对较少。 1引入非离子型亲水基 传统的羧基亲水基吸水量高,吸水速度快,但耐盐性差.相比而言,非离子型亲水基,如羟基、酰胺基等虽在吸水量上较为逊色,但可降低聚合物分子对盐的敏感性,从而达到耐盐目的。 1.1共聚与接枝共聚法 将丙烯酸与2种非离子型单体即丙烯酰胺(AM)和丙烯酸羟乙酯(HEMA)用水溶液共聚法制成交联型P(AM—NaAA—lⅢMA)三元共聚高吸水性树脂l。“,吸盐水(0.9%Nacl溶液,下同)88g/g,吸去离子水达1000g/g。 考虑到生物降解性能,顾凯等”1以淀粉、部分中和的丙烯酸(钠)和丙烯酰胺为主要原料,采用分步法聚台制得高吸水性树脂,该法只需反应1~2h,产品吸水率为3000倍,吸盐水率为140倍。 收稿日期:2003一01一町;修回日期:2003—05一08 作者筒介:曹丽琴(1975一),女,硕士生;王吉德(1958一).男,博士,教授,从事应用化学研究.通讯联系人,∞91—85828∞,aw蛐刚@巧ued…n。

作物耐盐性研究

作物耐盐性状研究进展 ?l耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗 透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增 高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作 用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。 作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土, 把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多 的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧 清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT(过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在%~%时就已对植物生长不利,而盐土表层含盐量往往可达%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表 示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 。 2耐盐性的鉴定技术和指标

耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌 发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的 对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。 群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目 前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓 度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程 中分化成盐腺,通过盐腺把吸收到体内的盐分排出体外。 稀盐:形态学上的适应:茎或叶的肉质化.碱蓬(黄须菜)茎或叶的薄壁细胞组织大量增生,细胞数目增多,体积增大,可以吸收和储存大量水分,既可以 克服植物在盐渍条件下由于吸水困难造成的水分不足,又可将吸收到体内的 盐分稀释,保持低水平。 拒盐植物的抗盐机理

丙烯酸高吸水性树脂的制备

-- 聚丙烯酸高吸水性树脂的制备 何琪琪 摘要 淀粉类高吸水性树脂,由于其降解性好,对环境友好,成为吸水树脂领域的研究重点,并取得了较大的研究成果。高吸水性树脂或水凝胶是一类重要的部分交联聚合材料,它能够吸收大量的液体,通常是水。高吸水性树脂的制备方法多种多样,商业上,高吸水性聚合物主要是以丙烯酸作为主要成分来生产的。本文是以过硫酸铵为引发剂,将淀粉与丙烯酸、丙烯酰胺在水溶液中接枝聚合制备高吸水性树脂,通过考察单体与淀粉、交联剂、引发剂的质量比、反应时间、反应温度等不同的影响因素,探寻制备高吸水性树脂的最佳工艺条件与方法,从而得到吸水率高、吸水性强且能够多次反复有效吸水的高吸水性树脂。 实验结果表明:当单体与淀粉的质量比为6-7,单体与交联剂的质量比为3-3.5,引发剂占单体的质量分数为0.5%,反应时间2.5-3h,反应温度60℃时,可以合成具有较好吸水性能的高吸水性树脂,在自来水中吸水倍率可达65- 75g/g。 关键词:高吸水性树脂;丙烯酸;丙烯酰胺;淀粉 --

-- 目录 摘要 ............................................................................................................... I Abstract .................................................................................. 错误!未定义书签。第1章引言 . (1) 1.1 论文选题缘由 (1) 1.2 课题的研究背景 (1) 1.2.1 国内外研究进展 (1) 1.2.2 高吸水性树脂的应用 (2) 1.2.3 高吸水性树脂的性能研究 (4) 1.3 (6) 1.4 (6) 1.5 今后产品研发的方向和展望 (7) 第2章实验部分 (9) 2.1 实验试剂 (9) 2.2 实验仪器 (9) 2.3 实验原理 (9) 2.4 实验步骤 (10) 2.4.1 丙烯酸中和 (10) 2.4.2 淀粉糊化 (10) 2.4.3 接枝共聚 (10) 2.4.4 吸水能力测试 ............................................. 错误!未定义书签。 2.4.5 接枝特征参数的计算 (10) 第3章 ................................................................................... 错误!未定义书签。 3.1 ................................................................................ 错误!未定义书签。 3.2 ................................................................................ 错误!未定义书签。 3.3 ................................................................................ 错误!未定义书签。 3.4 ................................................................................ 错误!未定义书签。 3.5 ................................................................................ 错误!未定义书签。第4章结论 (12) 参考文献 (20) 致谢 (14) --

植物耐盐性研究进展3

第5卷第3期北华大学学报(自然科学版)Vol.5No.3 2004年6月JOURNAL OF BEIHUA UN IV ERSIT Y(Natural Science)J un.2004 文章编号:100924822(2004)0320257207 植物耐盐性研究进展 于海武1,李 莹2 (1.北京林业大学生物科学与技术学院,北京 100083;2.北华大学林学院,吉林吉林 132013) 摘要:综述了植物的耐盐机理和植物耐盐育种的研究情况,讨论了耐盐基因工程研究中存在的一些问题,并重点对现有植物的耐盐性筛选和抗渗透胁迫基因工程中的诱导渗透调节剂合成做了论述. 关键词:耐盐性;耐盐机理;基因工程;渗透调节剂 中图分类号:S332.6 文献标识码:A  盐碱土是陆地上分布广泛的一种土壤类型,约占陆地总面积的25%.在我国,从滨海到内陆,从低地到高原都分布着不同类型的盐碱土壤[1],我国盐碱土的总面积约有3000多万hm2,其中已开垦的有600多万hm2,还有2000多万hm2盐荒地等待开垦利用[1].此外,全国约有600多万hm2,约占耕地总面积10%的次生盐渍化土壤.盐碱土主要分布在平原地区,地形平坦,土层深厚,一般都有较丰富的地下水源,对发展农业生产,尤其对于实现农业机械化、水利化极为有利,是一类潜力很大的土壤资源.目前,人们主要通过2种方式来利用盐碱地:1是通过合理的排灌、淡水洗涤、施用化学改良药剂来改造土壤[2],为植物创造有利的生长环境.实践证明,这种方法成本高,效果也不理想;2是选育和培育耐盐植物品种来适应盐渍环境并最终达到改善环境的目的,此方法更加具有应用前景. 1 植物的耐盐机理 植物耐盐性差别很大.根据植物耐盐能力的不同,可将植物分成非盐生和盐生植物2类.赵可夫等又将盐生植物分为3类:真盐生植物、泌盐盐生植物和假盐生植物[1].目前大部分的耐盐性研究工作都是以真盐生植物为基础开展的,所以对它的耐盐机理也就研究得比较多.近年来,在筛选和培育耐盐细胞系、转移渗透调节剂合成基因、合理利用盐诱导基因等方面都开展了许多研究工作,并取得了一些成果.许多研究表明:植物要适应盐渍化的生境,必须具备克服盐离子毒害(离子胁迫)和抵抗低水势(渗透胁迫)的能力,否则就无法生存[3,4].马建华等认为:植物在高盐土壤中主要先受到水分胁迫,而后就是离子胁迫[5].所以在耐盐机理中人们对离子区隔化和渗透调节做了相对较多的研究. 1.1 离子区隔化 许多真盐生植物通过调节离子的吸收和区隔化来抵抗或减轻盐胁迫.在植物体内积累过多的盐离子就会给细胞内的酶类造成伤害,干扰细胞的正常代谢.研究表明,盐胁迫条件下,植物细胞中积累的大部分无机离子被运输并贮藏在液泡中,使得植物因为渗透势降低而吸收水分,同时,避免了过量的无机离子对代谢造成的伤害,这就是离子的区隔化.在耐盐植物和非耐盐植物中都存在离子区隔化,这说明离子区隔化可能是植物所普遍具有的能力[6].盐的区隔化作用主要是依赖位于膜上的“泵”实现离子跨膜运输完成的[7,8].这种运输系统需要A TP酶,A TP水解产生能量将H+“泵”到液泡膜外,造成质子电化学梯度,驱动钠离子的跨膜运输,从而实现盐离子的区隔化.Na+积累于液泡维持了细胞质中较低的Na+/K+比例也是植物耐盐的特点之一[9]. 收稿日期:2003212204 基金项目:国家“973”计划项目(G1999016005) 作者简介:于海武(1977-),男,在读硕士,主要从事杨树抗逆性育种研究.

作物耐盐性状研究综述

作物耐盐性状研究进展 I耐盐性含义和耐盐机制种类 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。有活性氧清除系统的植物通过SOD超氧化物歧化酶)、POD 过氧化物酶)、CAT(过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在0.2%~ 0.5%时就已对植物生长不利,而盐土表层 含盐量往往可达0.6%?10% 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCI浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 2耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。 3对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的

泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体外。 稀盐:形态学上的适应:茎或叶的肉质化.碱蓬(黄须菜)茎或叶的薄壁细胞组织大量增生,细胞数目增多,体积增大,可以吸收和储存大量水分,既可以克服植物在盐渍条件下由于吸水困难造成的水分不足,又可将吸收到体内的盐分稀释,保持低水平。 拒盐植物的抗盐机理 拒盐:不让外界盐分进入植物体(大麦)或允许土壤中的盐分进入 根部,但进入根部后大部分储存在根部,不再向地上部分运输,使地上部分盐分浓度保持较低水平,从而避免盐分的伤害作用。如芦苇 脯氨酸是最重要和有效的有机渗透调节物质。 几乎所有的逆境,如干旱、低温、高温、冰冻、盐渍、低pH 营养不良、病害、大气污染等都会造成植物体内脯氨酸的累积,尤其干旱胁迫时脯氨酸累积最多,可比处理开始时含量高几十倍甚至几百倍。 脯氨酸在抗逆中有两个作用: 是作为渗透调节物质,用来保持原生质与环境的渗透平衡。它可与胞内一些化合物形成聚合物,类似亲水胶体,以防止水分散失。 二是保持膜结构的完整性。脯氨酸与蛋白质相互作用能增加蛋白质的可溶性和减少可溶性蛋白的沉淀,增强蛋白质的水合作用。

高吸水树脂及其耐盐性研究

高吸水树脂及其耐盐性研究 摘要高吸水性树脂是一种新型高分子材料,在各行各业中都有广泛的应用,在实际应用中,高吸水树脂所吸的都是含盐的水,而盐对高吸水树脂的吸水率又有很大的影响,因此研究高吸水树脂的耐盐性有很大的实际意义,文章介绍了高吸水树脂的吸水机理,盐对高吸水树脂的影响及影响高吸水树脂耐盐性的因素,重点研究了耐盐性改进的几种方法,并对高吸水树脂的未来发展趋势做出展望。 关键词高吸水树脂;耐盐性;吸水率;吸水机理 高吸水性树脂又称为超强吸水剂,是一种含有羧基等强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。与传统的吸水材料(如纸、棉、海绵等)相比,高吸水性树脂具有吸水容量大、吸水速度快、保水能力强等优越性能,广泛应用于农业、园林、建筑、涂料、石油化工医、疗卫生及环境保护等领域。 1高吸水树脂的吸水机理 高吸水性树脂由于是一个交联的三维网络结构,所以其吸水过程是高聚物的溶胀过程,一个比较复杂的过程。目前,较为通用的离子网络理论认为,高吸水树脂在水中,水分子氢键与高吸水树脂的亲水基团作用,离子型的亲水基团遇水开始离解,阴离子固定于高分子链上,阳离子为可移动离子,随着亲水基团的进一步离解,阴离子数目增多,离子间的静电斥力增大使树脂网络扩张,同时为了维护电中性,阳离子不能向外部溶剂扩散,导致可移动阳离子在树脂网络内的浓度增大,网络内外的渗透压随之增加,水分子进一步渗入。随着吸水量的增大网络内外的离子浓度差逐渐减少,渗透压差趋于零,同时随着网络扩张其弹性收缩力也在增加,逐渐抵消阴离子的静电斥力,最终达到吸水平衡。 2盐对高吸水树脂吸水倍率的影响 高吸水树脂吸水倍率受盐的影响很大,如吸收纯水可达400倍~600倍的聚丙烯酸盐系吸水树脂,吸自来水为250倍~350倍,生理盐水40倍~60倍,人工海水7倍~l0倍。盐浓度越高其吸水倍率越低。耐盐性可分为两个方面,即对钠盐,钾盐等碱金属盐的耐盐性(称作耐碱金属盐性)和对钙盐、镁盐,铝盐等多价金属盐的耐盐性(称为耐多价金属盐性)。一般的耐盐性多指前者。两者给吸水性树脂造成的影响不同,而多价金属盐对吸水性树脂的破坏性较大。 3高吸水树脂耐盐性改进方法 由吸水原理可知,影响树脂吸水能力的因素很多,主要有交联密度、结构组成、溶液性质、表面形态、制备方法等。改善吸水树脂耐盐性能的主要方法有以下几种。

盐碱土现状及植物耐盐性研究的意义

1 盐碱土现状及植物耐盐性研究的意义 盐碱土是民间对盐土和碱土的统称。土壤含盐量在0.1%-0.2%以上,或者土壤胶体吸附一定数量的交换性钠,碱化度在15%-20%以上,对作物的正常生长产生严重影响,这样的土属于盐碱土,盐碱土又称盐渍土。在亚洲、非洲和北美西部地区有不同程度的分布,是一种重要的土地资源。按照形成原因,盐碱土包括原生盐渍化土地和次生盐渍土。据不完全统计,全世界大约有9.5亿公顷盐碱地[1-2]。由于世界范围内环境问题日益加剧,未经处理的工业废水乱排,工业垃圾废料不规范的堆积,世界范围内乱砍滥伐普遍存在,原始森林和原始湿地破坏严重,全球气候日趋异常;在农业生产中,节水农业尚未普及,大水漫灌等浇灌方式依然流行,在许多发展中国家,为了增加片面增加土地的单位面积产量,不合理的使用化肥,诸多自然或人为因素,导致世界范围内的次生盐渍土地日益增多,农业的可持续发展受到严重抑制[3-6]。中国的盐碱地主要分布在华北、东北和西北的内陆干旱、半干旱地区,东部沿海的滨海地区也有分布。世界人口逐年增多,可供耕地则因人为的不合理利用以及自然灾害频发而日渐减少,人均可耕地面积更是呈直线下降。然而,与此同时,世界范围内大面积的盐碱地仍未得到有效的利用。对盐碱地的综合开发利用日益走入人们的视野,人们试图从农业、化学、生物等方向对盐碱土地进行开发利用。依据改良措施的不同,对于盐碱地的开发利用可以取得不同的效果。改良盐土可以通过排水、洗盐等措施,或用种植绿肥、施有机肥或种水稻等农作物对其盐进行改良。这些方法对盐碱土的改良虽然有一定的效果,但是效果不稳定,并且在实践应用中,大量的人力、物力以及财力的投入无形中极大增加了该项措施的成本[7]。这种方法治标却不能治本。通过引种盐土植物,培育新的耐盐品种,利用盐生植物对盐碱土壤的改良作用,这种方式称为生物措施。生物措施可以将盐碱土中的盐分、离子富集在植物体中,从而从根本上解决盐碱土上植物无法正常生长的现状,选择适当的经济作物,既可以获得可观的经济效益,还能绿化环境,获得生态效益。 由于盐渍化会降低作物的发芽率,普通作物在盐碱条件下难以生长存活,因此耐盐碱作物的引进及品种的培育,成为当前研究的热点[8]。种植植物可以增加盐碱地的植被覆盖面积,减少土壤水分蒸发,降低土壤盐分;另外利用某些植物

作物耐盐性研究

作物耐盐性研究 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在%~%时就已对植物生长不利,而盐土表层含盐量往往可达%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼

苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 。 2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。 群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究

丙烯酸高吸水性树脂的制备

聚丙烯酸高吸水性树脂的制备 何琪琪 摘要 淀粉类高吸水性树脂,由于其降解性好,对环境友好,成为吸水树脂领域的研究重点,并取得了较大的研究成果。高吸水性树脂或水凝胶是一类重要的部分交联聚合材料,它能够吸收大量的液体,通常是水。高吸水性树脂的制备方法多种多样,商业上,高吸水性聚合物主要是以丙烯酸作为主要成分来生产的。本文是以过硫酸铵为引发剂,将淀粉与丙烯酸、丙烯酰胺在水溶液中接枝聚合制备高吸水性树脂,通过考察单体与淀粉、交联剂、引发剂的质量比、反应时间、反应温度等不同的影响因素,探寻制备高吸水性树脂的最佳工艺条件与方法,从而得到吸水率高、吸水性强且能够多次反复有效吸水的高吸水性树脂。 实验结果表明:当单体与淀粉的质量比为6-7,单体与交联剂的质量比为3-3.5,引发剂占单体的质量分数为0.5%,反应时间2.5-3h,反应温度60℃时,可以合成具有较好吸水性能的高吸水性树脂,在自来水中吸水倍率可达65- 75g/g。 关键词:高吸水性树脂;丙烯酸;丙烯酰胺;淀粉 I

目录 摘要 ............................................................................................................... I Abstract ............................................................................... 错误!未定义书签。第1章引言 . (1) 1.1 论文选题缘由 (1) 1.2 课题的研究背景 (1) 1.2.1 国内外研究进展 (1) 1.2.2 高吸水性树脂的应用 (2) 1.2.3 高吸水性树脂的性能研究 (4) 1.3 (6) 1.4 (6) 1.5 今后产品研发的方向和展望 (7) 第2章实验部分 (9) 2.1 实验试剂 (9) 2.2 实验仪器 (9) 2.3 实验原理 (9) 2.4 实验步骤 (10) 2.4.1 丙烯酸中和 (10) 2.4.2 淀粉糊化 (10) 2.4.3 接枝共聚 (10) 2.4.4 吸水能力测试 .......................................... 错误!未定义书签。 2.4.5 接枝特征参数的计算 (10) 第3章 ................................................................................ 错误!未定义书签。 3.1 ............................................................................. 错误!未定义书签。 3.2 ............................................................................. 错误!未定义书签。 3.3 ............................................................................. 错误!未定义书签。 3.4 ............................................................................. 错误!未定义书签。 3.5 ............................................................................. 错误!未定义书签。第4章结论 (12) 参考文献 (20) 致谢 (14) II

作物耐盐性研究

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在0.2%~0.5%时就已对植物生长不利,而盐土表层含盐量往往可达0.6%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。

2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体

6种木本植物耐盐性研究【开题报告】

毕业论文开题报告 生物技术 6种木本植物耐盐性研究 一、选题的背景与意义 植物对土壤盐度的反应因树种而异,即使同一种内,也存在着明显差异。植物的耐盐性是指在盐胁迫下维持生长、形成经济产量或完成生活史的能力。植物耐盐能力评价是耐盐植物引种、育种和筛选的基础,是植物形态适应和生理适应的综合体现。 土壤盐渍化是一个世界性的资源与生态问题,据联合国粮农组织和教科文组织统计,全球有各种盐渍化土地约10亿hm2,占全球陆地面积的10%,广泛分布于100多个国家和地区。我国各种类型的盐渍土总面积为14.87亿亩。其中,现代盐渍化土壤约5.54亿亩;残余盐渍化土壤约6.73亿亩;潜在盐渍化土壤约为2.6亿亩。我国沿海各省、市、自治区约18,000km的滨海地带和岛屿沿岸,广泛分布着各种滨海盐土,总面积可达5×106hm2,主要包括长江以北的山东、河北、辽宁等省和江苏北部的海滨冲积平原及长江以南的浙江、福建、广东等省沿海一带的部分地区。随着国民经济和社会的迅速发展,人口增长与耕地减少的矛盾日益突出,各类盐土资源,特别是我国海岸带盐土作为一种重要的土地后备资源,亟待我们去开发、利用和保护。 国内外研究已经证明,利用生物措施对盐碱地进行改良是缓解土壤盐渍化问题。最切实可行的办法。培育和引种能适应高盐环境的优良耐盐碱植物对改善我国广大滨海及内陆盐碱地生态系统,丰富盐碱地景观,增加树种多样性,提高土地生产力,增加经济收益无疑具有现实而深远的意义。引进国外优良耐盐碱树种及配套栽培技术,不失为一条迅速提升我国沿海防护林建设和盐碱地治理水平的有效途径,一方面可以提高沿海防护林的生态稳定性、防护功能和综合效应,另一方面还能改善沿海发达地区的生态环境和投资环境,为我国东部沿海发达地区率先实现农业和林业现代化提供重要保障。 二、研究的基本内容与拟解决的主要问题: (1)研究的基本内容: 1、盐胁迫下6个树种的生长情况: 测定6种植物在盐胁迫处理后的存活率、株高及形态变化情况 2、盐胁迫下6个树种的生理变化: 测定6种植物在盐胁迫处理后脯氨酸,叶绿素,可溶性糖,丙二醛含量以及电导率等相关生理生化指标的变化情况。

植物耐盐性比较

实验报告 植物耐盐性比较 摘要:通过不同浓度的盐溶液(0、100、200、300、450mmol/L)对小麦种子以及植株进行盐胁迫处理,研究盐胁迫对小麦种子萌发的影响。结果表明,随着盐浓度的增加,小麦幼苗受害程度增加,生长受到了明显抑制,叶片内丙二醛含量也随浓度增加而呈递增趋势。 关键词:盐胁迫,小麦,丙二醛 1 引言: 土壤中可溶性盐过多对植物的不利影响叫盐害(salt injury)。海滨地区因土壤蒸发或者咸水灌溉,海水倒灌等因素,可使土壤表层的盐分升高到1%以上。盐分过多使土壤水势下降,严重地阻碍植物生长发育,这已成为盐碱地区限制作物收成的制约因素。盐胁迫对植物造成的伤害主要有吸水困难、生物膜破坏、生理紊乱(氨害、叶绿素被破坏、光合减弱、气孔关闭、呼吸速率下降、丙二醛含量升高、营养缺乏等)。 我国盐碱土主要分布于北方和沿海地区,约2千万公顷,另外还有7百万公顷的盐化土壤。一般盐土含盐量在0.2%~0.5%时就已对植物生长不利,而盐土表层含盐量往往可达0.6%~10%。如果能提高作物抗盐力,并改良盐碱土,那么这将对农业生产的发展产生极大的推动力。台州为滨海城市,滩涂总面积66654公顷,调查盐碱地对植物生长的影响,开发利用广大的中重度盐碱地,既可以阻止土壤盐渍化的进一步加剧,又能扩大农田的种植面积,解决人口增多与耕地减少的矛盾。为此我们在实验室条件下设计简单实验,研究植物耐盐性。

2 材料与方法 2.1 材料 选取饱满的小麦种子,消毒后播种。于一定时间后得幼苗用以实验。 2.2 方法 2.2.1 不同浓度NaCl对小麦幼苗生长的影响 取5个一次性杯子做上标记,分别加入0,100,200,300,450 mmol/L 的NaCl溶液,用保鲜膜扎口,并扎上数孔,选取长势一致的小麦幼苗,每杯种植5棵小麦幼苗,置于相同的环境下生长。 2.2.2 幼苗长势的观察 一周后观察各浓度处理下幼苗的长势并测量株高。 2.2.3 MDA含量测定 称取各处理小麦叶片0.5g,加10%三氯乙酸3mL和少量石英砂,研磨,进一步加2 mL10%三氯乙酸充分研磨。转入离心管,于4000转/分离心10 min,上清液转到试管中。 取2 mL 提取液,加2 mL0.6%TBA,加盖,沸水浴中煮沸15 min,迅速冷却后于532、450及600 nm波长下测定吸光值。 MDA的浓度按照如下公式计算:MDA(μmol/L)=6.45(OD532-OD600)-0.56 OD450;可溶性糖的浓度(mmol/L)=11.71 OD450。最后计算每克鲜重样品中MDA含量= MDA(μmol/L)/0.2(g)×0.004(L),每克鲜重样品中可溶性糖的含量=11.71 OD450/0.2(g)×0.004(L)。 2.2.4 计算与处理 Excel软件统计数据并分析。

相关文档