文档库 最新最全的文档下载
当前位置:文档库 › 电荷守恒定律 库仑定律典型例题

电荷守恒定律 库仑定律典型例题

电荷守恒定律 库仑定律典型例题
电荷守恒定律 库仑定律典型例题

电荷守恒定律库仑定律典型例题

【例1】两个点电荷带有相等的电量,要求它们之间相距1m时的相互作用力等于1N,则每个电荷的电量是多少?等于电子电量的多少倍?

[分析] 根据库仑定律,由F、r即可计算出电量.

[解] 设每个电荷的电量为Q,间距r=1m,相互作用力F=1N.由库仑定律

这个电量与电子电量相比为

即是电子电量的6.25×1013倍.

[说明] 在宏观世界中,Q=1×10-5C,是一个不大的电量,但相比于微观世界中电子等粒子的带电量,这简直是一个巨大的“电的仓库”了.可见,电子电量(或基元电荷)是一个极小的电量.【例2】两个半径相同的金属小球,带电量之比为1∶7,相距为r,两者相互接触后再放回原来的位置上,则相互作用力可能为原来的[ ]

[分析] 设两小球的电量分别为q与7q,则原来相距r时的相互作用力

由于两球的电性未知,接触后相互作用力的计算可分两种情况:(1)两球电性相同.相互接触时两球电量平均分布、每球带电量

(2)两球电性不同.相互接触时电荷先中和再平分,每球带电量

[答] C、D.

[说明] (1)相同的球接触后电量平分,是库仑当年从直觉得出的结果,也是库仑实验中的一个重要的思想方法——依靠彼此接触达到改变电量的目的.(2)本题的计算渗透着电荷守恒的思想,即电荷不会创生也不会消失,只能从一个物体转移到另一个物体,或从物体的一部分传递到另一部分,电荷的总量保持不变.

【例3】一半径为R的绝缘球壳上均匀地带有电量为+Q 的电荷,另一电量为+q的点电荷放在球心O上,由于对称性,点电荷所受力的为零,现在球壳上挖去半径为r(r<<R)的一个小圆孔,则此时置于球心的点电荷所受力的大小为____(已知静电力恒量为k),方向____.

[分析] 由于球壳上均匀带电,原来每条直径两端相等的一小块面上的电荷对球心+q的力互相平衡.现在球壳上A处挖去半径为r 的小

圆孔后,其他直径两端电荷对球心+q的力仍互相平衡,剩下的就是与A相对的B处、半径也等于r 的一小块圆面上电荷对它的力F,如图所示.

B处这一小块圆面上的电量为

由于半径r<<R,可以把它看成点电荷.根据库仑定律,它对中心+q的作用力大小为

其方向由球心指向小孔中心.

[说明] 题中有两处合理近似:1.挖去小圆孔后,认为不改变电荷在球壳上的分布;2.把B处圆面上的电荷看成点电荷.

由于本题中运用了对称思维,巧妙地把不均匀分布的电荷转化为点电荷处理,值得体会.

【例4】如图1所示,三个点电荷q1、q2、q3固定在一直线上,q2与q3的距离为q1与q2距离的2倍,每个电荷所受静电力的合力均为零,由此可以判定,三个电荷的电量之比q1∶q2∶q3为

[ ]

A.-9∶4∶-36 B.9∶4∶36

C.-3∶2∶-6 D.3∶2∶6

[分析] 每个电荷所受静电力的合力为零,其电性不可能相同,只能是如图2所示两种情况.

考虑q2的平衡:由

r12∶r23=1∶2,

据库仑定律得q3=4q1.

考虑q1的平衡:由

r12∶r13=1∶3,

考虑电性后应为-9∶4∶-36或9∶-4∶36.只有A正确.

[答]A.

【例5】如图1所示,在光滑水平面上固定一个小球A,用一根原长为l0、由绝缘材料制的轻弹簧把A球与另一个小球B连接起来,然后让两球带上等量同种电荷q,这时弹簧的伸长量为x1,如果设法使A、B两球的电量各减少一半,这时弹簧的伸长量为x2,则 [ ]

[分析] 以B球为研究对象,它在水平方向仅受到弹力和静电斥力两个力作用,平衡时必等值反向.

设弹簧的劲度系数为k0,当弹簧伸长量为x1时,弹力T1= k0x1.此

力平衡条件得(图2).

当弹簧伸长为x2时,同理得

两式相比,得

[答] C.

[说明] 两球间的静电斥力不仅与两球所带电量有关,还与两球间

长量改变而引起的。

【例6】如图1所示用两根等长的绝缘细线各悬挂质量分别为m A 和m B的小球,悬点为O,两小球带同种电荷,当小球由于静电力作用张开一角度时,A球悬线与竖直线夹角为α,B球悬线与竖直线夹角为β,如果α=30°,β=60°,求两小球m A和m B之比。

[分析]A、B分别受三个力,如图2所示。各处于平衡状态,若选O点为转轴,则与解题无关的未知力T A、T B可以巧妙地避开(其力矩为O)用有固定转轴的物体平衡条件可解。

[解]

解法1:用隔离法,分别取A、B为研究对象,选O为转轴,则对A:m A gL A=F电L电

对B:m B gL B=F电L电

解法2:用整体法若将两根悬线和小球A、B作为一个整体,则球和绳之间的相互作用力、静电力均为内力,对解题带来方便。

[解答]取两根悬线和小球A、B组成的系统作为研究对象,,系统受到重力m A g和m B g受到悬点O的拉力T A’和T B’。以悬点O为固定转动轴,系统为G A和G B的力矩作用下处于平衡状态,有M A=M B得

m A gL A=m B gL B

[说明]1.本例属于包括静电力在内物体(或物体系)的平衡问题,解决这类问题可用共点力的平衡,和有固定转轴的物体平衡条件解决,当题目涉及许多与解题无直接关系的未知力时,巧妙选取转轴使这些未知力的力矩为零,然后运用有固定转轴的物体平衡条件,可很方便地解决。

2.解决物体系的相互作用问题时,一般可同时使用隔离法和整体法。一般说来使用后者可简化过程,简捷巧妙地解决问题。

3.整体法的适用情况:①当只涉及研究系统而不涉及系统内某些物体的力和运动时,可整体分析对象。②当只涉及研究运动的全过程而不涉及某段运动时,可整体分析过程。③当运用适用于系统的物理规律(如动量守恒定律、机械能守恒定律)解题时,可整体分析对象和整体分析运动全过程的初末态。④当可采用多种方法解题时,可整体优化解题方法。⑤整体法不仅适用于系统内各物体保持相对静止或匀速直线运动,而且也适用于各物体间有相对加速度的情况。

运用整体法解题的基本步骤:

①明确研究的系统和运动的全过程。

②画出系统地受力图和运动全过程的示意图。

电荷及其守恒定律库仑定律练习题及答案

§1、2电荷及其守恒定律 库仑定律(1) 【典型例题】 【例1】关于摩擦起电和感应起电的实质,下列说法正确的是:( ) A 、 摩擦起电现象说明了机械能可以转化为电能,也说明通过做功可以创造电荷 B 、 摩擦起电说明电荷可以从一个物体转移到另一个物体 C 、 感应起电说明电荷可以从物体的一个部分转移到物体另一个部分 D 、 感应起电说明电荷从带电的物体转移到原来不带电的物体上去了 【解析】摩擦起电的实质是:当两个物体相互摩擦时,一些束缚得不紧的电子往往从一个物体转移到另一个物体,于是原来电中性的物体由于得到电子而带上负电,失去电子的物体带上正电。即电荷在物体之间转移。 感应起电的实质是:当一个带电体靠近导体时,由于电荷之间的相互吸引或排斥,导致导体中的自由电荷趋向或远离带电体,使导体上靠近带电体的一端带异种电荷,远离的一端带同种电荷。即电荷在物体的不同部分之间转移。 由电荷守恒定律可知:电荷不可能被创造。 【答案】B 、C 【例2】绝缘细线上端固定,下端悬挂一个轻质小球a ,a 的表面镀有铝膜,在a 的 附近,有一个绝缘金属球b ,开始a 、b 都不带电,如图所示,现在使a 带电,则:( ) A 、a 、b 之间不发生相互作用 B 、b 将吸引a ,吸住后不放 C 、b 立即把a 排斥开 D 、b 先吸引a ,接触后又把a 排斥开 【解析】当a 带上电荷后,由于带电体要吸引轻小物体,故a 将吸引b 。这种吸引是相互的,故可以观察到a 被b 吸引过来。当它们相互接触后,电荷从a 转移到b ,它们就带上了同种电荷,根据电荷间相互作用的规律,它们又将互相排斥。 【答案】D 【例3】两个相同的带电导体小球所带电荷量的比值为1∶3,相距为r 时相互作用的库仑力的大小为F ,今使两小球接触后再分开放到相距为2r 处,则此时库仑力的大小为: A 、F 121 B 、F 61 C 、F 41 D 、F 3 1 【解析】设两个小球相互接触之前所带电荷量分别为q 和3q , 由库仑定律得:F =3kq 2/r 2 由于两个导体小球完全相同,故接触后它们的带电情况完全相同。 若它们原来带相同性质的电荷,则接触后它们的电荷量均为2q ,于是有 F 1=k (2q )2/(2r )2=3 1F 若它们原来带相异性质的电荷,则接触后的它们的电荷量均为q ,于是有 F 2=kq 2/(2r )2= 12 1F 【答案】A 、D

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

高二物理 电场强度电场线 典型例题

电场强度电场线典型例题 【例1】把一个电量q=-10-6C的试验电荷,依次放在带正电的点电荷Q周围的A、B两处图,受到的电场力大小分别是F A= 5×10-3N,F B=3×10-3N. (1)画出试验电荷在A、B两处的受力方向. (2)求出A、 B两处的电场强度. (3)如在A、B两处分别放上另一个电量为q'=10-5C的电荷,受到的电场力多大? [分析] 试验电荷所受到的电场力就是库仑力,由电荷间相互作用规律确定受力方向,由电场强度定义算出电场强度大小,并根据正试验电荷的受力方向确定场强方向. [解答] (1)试验电荷在A、B两处的受力方向沿它们与点电荷连线向内,如图中F A、F B所示.

(2)A 、B两处的场强大小分别为; 电场强度的方向决定于正试验电荷的受力方向,因此沿A、B两点与点电荷连线向外. (3)当在A、B两点放上电荷q'时,受到的电场力分别为 F A' =E A q' =5×103×10-5N=5×10-2N; F B'=E B q' =3×103×10-5N=3×10-2N. 其方向与场强方向相同. [说明] 通过本题可进一步认识场强与电场力的不同.场强是由场本身决定的,与场中所放置的电荷无关.知道场强后,由F=Eq即可算出电荷受到的力. [ ] A.这个定义式只适用于点电荷产生的电场

B.上式中,F是放入电场中的电荷所受的力,q是放入电场中的电荷的电量 C.上式中,F是放入电场中的电荷所受的力,q是产生电场的电荷的电量 是点电荷q1产生的电场在点电荷q2处的场强大小 何电场. 式中F是放置在场中试验电荷所受到的电场力,q是试验电荷的电量,不是产生电场的电荷的电量. 电荷间的相互作用是通过电场来实现的.两个点电荷q1、q2之间的相互作用可表示为 可见,电荷间的库仑力就是电场力,库仑定律可表示为

库仑定律知识点及经典例题

库仑定律知识点及经典例题 1.电荷、电荷守恒 ⑴自然界中只存在两种电荷:正电荷、负电荷.使物体带电的方法有摩擦起电、接触起电、感应起电. ⑵静电感应:当一个带电体靠近导体时,由于电荷间的相互吸引或排斥,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷. ⑶电荷守恒:电荷即不会创生,也不会消失,它只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分;在转移过程中,电荷总量保持不变.(一个与外界没有电荷交换的系统,电荷的代数和保持不变) ⑷元电荷:指一个电子或质子所带的电荷量,用e表示.e=1.6×10-19C 2.库仑定律 ⑴真空中两个点电荷之间相互作用的电场力,跟它们电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上.即:2 2 1r q kq F = 其中k 为静电力常量, k =9.0×10 9 N m 2/c 2 ⑵成立条件 ①真空中(空气中也近似成立),②点电荷,即带电体的形状和大小对相互作用力的影响可 以忽略不计.(对带电均匀的球, r 为球心间的距离). 3.电场强度 ⑴电场:带电体的周围存在着的一种特殊物质,它的基本性质是对放入其中的电荷有力的作用,这种力叫电场力.电荷间的相互作用就是通过电场发生作用的.电场还具有能的性质. ⑵电场强度E :反映电场强弱和方向的物理量,是矢量. ①定义:放入电场中某点的试探电荷所受的电场力F 跟它的电荷量q的比值,叫该点的电场强度.即:F E q = 单位:V/m,N/C ②场强的方向:规定正电荷在电场中某点的受力方向为该点的场强方向. (说明:电场中某点的场强与放入场中的试探电荷无关,而是由该点的位置和场源电何来决定.) ⑶点电荷的电场强度:E =2 Q k r ,其中Q 为场源电荷,E 为场中距Q 为r 的某点处的场强大小.对于求均匀带电的球体或球壳外某点的场强时,r 为该点到球心的距离. ⑷电场强度的叠加:当存在多个场源电荷时,电场中某点的场强为各个点电荷单独在该点产生的电场强度的矢量和. ⑸电场线:为形象描述电场而引入的假想曲线. ①电场线从正电荷或无限远出发,终止于无限远或负电荷. ②电场线不相交,也不相切,更不能认为电场就是电荷在电场中的运动轨迹. ③同一幅图中,场强大的地方电场线较密,场强小的地方电场线较疏.

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

库仑定律专项练习题及答案

库仑定律专项练习题及答案

相同 D.若F 1>F 2,则两小球原来所带电的电性一 定相反 3.大小相同的两个金属小球A 、B 带有等量 电荷,相隔一定距离时,两球间的库仑引力大小为F ,现在用另一个跟它们大小相同的不带电金属小球,先后与A 、B 两个小球接触后再移开,这时A 、B 两球间的库仑力大小 A.一定是F /8 B.一定是F /4 C.可能是3F /8 D.可能是 3F /4 4.半径为r 的两个带电金属小球,球心相距 3r ,每个小球带电量都是+q ,设这两个小球间的静电力大小为F ,则下列式子中正确的是 A.229r kq F = B.229r kq F < C.229r kq F > D.2 225r kq F = 5. 如图所示,两根细丝线悬挂两个质量相同的

小球A、B.当A、B不带电时,静止后上、下两根丝线上的拉力大小分别为T A、T B.使A、B带等量同种电荷时,静止后上、下两根丝线上的拉力大小分别为T A/、T B/.下列结论正确的是 A.T A/=T A,T B/ >T B B.T A/=T A,T B/ T B D.T A/ >T A,T B/ x1/4 D.x2

7.三个相同的金属小球1、2、3分别置于绝缘支架上,各球之间的距离远大于小球的直径.球1的带电量为q,球2的带电量为nq,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F.现使球3先与球2接触,再与球1接触,然后将球3移至远处,此时1、2之间作用力的大小仍为F.由此可知() A. n=1 B. n=4 C. n=6 D. n=10 真空中大小相同的两个金属小球A、B带有等量电荷,相隔一定距离,(距离远大于小球的直径)两球之间的库仑斥力大小为F,现在用另

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

库仑定律复习题

; 库仑定律复习 ◎必做部分 1.关于库仑定律的理解,下面说法正确的是( ) A .对任何带电荷之间的静电力计算,都可以使用库仑定律公式 B .只要是点电荷之间的静电力计算,就可以使用库仑定律公式 C .两个点电荷之间的静电力,无论是在真空中还是在介质中,一定是大小相等、方向相反的 D .摩擦过的橡胶棒吸引碎纸屑,说明碎纸屑一定带正电 答案: BC , 2.下面关于点电荷的说法正确的是( ) A .只有体积很小的带电体才能看成是点电荷 B .体积很大的带电体一定不能看成是点电荷 C .当两个带电体的大小远小于它们间的距离时,可将这两个带电体看成是点电荷 D .一切带电体都可以看成是点电荷 解析: 本题考查对点电荷的理解.带电体能否看做点电荷,和带电体的体积无关,主 要看带电体的体积对所研究的问题是否可以忽略,如果能够忽略.则带电体可以看成是点电荷,否则就不能. 答案: C 3.关于库仑定律的公式F =k Q 1Q 2 r 2 ,下列说法正确的是( ) @ A .当真空中的两个点电荷间的距离r →∞时,它们之间的静电力F →0 B .当真空中的两个电荷间的距离r →0时,它们之间的静电力F →∞ C .当两个点电荷之间的距离r →∞时,库仑定律的公式就不适用了 D .当两个电荷之间的距离r →0时,电荷不能看成是点电荷,库仑定律的公式就不适用 了 解析: r →∞时,电荷可以看做点电荷,库仑定律的公式适用,由公式可知,它们之间的静电力F →0;r →0时,电荷不能看成点电荷,库仑定律的公式就不适用了. 答案: AD 4.(2012·广东实验中学联考)如图所示,两个带电球,大球的电荷量大于小球的电荷量,可以肯定( ) A .两球都带正电 | B .两球都带负电

最新电荷及其守恒定律(讲解及习题)含答案

第1章静电场第01节 电荷及其守恒定律 [知能准备] 1.自然界中存在两种电荷,即 电荷和 电荷. 2.物体的带电方式有三种: (1)摩擦起电:两个不同的物体相互摩擦,失去电子的带 电,获得电子的带 电. (2)感应起电:导体接近(不接触)带电体,使导体靠近带电体一端带上与带电体相 的 电荷,而另一端带上与带电体相 的电荷. (3)接触起电:不带电物体接触另一个带电物体,使带电体上的 转移到不带电 的物体上.完全相同的两只带电金属小球接触时,电荷量分配规律:两球带异种电荷的先中 和后平均分配;原来两球带同种电荷的总电荷量平均分配在两球上. 3.电荷守恒定律:电荷既不能 ,也不能 ,只能从一个物体转移到另一个物体; 或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量 . 4.元电荷(基本电荷):电子和质子所带等量的异种电荷,电荷量e =1.60×10-19C.实验指 出,所有带电体的电荷量或者等于电荷量e ,或者是电荷量e 的整数倍.因此,电荷量e 称 为元电荷.电荷量e 的数值最早由美国科学家 用实验测得的. 5.比荷:带电粒子的电荷量和质量的比值m q .电子的比荷为kg C m e e /1076.111?=. [同步导学] 1.物体带电的过程叫做起电,任何起电方式都是电荷的转移,而不是创造电荷. 2.在同一隔离系统中正、负电荷量的代数和总量不变. 例1 关于物体的带电荷量,以下说法中正确的是( ) A .物体所带的电荷量可以为任意实数 B .物体所带的电荷量只能是某些特定值 C .物体带电+1.60×10-9C ,这是因为该物体失去了1.0×1010个电子 D .物体带电荷量的最小值为1.6×10-19C 解析:物体带电的原因是电子的得、失而引起的,物体带电荷量一定为e 的整数倍,故A 错,B 、C 、D 正确. 如图1—1—1所示,将带电棒移近两个不带电的导体球, 两个导体球开始时互相接触且对地绝缘,下述几种方法中能使两球 都带电的是 ( ) A .先把两球分开,再移走棒 B .先移走棒,再把两球分开 C .先将棒接触一下其中的一个球,再把两球分开 D .棒的带电荷量不变,两导体球不能带电 解析:带电棒移近导体球但不与导体球接触,从而使导体球上的电荷重新分布,甲球左侧感 应出正电荷,乙球右侧感应出负电荷,此时分开甲、乙球,则甲、乙球上分别带上等量的异 种电荷,故A 正确;如果先移走带电棒,则甲、乙两球上的电荷又恢复原状,则两球分开 后不显电性,故B 错;如果先将棒接触一下其中的一球,则甲、乙两球会同时带上和棒同 性的电荷,故C 正确.可以采用感应起电的方法使两导体球带电,而使棒的带电荷量保持 不变,故D 错误. 3.“中性”和“中和”的区别 “中性”和“中和”反映的是两个完全不同的概念.“中性”是指原子或物体所带的正电荷和负电 图1—1—1

高中物理动量守恒定律基础练习题及解析

高中物理动量守恒定律基础练习题及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= =

(2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s

静电场典型例题集锦(打印版)

静电场典型题分类精选 一、电荷守恒定律 库仑定律典型例题 例1 两个半径相同的金属小球,带电量之比为1∶7,相距为r ,两者相互接触后再放回原来的位置上,则 相互作用力可能为原来的多少倍? 练习.(江苏物理)1.两个分别带有电荷量Q -和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间库仑力的大小为F 。两小球相互接触后将其固定距离变为2 r ,则两球间库仑力的大小为 A . 112F B .34F C .4 3 F D .12F 二、三自由点电荷共线平衡.. 问题 例1.(改编)已知真空中的两个自由点电荷A 和B, 94 A Q Q =,B Q Q =-,相距L 如图1所示。若在直线AB 上放一自由电荷C,让A 、B 、C 都处于平衡状态,则对C 的放置位置、电性、电量有什么要求? 练习 1.(原创)下列各组共线的三个自由电荷,可以平衡的是( ) A 、4Q 4Q 4Q B 、4Q -5Q 3Q C 、9Q -4Q 36Q D 、-4Q 2Q -3Q 2.如图1所示,三个点电荷q 1、q 2、q 3固定在一直线上,q 2与q 3的距离为q 1与q 2距离的2倍,每个电荷所受静电力的合力均为零,由此可以判定,三个电荷的电量之比q 1∶q 2∶q 3为( ) A .-9∶4∶-36 B .9∶4∶36 C .-3∶2∶-6 D .3∶2∶6 三、三自由点电荷共线不平衡... (具有共同的加速度)问题 例1.质量均为m 的三个小球A 、B 、C 放置在光滑的绝缘水平面的同一直线上,彼此相隔L 。A 球带电量10A Q q =,B Q q =, 若在小球C 上外加一个水平向右的恒力F ,如图4所示,要使三球间距始终保持L 运动,则外力F 应为多大?C 球的带电量C Q 有多大? 图1 图4

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

物理动量守恒定律练习题20篇.docx

物理动量守恒定律练习题20 篇 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板恢复原长时,甲的速度大小为 2m/s ,此时乙尚未与 P.现将两滑块由静止释放,当弹簧 P 相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】 v 乙=6m/s.I =8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 左的方向为正方向,由动量守恒定律可得: 和,对两滑块及弹簧组成的系统,设向 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、 C,三球的质量分别为m A=1kg、 m B=2kg、 m C=6kg,初状态BC球之间连着一根轻质弹簧并处于 静止, B、C 连线与杆垂直并且弹簧刚好处于原长状态, A 球以 v0=9m/s 的速度向左运动,与同 一杆上的 B 球发生完全非弹性碰撞(碰撞时间极短),求: (1) A 球与 B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中 B 球的最小速度. 【答案】( 1);(2);(3)零. 【解析】 试题分析:( 1) A、 B 发生完全非弹性碰撞,根据动量守恒定律有:

碰后 A、 B 的共同速度 损失的机械能 (2) A、 B、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,速,A、 B 的加速度沿杆向右,直到弹簧恢复原长,故A、 B 在前, C 在后.此后C 向左加A、 B 继续向左减速,若能减速到零 则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时 A、 B 的速度,C的速度 可知碰后A、B 已由向左的共同速度减小到零后反向加速到向右的,故 的最小速度为零. 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】 A、 B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定 律和机械能守恒定律求出 A 球与 B 球碰撞中损耗的机械能.当B、C 速度相等时,弹簧伸 长量最大,弹性势能最大,结合B、 C 在水平方向上动量守恒、能量守恒求出最大的弹性 势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 B 3.如图甲所示,物块A、 B 的质量分别是m A=4.0kg 和m B=3.0kg .用轻弹簧拴接,放在光 滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所示.求:

高中库仑定律的习题课教案

课题选修3-1§库仑定律习题课学案课型习题课 目标(一)知识与技能 1、通过例题的讲解进一步理解库仑定律的含义及其应用。 2、进一步熟练应用库仑定律的公式进行有关的计算。 (二)过程与方法 通过演示让学生探究影响电荷间相互作用力的因素,再得出库仑定律(三)情感态度与价值观 培养学生的观察和探索能力 重点重点:掌握库仑定律 难点:会用库仑定律的公式进行有关的计算 知识主干1.复习回顾 2.典例分析 学习过程 1.复习回顾 1、复习上一节的内容: (1)库仑定律的内容及表达式。 (2)库仑定律的适用条件。 适用条件: 真空中,两个点电荷之间的相互作用。 (3)应用库仑定律解题注意的事项。 2、典型例题分析: 【例1】 如图1所示,真空中有三个同种点电荷Q1、Q2和Q3,它们固定在一条直线上,电荷量均为Q=×10-12C,求Q2所受的静电力的大小和方向。 【解析】 对Q2受力分析如图2所示,Q2所受的静电力为Q3和Q1对Q2的作用力的合力。 Q1对Q2的作用力: 2 1 2 2 1 2 1 12r Q k r Q Q k F= = Q3对Q2的作用力: 2 2 2 2 2 2 3 32r Q k r Q Q k F= = ∴) 1 1 ( 2 2 2 1 2 32 12r r kQ F F F- = - = 代入数据得:N F11 10 1.1- ? =,方向沿Q2、Q3连线指向Q3 【例2】 图1 图2

如图3所示,真空中有两个点电荷A 、B ,它们固定在一条直线上相距L =0.3m 的两点,它们的电荷量分别为Q A =16×10-12C ,Q B =×10-12C ,现引入第三个同种点电荷C , (1)若要使C 处于平衡状态,试求C 电荷的电量和放置的位置 (2)若点电荷A 、B 不固定,而使三个点电荷在库仑力作用下都能处于平衡状态,试求C 电荷的电量和放置的位置 【解析】 (1)由分析可知,由于A 和B 为同种电荷,要使C 处于平衡状态,C 必须放在A 、B 之间某位置,可为正电荷,也可为负电荷。 设电荷C 放在距A 右侧x 处,电荷量为Q 3 ∵ BC AC F F = ① ∴ 232231)(x L Q Q k x Q Q k -= ② ∴ 2221)(x L Q x Q -= ③ ∴ 4(L -x)2=x 2 ④ ∴ x =0.2m 即点电荷C 放在距A 右侧0.2m 处,可为正电荷,也可为负电荷。 (2)首先分析点电荷C 可能放置的位置,三个点电荷都处于平衡,彼此之间作用力必须在一条直线上,C 只能在AB 决定的直线上,不能在直线之外。而可能的区域有3个, ① AB 连线上,A 与B 带同种电荷互相排斥,C 电荷必须与A 、B 均产生吸引力,C 为负电荷时可满足; ② 在AB 连线的延长线A 的左侧,C 带正电时对A 产生排斥力与B 对A 作用力方向相反可能A 处于平衡;C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡; C 带负电时对A 产生吸引力与B 对A 作用力方向相同,不可能使A 处于平衡;C 对B 的作用力为吸引力与A 对B 作用力方向相反,可能使B 平衡,但离A 近,A 带电荷又多,不能同时使A 、B 处于平衡。 ③ 放B 的右侧,C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡; 由分析可知,由于A 和B 为同种电荷,要使三个电荷都处于平衡状态,C 必须放在A 、B 之间某位置,且为负电荷。 设电荷C 放在距A 右侧x 处,电荷量为Q 3 对C :232231)3.0(x Q Q k x Q Q k -= ∴ x =0.2m 对B :223221)(x L Q Q k L Q Q k -= ∴ C Q 12310916-?=,为负电荷。 ?【拓展】 若A 、B 为异种电荷呢 【解析】 (1)电荷C 放在B 的右侧,且距B 0.3m 处,电量的大小及正负无要求; (2)电荷C 放在B 的右侧,且距B 0.3m 处,C 为正电荷,C Q 1231016-?= 图3

电荷及其守恒定律教案

1.1电荷及其守恒定律 教学三维目标 (一)知识与技能 1.知道两种电荷及其相互作用.知道电量的概念. 2.知道摩擦起电,知道摩擦起电不是创造了电荷,而是使物体中的正负电荷分开.3.知道静电感应现象,知道静电感应起电不是创造了电荷,而是使物体中的电荷分开.4.知道电荷守恒定律. 5.知道什么是元电荷. (二)过程与方法 1、通过对初中知识的复习使学生进一步认识自然界中的两种电荷 2、通过对原子核式结构的学习使学生明确摩擦起电和感应起电不是创造了电荷,而是使物体中的电荷分开.但对一个与外界没有电荷交换的系统,电荷的代数和不变。 (三)情感态度与价值观 通过对本节的学习培养学生从微观的角度认识物体带电的本质 重点:电荷守恒定律 难点:利用电荷守恒定律分析解决相关问题摩擦起电和感应起电的相关问题。 教学过程: (一)引入新课:新的知识内容,新的学习起点.本章将学习静电学.将从物质的微观的角度认识物体带电的本质,电荷相互作用的基本规律,以及与静止电荷相联系的静电场的基本性质。 【板书】第一章静电场 复习初中知识: 【演示】摩擦过的物体具有了吸引轻小物体的性质,这种现象叫摩擦起电,这样的物体就带了电. 【演示】用丝绸摩擦过的玻璃棒之间相互排斥,用毛皮摩擦过的硬橡胶棒之间也相互排斥,而玻璃棒和硬橡胶棒之间却相互吸引,所以自然界存在两种电荷.同种电荷相互排斥,异种电荷相互吸引. 【板书】自然界中的两种电荷 正电荷和负电荷:把用丝绸摩擦过的玻璃棒所带的电荷称为正电荷,用正数表示.把用毛皮摩擦过的硬橡胶棒所带的电荷称为负电荷,用负数表示. 电荷及其相互作用:同种电荷相互排斥,异种电荷相互吸引. (二)进行新课:第1节、电荷及其守恒定律 【板书】 电荷 (1)原子的核式结构及摩擦起电的微观解释 原子:包括原子核(质子和中子)和核外电子。 (2)摩擦起电的原因:不同物质的原子核束缚电子的能力不同. 实质:电子的转移. 结果:两个相互摩擦的物体带上了等量异种电荷. (3)金属导体模型也是一个物理模型P3 用静电感应的方法也可以使物体带电. 【演示】:把带正电荷的球C移近彼此接触的异体A,B(参见课本图1.1-1).可以看

动量守恒定律 练习题及答案

动量守恒定律 一、单选题(每题3分,共36分) 1.下列关于物体的动量和动能的说法,正确的是 ( ) A .物体的动量发生变化,其动能一定发生变化 B .物体的动能发生变化,其动量一定发生变化 C .若两个物体的动量相同,它们的动能也一定相同 D .两物体中动能大的物体,其动量也一定大 2.为了模拟宇宙大爆炸初期的情境,科学家们使用两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞.若要使碰撞前重离子的动能经碰撞后尽可能多地转化为其他形式的能,应该设法使这两个重离子在碰撞前的瞬间具有 ( ) A .相同的速度 B .相同大小的动量 C .相同的动能 D .相同的质量 3.质量为M 的小车在光滑水平面上以速度v 向东行驶,一个质量为m 的小球从距地面H 高处自由落下,正好落入车中,此后小车的速度将 ( ) A .增大 B .减小 C .不变 D .先减小后增大 4.甲、乙两物体质量相同,以相同的初速度在粗糙的水平面上滑行,甲物体比乙物体先停下来,下面说法正确的是 ( ) A .滑行过程中,甲物体所受冲量大 B .滑行过程中,乙物体所受冲量大 C .滑行过程中,甲、乙两物体所受的冲量相同 D .无法比较 5.A 、B 两刚性球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kg·m /s ,B 球的动量是7kg·m /s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是 ( ) A .-4kg·m/s 、14kg·m/s B .3kg·m/s 、9kg·m/s C .-5kg·m/s 、17kg·m/s D .6kg·m /s 、6kg·m/s 6.质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v .在碰撞过程中, 地面对钢球冲量的方向和大小为 ( ) A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 7.质量为m 的α粒子,其速度为0v ,与质量为3m 的静止碳核碰撞后沿着原来的路径被弹回,其速度为0/2v ,而碳 核获得的速度为 ( ) A .06v B .20v C .02v D .03 v 8.在光滑水平面上,动能为0E ,动量大小为0P 的小钢球1与静止的小钢球2发生碰撞,碰撞前后球1的运动方向 相反,将碰撞后球1的动能和动量的大小分别记作1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有 ( ) ①1E <0E ②1P <0P ③2E >0E ④2P >0P A .①② B.①③④ C.①②④ D.②③ 9.质量为1.0kg 的小球从高20 m 处自由下落到软垫上,反弹后上升的最大高度为5.O m .小球与软垫接触的时间是1.0s ,在接触的时间内小球受到的合力的冲量大小为(空气阻力不计,g 取10m/s 2) ( ) A .10N·s B .20N·s C .30N·s D .40N·s 10.质量为2kg 的物体,速度由4m /s 变成 -6m/s ,则在此过程中,它所受到的合外力冲量是 ( ) A .-20N·s B.20N·s C .-4N·s D .-12N·s 11.竖直向上抛出一个物体.若不计阻力,取竖直向上为正,则该物体动量随时间变化的图线是 ( ) 12.一颗水平飞行的子弹射入一个原来悬挂在天花板下静止的沙袋并留在其中和沙袋一起上摆.关于子弹和沙袋组成的系统,下列说法中正确的是 ( ) A .子弹射入沙袋过程中系统动量和机械能都守恒 B .子弹射入沙袋过程中系统动量和机械能都不守恒 C .共同上摆阶段系统动量守恒,机械能不守恒 D .共同上摆阶段系统动量不守恒,机械能守恒 二、多选题(每题4分,共16分) 13.下列情况下系统动量守恒的是 ( )A .两球在光滑的水平面上相互碰撞 B .飞行的手榴弹在空中爆炸 C .大炮发射炮弹时,炮身和炮弹组成的系统 D .用肩部紧紧抵住步枪枪托射击,枪身和子弹组成的系统 14.两物体相互作用前后的总动量不变,则两物体组成的系统一定 ( ) A .不受外力作用 B .不受外力或所受合外力为零 C .每个物体动量改变量的值相同 D .每个物体动量改变量的值不同

相关文档
相关文档 最新文档