文档库 最新最全的文档下载
当前位置:文档库 › Heavy metals in surface sediments of the Jialu River, ChinaTheir relations to environmental factors

Heavy metals in surface sediments of the Jialu River, ChinaTheir relations to environmental factors

Heavy metals in surface sediments of the Jialu River, ChinaTheir relations to environmental factors
Heavy metals in surface sediments of the Jialu River, ChinaTheir relations to environmental factors

Journal of Hazardous Materials 270(2014)102–109

Contents lists available at ScienceDirect

Journal of Hazardous

Materials

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j h a z m a

t

Heavy metals in surface sediments of the Jialu River,China:Their relations to environmental factors

Jie Fu a ,b ,Changpo Zhao a ,Yupeng Luo c ,Chunsheng Liu d ,?,George Z.Kyzas e ,Yin Luo a ,Dongye Zhao b ,Shuqing An a ,Hailiang Zhu a ,??

a

State Key Laboratory of Pharmaceutical Biotechnology,School of Life Sciences,Nanjing University,Nanjing 210093,China b

Environmental Engineering Program,Department of Civil Engineering,Auburn University,Auburn,AL 36849,United States c

Department of Mathematics and Statistics,Auburn University,Auburn,AL 36849,United States d

College of Fisheries,Huazhong Agricultural University,Wuhan 430070,China e

Laboratory of General &Inorganic Chemical Technology,Department of Chemistry,Aristotle University of Thessaloniki,Thessaloniki 54124,Greece

h i g h l i g h t s

?Zhengzhou City had major effect on the pollution of the Jialu River.

?TN,OP,TP and COD Mn in water drove heavy metals to deposit in sediments.?B-IBI was sensitive to the adverse effect of heavy metals in sediments.

a r t i c l e

i n f o

Article history:

Received 1November 2013

Received in revised form 15January 2014Accepted 26January 2014

Available online 2February 2014

Keywords:Heavy metals Sediments

Environmental factors Benthos

Canonical correspondence analysis

a b s t r a c t

This work investigated heavy metal pollution in surface sediments of the Jialu River,China.Sediment samples were collected at 19sites along the river in connection with ?eld surveys and the total con-centrations were determined using atomic ?uorescence spectrometer and inductively coupled plasma optical emission spectrometer.Sediment samples with higher metal concentrations were collected from the upper reach of the river,while sediments in the middle and lower reaches had relatively lower metal concentrations.Multivariate techniques including Pearson correlation,hierarchical cluster and principal components analysis were used to evaluate the metal sources.The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines,Potential Ecological Risk Index and Geo-accumulation Index.The relations between heavy metals and various environmental factors (i.e.,chemical properties of sediments,water quality indices and aquatic organism indices)were also studied.Nitrate nitrogen,total nitrogen,and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals.Ammonia nitrogen,total nitrogen,orthophosphate,total phosphate and permanganate index in water were found to be related to metal sedimentation.Heavy metals in sediments posed a potential impact on the benthos community.

?2014Elsevier B.V.All rights reserved.

1.Introduction

The pollution of aquatic systems by heavy metals has been known as one of the most challenging pollution issues due to the toxicity,abundance,persistence,and subsequent bio-accumulation of heavy metals [1].When discharged into rivers,heavy metals can

?Corresponding author.Tel.:+862589680356.

??Corresponding author at:School of Life Sciences,Nanjing University,22Hankou Road,Nanjing 210093,China.Tel.:+862583592085;fax:+862583593201.

E-mail addresses:liuchunshengidid@https://www.wendangku.net/doc/c34477134.html, (C.Liu),zhuhl@https://www.wendangku.net/doc/c34477134.html, (H.Zhu).

be strongly accumulated in sediments and biomagni?ed along the aquatic food chains [2].Because of the non-degradability of heavy metals,toxic effects are often observed at points far away from the sources [3].An analysis of the distribution of heavy metals in sediments could be used to investigate anthropogenic impacts on aquatic ecosystems and assess the risks posed by human waste discharges [2].

The level of heavy metals in sediments is not an isolated factor,but interacts with surrounding environmental factors.Inves-tigation on the relations between heavy metals and various environmental factors is bene?cial to comprehensively evaluate the impacts of heavy metals on the ecosystem and grasp the pollution characteristics of local environment.Although analyses

0304-3894/$–see front matter ?2014Elsevier B.V.All rights reserved.https://www.wendangku.net/doc/c34477134.html,/10.1016/j.jhazmat.2014.01.044

J.Fu et al./Journal of Hazardous Materials270(2014)102–109103

of heavy metals in sediments have been carried out extensively, unfortunately,few researches have focused on the interaction of heavy metals with the environment.

The Jialu River is an important tributary of the Huaihe River, and has been severely polluted by a variety of contaminant sources such as industrial and domestic wastewater[4],trade wastes,and untreated or lightly treated sewage wastes[5].In recent years,the pollution in the Jialu River Basin has attracted increasing attention and many researches have been carried out[4–8].To our knowl-edge,there has been no study reported on the pollution of heavy metals in the Jialu River Basin.To address this critical knowledge gap,the present study aimed not only to investigate the state of the metal pollution in surface sediments in the Jialu River but also to evaluate their relations to various environmental factors including chemical properties of sediments,water quality indices, aquatic organism indices,anthropogenic activities and hydrologi-cal conditions.Speci?cally,the objectives of this research were to: (i)determine the concentration level and distribution patterns of various heavy metals in the surface sediments of the Jialu River, (ii)assess the associated ecological risks of the heavy metals,(iii) uncover the impact of the metal pollution on the ecological sys-tems,and(iii)identify the key environmental factors affecting the heavy metals pollution.

2.Materials and methods

2.1.Study area

The Jialu River is256km long and its basin covers an area of 5896km2.It originates from Xinmi County,Henan Province,while ?ows via Zhengzhou City,Zhongmu County,Weishi County,Xihua County,and then merges down into the Shaying River near Zhoukou City.The average discharge of the Jialu River(measured by a gauge station in Zhongmu during2007)was15.11m3/s.Zhengzhou is the main city in this basin with a strong impact on the ecologi-cal environment of the Jialu River.As one of the six most important industrial cities in Central China,Zhengzhou City has a long history for textile and metallurgy industries.It is also a major transporta-tion hub at the Central China.

A complete sequence of strata is developed in the Jialu River Basin(belong to the Huaihe River Basin),i.e.,Archean,Neoprotero-zoic,Cambrian,Ordovician,Carboniferous,Permian,Tertiary and Quaternary[9].Gneiss is primarily distributed in the mountainous areas of this basin,and unconsolidated sediments of Tertiary and Quaternary are distributed over the plains[10].

Due to the rapid economic growth and urbanization,the Jialu River has been severely polluted by a variety of contaminant sources and several reports indicated the pollutant levels in this area.The annual ef?uents of the Jialu River contained726kg of nonylphenol(NP)and30.2kg of octylphenol(OP)[5].The total con-centration of16priority polycyclic aromatic hydrocarbons(PAHs) in sediments of the Jialu River ranged from466.0to2605.6ng/g dry weight(d.w.)with a mean concentration of1363.2ng/g[7]. The total concentrations of nitrosamines and secondary amines in groundwater of the Jialu River Basin were0–101.1ng/L and 0.36–4.38?g/L,respectively[4].

2.2.Field sampling

The sampling and?eld surveys took place during September 2009.Fig.1shows the sampling locations.The sampling proce-dures for surface sediments(0–10cm depth),water and aquatic organisms were reported in a prior work[7].The sediment samples were stored in a?80?C freezer until the metal analysis in

2012.

Fig.1.Sampling location in the Jialu River,China.

2.3.Heavy metal analysis

As,Cd and Hg were measured using atomic?uorescence spec-trometer(AFS)(Rayleigh,Beijing,China),where the sediment samples were digested with aqua regia.For As measurement,the digestion solution was reduced by thiourea–HCl mixture before measurement.Cr,Cu,Ni,Pb,Zn and other elements(Al,Ba,Ca,Co, Fe,K,Mg,Mn,Na,Sr,Ti and V)were analyzed using inductively cou-pled plasma optical emission spectrometer(ICP-OES)(PerkinElmer, Wellesley,MA,USA).In these cases,the sediment samples were digested with HCl–HNO3–HF–HClO4mixture.The details of the analytical methods have been provided elsewhere[11].

All analytical data were subject to strict quality control.The instruments were calibrated daily using calibration standards. Precision and accuracy were veri?ed using standard reference materials from the National Research Center for Geoanalysis of China[sediment,GBW07304(GSD-4)].Accepted recoveries ranged from90%to108%.Differences in heavy metal concentrations between this study and certi?ed values were<10%.Blank samples for digestion and analysis methods were evaluated in duplicate with each set of samples.The relative deviation of the duplicate samples was<5%in all batch treatments.

2.4.Risk assessment

The ecological risks of heavy metals in sediments were assessed using three different methods including consensus-based Sedi-ment Quality Guidelines(SQGs)[12],Potential Ecological Risk Index (PERI)[13]and Geo-accumulation Index(GAI)[14].The details about the assessment methods are provided in Supporting Infor-mation(SI1,Risk assessment method).

2.5.Environmental factors

The chemical properties of sediments as ammonia nitrogen (NH4–N),nitrate nitrogen(NO3–N),total nitrogen(TN),total phos-phorus(TP),and total organic carbon(TOC)were determined according to the standard methods for soil analysis[15].Total PAHs concentrations( PAHs)in the sediments were previously reported [7].

The water transparency was assessed in the?eld.Other water quality indices,including NH4–N,NO3–N,TN,orthophosphate(OP), TP,and permanganate index(COD Mn)were determined in the lab-oratory following the standard analytical methods[16].

104J.Fu et al./Journal of Hazardous Materials270(2014)102–109

Table1

Comparison of heavy metal concentrations in sediments from open publications(mg/kg d.w.).

Metal Huaihe River Basin a Rivers&Lakes in China Rivers&Lakes in the world This observation Mean Range Mean Range Mean Range Mean Range

As20.790.00–77.2814.390.00–839.060.35–68.9 6.31 2.39–14.57 Cd0.800.00–5.0 2.970.02–81.790.940.00–25.9 2.93 2.12–3.64 Cr70.10 5.32–733.3876.58 2.72–229.5551.510.00–234.660.8040.04–96.39 Cu27.70 5.11–96.6990.98 1.33–924.54191.110.75–5075.639.228.82–107.61 Hg0.140.03–0.900.200.00–2.410.680.052–7.60.100.046–0.19 Ni34.63 6.39–369.7836.69 4.71–77.41127.59 1.2–720642.4419.75–80.26 Pb25.850.729–15790.47 1.66–513.71137.300.00–5778.129.3514.79–51.17 Zn71.330.00–257.84194.0923.28–1250.47388.69 3.89–8286.3107.5842.39–210.00 a The speci?c concentration data are shown in Table SI2(Supplementary Information).

Phytoplankton,zooplankton and benthos in each sample were identi?ed and counted.The total number of individuals in every sample was converted to abundance.Biomass was cal-culated according to the volumes of the individuals.Moreover, the Shannon–Wiener diversity index,H(S),was estimated[17]. Benthic-Index of Biotic Integrity(B-IBI)was established based on the benthic data[18].The coverage of aquatic plants was evaluated in the?eld.

The hydrological indices including river width,depth,sinuosity and velocity were determined in the?eld.The shortest distance from the sampling location to the main city(Zhengzhou,Kaifeng, Xuchang or Zhoukou)was calculated according to geographic coor-dinates.The land-use of settlements was acquired from Lands at TM images using the ENVI4.1software(Exelis Visual Information Solutions,Inc.,Boulder,CO,USA).The settlement percentage was calculated from the land-use by neighborhood analysis using the ArcGIS9.0software(Esri,Redlands,CA,USA).The population den-sity and industrial GDP per capita was obtained from the Zhengzhou City and Zhoukou City Statistical Yearbook(2008).

2.6.Statistical analysis

SPSS13.0for Windows(IBM Corporation,Armonk,NY,USA) was used to perform statistical analysis.Pearson correlation analysis(CA),hierarchical cluster analysis(HACA),and principal components analysis(PCA)were carried out to identify the poten-tial sources of the metals.The1Kaiser-Meyer-Olkin(KMO)and Bartlett’s test were introduced to evaluate the validity of PCA,and a>0.5of KMO and signi?cant Bartlett’s test were requisite before the PCA.Canonical correspondence analysis(CCA)was executed using Canoco4.5[19]to analyze the interactions between the heavy metal distribution and the relevant environmental factors.

3.Results and discussion

3.1.Heavy metal concentrations

The concentration ranges and mean values of heavy metals in surface sediments were found as follows:As,2.39–14.57(6.31);Cd, 2.12–3.64(2.93);Cr,40.04–96.39(60.80);Cu,8.82–107.61(39.22); Hg,0.046–0.19(0.10);Ni,19.75–80.26(42.44);Pb,14.79–51.17 (29.35);and Zn42.39–210.00(107.58)mg/kg d.w.Table1summ-aries the reported heavy metal concentrations and their ranges in surface sediments in order to compare metal levels in(i)Huaihe River Basin[20–28],(ii)other areas in China[2,11,29–34],and(iii) other countries in the world[1,35–43].The concentration level of As in Huaihe River Basin is3.3times higher than that in the Jialu River,while Cd and Zn levels are3.7and1.5times higher, respectively,in the Jialu River than in the Huaihe River Basin.The levels of other heavy metals are at the same level in the Jialu River and the Huaihe River Basin.However,when compared with other rivers and lakes in China and other countries,the metal levels in the Jialu River are much lower.Especially,the levels of Cu,Hg,Ni, Pb and Zn in the world are at least3times higher than those of the Jialu River.

Sediment samples collected from the upper reach of the river near Zhengzhou City(S3–S6,S8and S9)contained higher metal concentrations in comparison to other sampling sites.The high-est concentration value of each metal was found in these samples (Table SI3,Supporting Information).Sediments in the middle and lower reaches(S10–S19)had relatively lower metal concentrations. The sampling sites(S1and S2)near the river source at the upper reach of Zhengzhou City also showed lower metal concentrations. The results suggested that Zhengzhou City exhibited crucial impact on the heavy metal pollution in the Jialu River,which was in accor-dance with prior reports[5,7].

3.2.Source identi?cation

Various multivariate techniques such as CA,HACA,PCA have been shown useful to identify sources of heavy metals,interpret spatial variations and complex environmental data matrices,and assess ecological status of studied systems[44–46].The multivari-ate techniques were also employed in the present study to identify possible sources of different metals.

The HACA analysis showed the homogenous groups of elements in the sediments of the Jialu River(Fig.2).These metals could be roughly clustered into three primary groups.The?rst cluster con-sists of Al and Ca,which are typically natural geochemical

elements

Fig.2.Hierarchical dendrogram for metal elements in sediments of the Jialu River using average linkage between groups and Pearson correlation as measure interval.

J.Fu et al./Journal of Hazardous Materials270(2014)102–109

105

Fig.3.Plot of loading of three principal components in PCA results. associated with parent rock materials.The second cluster includes Mg,Na,Fe and K,which may be from both rock material and anthro-pogenic activities.The rest of the metals(Cd,Hg,As,Co,Cu,Ni,Pb, Cr,V,Zn,Sr,Ba,Mn,and Ti)gather together as the third cluster.They were the main polluted metals and can be de?ned as anthropogenic components.

The PCA approach was also applied to further identify sources of these anthropogenic components,and a>0.5of KMO(0.573) and signi?cant Bartlett’s test(<0.001)demonstrated its validity. Table SI4(Supporting Information)shows the results of the fac-tor loadings with a varimax rotation as well as the eigenvalues. Three eigenvalues are higher than one and the three components explain77.2%of the total variance.The relations among these metals based on the three principal components are illustrated in three-dimensional(3D)space(Fig.3).The metal elements assemble 4groups.As,Ba,Cd,Co,Cr,Cu,Hg and Pb are clustered in one major group,indicating their similar distribution patterns and sources. Mn,Ti and V are included in the second group.The third group includes Ni and Zn.Sr is far away from other metals,implying a unique source.

Sr is an alkaline earth metal and found chie?y in the form of SrSO4and SrCO3.According to the British Geological Survey[47], China was the major producer of Sr in2007,with over two-thirds of the world share.The sources of Sr in the sediments of the Jialu River are most possible from Xinxiang City,which is across the Yel-low River near Zhengzhou City.In1996,Xinxiang built the largest project of SrCO3production in Asia.Additionally,it is one of the biggest television(TV)production centers in China and the primary use for Sr(accounting for75%consumption)is in glass for color TV cathode ray tubes[48].

The correlation between Ni and Zn was also con?rmed by CA (Table SI5,Supporting Information).Their sources are mainly from electroplating industries and combustion of coals.Mn,Ti and V showed signi?cant correlations,while their origins were from local metal mining and smelting industries.Henan Province is one of the most important bases for rutile(TiO2)production in China.Among the rest anthropogenic metals,apart from relation between As and Ba,all the metals showed signi?cant positive correlations(Table SI5,Supporting Information),indicating that these metals are from a common source,which is most likely Zhengzhou City.As,Ba, and Cd had a common source related with insecticides,herbicides, rodenticides and fungicides[49].Moreover,Co,Cr,Hg and Pb can also be related to traf?c activities.Co and Cr can be found in stainless and alloy steels for auto parts[50].Cu is often used in car

lubricants Fig.4.Risk assessments for heavy metals:(a)Q m-PEC of sediment samples;(b)R I of sediment samples;(c)I geo of sediment samples.

[51]and Pb is used in leaded gasoline[52].Hg is also used in auto parts,such as thermostats,sensors,switches,relays,front and rear lights.

3.3.Risk assessment

The ecological risks of the heavy metals in the sediments were assessed.The mean probable effect concentration quotient(Q m-PEC)

106

J.Fu et al./Journal of Hazardous Materials 270(2014)

102–109

Scheme 1.Relations between heavy metals in sediments and other environmental factors.

of the sediments from the sampling sites S3,S4,S8and S9were larger than 0.5,indicating that these sediments were toxic and seriously polluted by heavy metals (Fig.4a).The contributions for individual metals were in the order of Ni (28.8%)>Cd (19.4%)>Cr (18.0%)>Cu (8.7%)>Zn (7.7%)>Pb (7.6%)>As (6.3%)>Hg (3.3%).According to the potential ecological risk index (R I )(Fig.4b),the sediments from S1showed a low level of ecological risk,while the other sediments showed moderate risks.Individually,Cd presented considerable or high risks in the sediments,while other metals (As,Cr,Cu,Hg,Pb and Zn)showed low risks.According to the mean geo-accumulation index (I geo )(Fig.4c),the level of pollution reached level 2(moderately polluted)for the sediments from sites S4–S6,S8and S9,level 1(unpolluted to moderately polluted)for sites S4,S7and S11–S19,and 0(unpolluted)for sites S1,S2and S10.However,individually,the average pollution degree of Cd in the sediments was 6(very strongly polluted).The pollution degrees of As and Pb were 1.The pollution degrees of other metals (Cr,Cu,Hg,and Zn)were 0.

Overall,the heavy metals in the sediments of the Jialu River showed moderate ecological risks.The results of risk assessments were in accordance with the metal distribution pattern in the sedi-ments.Higher risks were found in sediments of upper reaches.For individual metal,Cd and Ni showed much higher risks than the other metals and should be included in the prior pollutants list in the studied area.

3.4.Impact on environmental factors

The level of heavy metals in sediments is not only one single cru-cial factor existed in ecosystem of the Jialu River,but also interacts with others (Scheme 1).Heavy metal concentration is a chemi-cal index of sediments that re?ects the contamination status of sediments together with other chemical properties.Interactions may exist between heavy metals in sediments and water quality indices due to chemical exchanges between water and sediments or suspending solids [53].The contaminated sediments and water

inhibit or promote the growth of aquatic organisms,in turn,the state of aquatic organisms re?ects the qualities of sediments and water [2].The released toxic substances in aquatic environments may affect the human health by bioaccumulation and biomagni?-cation via the food chain [54].

According to the CA (SI4,Relation to environmental factors),many chemical properties of sediments (NO 3–N,TN and PAHs),water quality indices (NH 3–N,TN,OP,TP and COD Mn ),and aquatic organisms indices (biomass of phytoplankton,abundance and biomass of benthos,B-IBI,coverage of ?oating plants)showed signi?cant correlations with heavy metal concentrations.Most of these indices had direct interaction with heavy metals in sediments.However,no signi?cant correlations were observed between heavy metal concentrations and anthropogenic activities and hydrolog-ical indices.Signi?cant positive correlations between total PAHs concentrations and anthropogenic activities were found in our pre-vious study [7].This is because the sources of PAHs were mainly from anthropogenic origins.However for heavy metals,besides the anthropogenic sources,their distributions are also affected by the natural background values.Moreover,the studied region was not large enough.Therefore,no direct correlations were observed with anthropogenic activities.

The chemical properties of sediments and heavy metal con-centrations presented the same level of environmental factors.Their positive relations indicated their correlations in the origi-nal sources.The nitrogen indices showed signi?cant correlations with many metals,for example,NO 3–N with Hg (r =0.496,P <0.05),NO 3–N with Zn (r =0.463,P <0.05)and TN with As (r =0.496,P <0.05).Nitrogen in aquatic environment is typically from metabolism and decomposition of organisms,domestic and industrial wastewater as well as loss from nitrogenous fertilizer and these discharging processes were accompanied with co-release of heavy metals (e.g.,As,Hg and Zn).PAHs showed also correlations with As (r =0.531,P <0.05),Cu (r =0.492,P <0.05)and Ni (r =0.512,P <0.05).The PAHs in sediments of the Jialu River are derived mainly from biomass and coal combustion process [7].The results showed

J.Fu et al./Journal of Hazardous Materials270(2014)102–109

107

Fig.5.Plot of two axes in CCA results correlating heavy metals and:(a)water quality indices;(b)benthos.Permutation was evaluated with Monte-Carlo test and both signi?cances of?rst ordination axis and all canonical axes were achieved(P<0.05), con?rming the strong correlation between heavy metals and water quality/benthos.

that the discharging processes for heavy metals were in accordance with the origins of PAHs which con?rmed their co-release behavior.

The adsorption of heavy metals from the water column by sed-iments(or suspended solids)is an important way for acumination of heavy metals in sediments.The CA also showed signi?cantly positive correlations between NH3–N and Ni(r=0.525,P<0.05), TN and As(r=0.498,P<0.05),TN and Cu(r=0.465,P<0.05), TN and Ni(r=0.523,P<0.05),OP and As(r=0.514,P<0.05),OP and Cd(r=0.492,P<0.05),OP and Cu(r=0.639,P<0.01),OP and Ni(r=0.506;P<0.05),OP and Pb(r=0.463,P<0.05),TP and Cd(r=0.468,P<0.05),TP and Cr(r=0.498,P<0.05),TP and Cu (r=0.505,P<0.05),COD Mn and Ni(r=0.501,P<0.05).Moreover, NH3–N,TN,OP,TP and COD Mn were identi?ed as the main pol-lution factors in water of the Jialu River by PCA(SI4,Relation to environmental factors).Therefore,CCA was used to further inves-tigate the driving forces of NH3–N,TN,OP,TP,and COD Mn on heavy metal distributions in water(Fig.5a).TN,OP,TP,and COD Mn showed similar directions,indicating their similar impacts on heavy metals deposit.However,NH3–N showed an opposite direction compared with other factors,suggesting a different impact on metals.High values of TN,OP,TP and COD Mn indicated a high level of pollution statue in aquatic systems that would drive/transfer more heavy metals into sediments.Among these metals,Cu showed the highest sensitivity to this driving force in the Jialu River.

The abundance and biomass of benthos in the Jialu River was89.21(0–320)ind./m2and18.80(0–72.40)mg/m2,respec-tively.Mollusk,chironomid,oligochaeta and aquatic insects were common species(SI4,Relation to environmental factors).B-IBI, developed by Weisberg and co-workers[55],is a widely used method to measure the ecological integrity considering the species diversity,productivity,indicator species and trophic composition. The?rst quartile of B-IBI in the Jialu River was0,indicating that the sediments cannot provide suitable benthic habitat and the benthic ecosystem was seriously degraded by anthropogenic pol-lution.Many studies have revealed that heavy metals in sediments display strong adverse impacts on benthos community[56–58]. In our observation,signi?cant negative correlations were found between abundance and biomass of benthos and As(r=?0.534, P<0.05;r=?0.510,P<0.05),B-IBI–As(r=0.579,P<0.01),B-IBI–Cu (r=0.474,P<0.05),implying an adverse effect of heavy metals on benthos in the Jialu River.The adverse effect of heavy metals was analyzed by CCA;the results roughly showed3directions for these metal effects.As and Ni posed the?rst direction;Cu,Pb,Cd,and Cr had similar direction;Hg and Zn presented another direction (Fig.5b).B-IBI showed the most sensitivity to effects of the?rst and second directions.Therefore,B-IBI was an ideal index to evaluate the adverse effect of heavy metals on benthos community.Among these metals,As and Cu posed the greatest effects on the benthos in the Jialu River.

In addition,positive correlations were observed between(i) biomass of phytoplankton and Ni(r=0.481,P<0.05),and(ii)cov-erage of?oating plants and Cu(r=0.540,P<0.05).In general, there is no direct contact between heavy metals in sediments and phytoplankton or?oating plants.Their connections were constructed through water quality and then co-re?ect the pollu-tion statue of aquatic ecosystem.Phytoplankton bloom commonly results from eutrophication,and some phytoplankton species are important indicators of water quality[59].The average biomass of phytoplankton in the Jialu River was8.20(2.3–13.22)mg/L,and Chlamydomonas sp.was the predominant species,suggesting mod-erate pollution[7].The predominant species of?oating plants in the Jialu River were Alternanthera philoxeroides(Mart.)Griseb.,which are typical tolerance species and their distributions were consistent with the pollution pattern in the Jialu River.

4.Conclusions

The levels of heavy metals in sediments of the Jialu River are much lower than the reported data from the Rivers and Lakes in China and in other countries over the world.Nonetheless,these metals may cause moderate ecological risks.Cd and Ni are likely to pose much higher risks than other metals and should be paid more attention.The distribution pattern of the heavy metals is as follows:higher concentrations were found in upper reaches near Zhengzhou City while middle and lower reaches as well as near the river source showed relatively lower concentrations. The study demonstrated that Zhengzhou City was the main pol-lution source and had major effect on the pollution of the Jialu River.

Many environmental factors had signi?cant correlations with heavy metals in sediments,such as NO3–N,TN and PAHs in sediments,NH3–N,TN,OP,TP and COD Mn in water,biomass of phy-toplankton,abundance and biomass of benthos,B-IBI,and coverage of?oating plants.Some chemical properties of sediments showed a co-release behavior with heavy metals.The pollution factors in water of the Jialu River(NO3–N,TN,OP,TP and COD Mn)exhib-ited driving force for metal transfer from water into sediments. Heavy metals in sediments may pose adverse impact on benthos community,and As&Cu showed the greatest effect.

108J.Fu et al./Journal of Hazardous Materials270(2014)102–109

Acknowledgements

This work was supported by Major Projects on Control and Rec-ti?cation of Water Body Pollution(2011ZX07204-001-004).This work was also partially supported by the Beijing Climate Change Research and Education Center,Beijing University of Civil Engineer-ing and Architecture.

Appendix A.Supplementary data

Supplementary data associated with this article can be found, in the online version,at https://www.wendangku.net/doc/c34477134.html,/10.1016/j.jhazmat. 2014.01.044.

References

[1]N.Barlas,N.Akbulut,M.Aydogan,Assessment of heavy metal residues in the

sediment and water samples of Uluabat Lake,Turkey,Bull.Environ.Contam.

Toxicol.74(2005)286–293.

[2]Y.J.Yi,Z.F.Yang,S.H.Zhang,Ecological risk assessment of heavy metals in

sediment and human health risk assessment of heavy metals in?shes in the middle and lower reaches of the Yangtze River basin,Environ.Pollut.159(2011) 2575–2585.

[3]I.Guagliardi,C.Apollaro,F.Scarciglia,R.De Rosa,In?uence of particle-size

on geochemical distribution of stream sediments in the Lese river catchment, southern Italy,Biotechnol.Agr.Soc.Environ.17(2013)43–55.

[4]F.J.Ma,Y.Wan,G.X.Yuan,L.P.Meng,Z.M.Dong,J.Y.Hu,Occurrence and source

of nitrosamines and secondary amines in groundwater and its adjacent Jialu River Basin,China,Environ.Sci.Technol.46(2012)3236–3243.

[5]Y.Z.Zhang,C.Y.Tang,X.F.Song,F.D.Li,Behavior and fate of alkylphenols in

surface water of the Jialu River,Henan Province,China,Chemosphere77(2009) 559–565.

[6]Y.Z.Zhang,X.F.Song,A.Kondoh,J.Xia,C.Y.Tang,Behavior,mass inventories

and modeling evaluation of xenobiotic endocrine-disrupting chemicals along an urban receiving wastewater river in Henan Province,China,Water Res.45 (2011)292–302.

[7]J.Fu,S.Sheng,T.Wen,Z.M.Zhang,Q.Wang,Q.X.Hu,Q.S.Li,S.Q.An,H.L.

Zhu,Polycyclic aromatic hydrocarbons in surface sediments of the Jialu River, Ecotoxicology20(2011)940–950.

[8]L.Yang,X.Song,Y.Zhang,D.Han,B.Zhang,D.Long,Characterizing interactions

between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes,Hydrol.Earth.Syst.Sci.16(2012)4265–4277.

[9]S.X.Shao,S.Q.Guo,S.H.Han,Geomorphic structures and evolution of Huang-

Huai-Hai plain in China,Acta Geogr.Sin.44(1989)314–322.

[10]L.A.Zhang,X.F.Song,J.Xia,R.Q.Yuan,Y.Y.Zhang,X.Liu,D.M.Han,Major

element chemistry of the Huai River basin,China,Appl.Geochem.26(2011) 293–300.

[11]J.Fu,X.Hu,X.C.Tao,H.X.Yu,X.W.Zhang,Risk and toxicity assessments of heavy

metals in sediments and?shes from the Yangtze River and Taihu Lake,China, Chemosphere93(2013)1887–1895.

[12]D.D.Macdonald,C.G.Ingersoll,T.A.Berger,Development and evaluation of

consensus-based sediment quality guidelines for freshwater ecosystems,Arch.

Environ.Contam.Toxicol.39(2000)20–31.

[13]L.H?kanson,An ecological risk index for aquatic pollution control of sediment

ecological approach,Water Res.14(1980)975–1000.

[14]G.Müller,Index of geoaccumulation in sediments of the Rhine River,Geojour-

nal2(1969)108–118.

[15]A.L.Page,Methods of Soil Analysis,Part2:Chemical and Microbiological Prop-

erties(Agronomy),American Society of Agronomy and Soil Science Society of America,Madison,1982.

[16]L.S.Clesceri,A.E.Greenberg,A.D.Eaton,Standard Methods for the Examina-

tion of Water and Wastewater,American Public Health Association;American Water Works Association and Water Environment Federation,Washington, 1998.

[17]C.E.Shannon,W.Weaver,The Mathematical Theory of Communication,Uni-

versity of Illinois Press,Urbana,1949.

[18]M.T.Barbour,J.Gerritsen,G.E.Grif?th,R.Frydenborg,E.McCarron,J.S.White,

A framework for biological criteria for Florida streams using benthic macroin-

vertebrates,J.N.Am.Benthol.Soc.15(1996)185–211.

[19]C.J.E.Ter Baraak,Canonical correspondence analysis:a new eigenvector tech-

nique for multivariate direct gradient analysis,Ecology67(1986)1167–1179.

[20]Y.He,H.Huang,J.P.Yan,Study on the heavy metals and organic matter in

sediments from the middle and lower reaches of Huaihe River,J.Anhui Inst.

Arch.Ind.13(2005)79–82.

[21]H.Huang,W.H.Ou,L.S.Wang,Semivolatile organic compounds,organochlorine

pesticides and heavy metals in sediments and risk assessment in Huaihe River of China,J.Environ.Sci.18(2006)236–241.

[22]H.Huang,Y.J.Yue,X.D.Wang,L.S.Wang,Pollution of heavy metals in surface

sediments from Huaihe River(Jiangsu section)and its assessment of potential ecological risk,Environ.Pollut.Contr.26(2004)207–231.[23]J.L.Mei,J.Yao,Y.Kang,G.J.Liu,Distribution and assessment of trace elements

in sediment from Huainan district of Huaihe River,J.Anhui Univ.Sci.Technol.

30(2010)49–54.

[24]W.Z.Tang,B.Q.Shan,H.Zhang,Z.P.Mao,Heavy metal sources and associated

risk in response to agricultural intensi?cation in the estuarine sediments of Chaohu Lake Valley,East China,J.Hazard.Mater.176(2010)945–951.

[25]H.Yu,W.B.Zhang,J.P.Yu,Distribution and potential ecological risk assessment

of heavy metals in surface sediments of Hongze Lake,Environ.Sci.32(2011) 437–444.

[26]H.Zhang, B.Q.Shan,Historical records of heavy metal accumulation in

sediments and the relationship with agricultural intensi?cation in the Yangtze-Huaihe region,China,Sci.Total.Environ.399(2008)113–120.

[27]J.L.Zhang,B.Luo,L.Liu,Y.S.Zhang,B.H.Zheng,W.Meng,The level and distribu-

tion characteristics of heavy metals in sediments of Huaihe River,Epidemiology 22(2011)S154–S155.

[28]K.S.Zhou,D.Xu,Study on environmental hormones of heavy metals Cd,Pb con-

tamination and its ecological risk assessment in Huaihe River Basin,J.Yichun Coll.33(2011)117–121.

[29]Q.Cheng,W.Wang,H.Wang,W.Ang,Z.Zhao,Investigation of the heavy metal

contamination of the sediments from the Yellow River wetland nature reserve of Zhengzhou,China,Iran.J.Public Health41(2012)26–35.

[30]Y.L.Huang,W.B.Zhu,M.H.Le,X.X.Lu,Temporal and spatial variations of heavy

metals in urban riverine sediment:an example of Shenzhen River,Pearl River Delta,China,Quatern.Int.282(2012)145–151.

[31]L.J.Mao,D.W.Mo,Y.Y.Guo,Q.Fu,J.H.Yang,Y.F.Jia,Multivariate analysis of

heavy metals in surface sediments from lower reaches of the Xiangjiang River, southern China,Environ.Earth Sci.69(2013)765–771.

[32]H.Y.Niu,W.J.Deng,Q.H.Wu,X.G.Chen,Potential toxic risk of heavy metals from

sediment of the Pearl River in South China,J.Environ.Sci.21(2009)1053–1058.

[33]C.Y.Wei,H.L.Wen,Geochemical baselines of heavy metals in the sediments of

two large freshwater lakes in China:implications for contamination character and history,Environ.Geochem.Hlth.34(2012)737–748.

[34]H.B.Yin,Y.N.Gao,C.X.Fan,Distribution,sources and ecological risk assess-

ment of heavy metals in surface sediments from Lake Taihu,China,Environ.

Res.Lett.6(2011),https://www.wendangku.net/doc/c34477134.html,/10.1088/1748-9326/6/4/044012,article number044012.

[35]J.C.S.Bermejo,R.Beltran,J.L.G.Ariza,Spatial variations of heavy metals con-

tamination in sediments from Odiel river(Southwest Spain),Environ.Int.29 (2003)69–77.

[36]V.Dauvalter,S.Rognerud,Heavy metal pollution in sediments of the Pasvik

River drainage,Chemosphere42(2001)9–18.

[37]A.Emam,M.Saad-Eldin,Distribution and environmental geochemistry of some

heavy metals in stream sediments of Wadi Allaqi,South Eastern Desert of Egypt, Arab.J.Geosci.6(2013)1325–1332.

[38]T.M.Grygar,T.Novakova,O.Babek,J.Elznicova,N.Vadinova,Robust assess-

ment of moderate heavy metal contamination levels in?oodplain sediments:

a case study on the Jizera River,Czech Republic,Sci.Total.Environ.452(2013)

233–245.

[39]J.Hahladakis,E.Smaragdaki,G.Vasilaki,E.Gidarakos,Use of sediment quality

guidelines and pollution indicators for the assessment of heavy metal and PAH contamination in Greek sur?cial sea and lake sediments,Environ.Monit.Assess.

185(2013)2843–2853.

[40]A.T.Hejabi,H.T.Basavarajappa,A.M.Q.Saeed,Heavy metal pollution in Kabini

River sediments,Int.J.Environ.Res4(2010)629–636.

[41]G.Suresh,P.Sutharsan,V.Ramasamy,R.Venkatachalapathy,Assessment of

spatial distribution and potential ecological risk of the heavy metals in rela-tion to granulometric contents of Veeranam lake sediments,India,Ecotoxicol.

Environ.Saf.84(2012)117–124.

[42]M.Varol,Assessment of heavy metal contamination in sediments of the Tigris

River(Turkey)using pollution indices and multivariate statistical techniques, J.Hazard.Mater.195(2011)355–364.

[43]P.Woitke,J.Wellmitz,D.Helm,P.Kube,P.Lepom,P.Litheraty,Analysis and

assessment of heavy metal pollution in suspended solids and sediments of the river Danube,Chemosphere51(2003)633–642.

[44]I.Guagliardi,G.Buttafuoco,D.Cicchella,R.De Rosa,A multivariate approach for

anomaly separation of potentially toxic trace elements in urban and peri-urban soils:an application in a southern Italy area,J.Soils Sedim.13(2013)117–128.

[45]I.Guagliardi,D.Cicchella,R.De Rosa,A geostatistical approach to assess con-

centration and spatial distribution of heavy metals in urban soils,Water Air.

Soil Pollut.223(2012)5983–5998.

[46]G.Buttafuoco,A.Tallarico,G.Falcone,I.Guagliardi,A geostatistical approach

for mapping and uncertainty assessment of geogenic radon gas in soil in an area of southern Italy,Environ.Earth Sci.61(2010)491–505.

[47]T.J.Brown,T.Bide,S.D.Hannis,N.E.Idoine,L.E.Hetherington,R.A.Shaw,A.S.

Walters,P.A.J.Lusty,R.Kendall,World mineral prodction2004–08,in:British Geological Survey2010,Natural Environment Research Council,Keyworth, Nottingham,2010.

[48]J.P.MacMillan,J.W.Park,R.Gerstenberg,H.Wagner,K.K?hler,P.Wallbrecht,

Strontium and Strontium Compounds,Wiley-VCH,Weinheim,2000.

[49]B.K.Mandal,K.T.Suzuki,Arsenic round the world:a review,Talanta58(2002)

201–235.

[50]Z.L.L.Yeung,R.C.W.Kwok,K.N.Yu,Determination of multi-element pro?les of

street dust using energy dispersive X-ray?uorescence(EDXRF),Appl.Radiat.

Isot.58(2003)339–346.

[51]O.A.Al-Khashman,Determination of metal accumulation in deposited street

dusts in Amman,Jordan,Environ.Geochem.Health29(2007)1–10.

J.Fu et al./Journal of Hazardous Materials270(2014)102–109109

[52]E.deMiguel,J.F.Llamas,E.Chacon,T.Berg,https://www.wendangku.net/doc/c34477134.html,rssen,O.Royset,M.Vadset,

Origin and patterns of distribution of trace elements in street dust:unleaded petrol and urban lead,Atmos.Environ.31(1997)2733–2740.

[53]A.Agarwal,R.D.Singh,S.K.Mishra,P.K.Bhunya,ANN-based sediment yield

river basin models for Vamsadhara(India),Water SA31(2005)95–100. [54]M.K.Zhang,Z.X.Ke,Heavy metals,phosphorus and some other elements in

urban soils of Hangzhou City,China,Pedosphere14(2004)177–185.

[55]S.B.Weisberg,J.A.Ranasinghe,L.C.Schaffner,R.J.Diaz,D.M.Dauer,J.B.Frith-

sen,An estuarine benthic index of biotic integrity(B-IBI)for Chesapeake Bay, Estuaries20(1997)149–158.

[56]M.V.Moore,R.W.Winner,Relative sensitivity of cerodaphnia-dubia laboratory

tests and pond communities of zooplankton and benthos to chronic copper stress,Aquat.Toxicol.15(1989)311–330.[57]J.Ryu,J.S.Khim,S.G.Kang, D.Kang, C.H.Lee, C.H.Koh,The impact

of heavy metal pollution gradients in sediments on benthic macro-fauna at population and community levels,Environ.Pollut.159(2011) 2622–2629.

[58]J.S.Stark,Heavy metal pollution and macrobenthic assemblages in soft

sediments in two Sydney estuaries,Aust.Mar.Freshwater Res.49(1998) 533–540.

[59]W.H.Zhou,T.Li, C.H.Cai,L.M.Huang,H.K.Wang,J.R.Xu,J.D.Dong,S.

Zhang,Spatial and temporal dynamics of phytoplankton and bacterioplank-ton biomass in Sanya Bay,northern South China Sea,J.Environ.Sci.21(2009) 595–603.

数据备份与恢复系统哪个品牌好

在互联网普及的时代,数据显得尤为重要。数据备份是对数据进行再存储,是一个数据导出动作,以防数据丢失。而数据恢复则与数据备份是两个相反方向的行为,是将不小心丢失的数据重新导回电脑端。数据备份与恢复系统哪个品牌好呢? 铱迅数据备份备份与恢复系统,是业界针对大数据量环境的应急接管平台,其利用磁盘级CDP技术,可实现IO级别的细颗粒度实时备份,将备份窗口、数据丢失降到较低。并且可以实现任意时间点的数据挂载与演练,能够快速响应业务系统的接管需求,对应用实现连续保护。 软硬件一体化配置 数据备份与恢复系统集备份服务器,操作系统、备份软件、磁盘阵列融于一体;并可加载铱迅容灾平台的虚拟化软件模块,备份容灾一机实现。 多方位的数据备份支持

备份存储服务器 软件模块 软件部分的服务器端内置在硬件中,采用Web界面提供设备、客户端、备份数据及管理员的管理;客户端由多个功能模块构成,安装在需要备份的服务器或PC上,依据数据保护的对象和等级不同,客户端授权划分为多个类型;更有扩展功能软件包,支持异地数据灾备等功能。

铱迅数据备份与恢复系统采用软硬件一体化配置,以持续数据保护技术(CDP)为核心,具备实时备份、定时备份等功能,整合了USB Key、密码口令等多因子安全身份验证安全模块,可以为数据库、文件、应用、操作系统提供安全、有效、完整的数据保护。 多方位备份 跨平台支持各类桌面电脑、服务器及小型机;支持Windows、Linux、Unix等操作系统及VMware ESX(i)、Hyper-V等虚拟化系统;支持Oracle/SQL Server/My SQL/DB2/Sybase及国产数据库等多种数据库;支持双机、虚拟机等服务器架构;支持LAN-Base、LAN-Free等备份方式;提供手动备份、定时备份、实时备份等备份策略设置;提供数据库、文件、应用及操作系统的多方位保护。 简易化操作 数据自动集中备份到黑方的存储空间中。基于Web界面统一管理平台,提供备份设备、备份客户端、备份数据的集中管理,将IT 技术人员的专业性数据备份恢复工作简化为普通工作人员即可轻松掌握并自动完成的简单工作。 CDP实时备份和恢复 创新性CDP持续数据保护技术,数据备份与恢复准确到秒,连续实时捕获所需备份文件的数据变化,并自动保存变化的数据和时间戳(即表示数据变化的时间节点),在此基础上可以实现过去任意时间点的数据恢复。有效解决定时备份、准CDP备份的时间窗口问题。 功能简介 核心技术 铱迅数据备份与恢复系统以持续数据保护(CDP)为核心技术精髓,并结合升级加密、数据压缩、数据同步等诸多先进技术,来实现可靠、安全、多面、有效的数据备份与恢复。

数据备份及恢复标准流程

数据备份及恢复标准流程

索引 一Outlook Express篇 (3) 二Foxmail篇 (5) 三Office Outlook篇 (7) 四操作系统篇 (8) 五数据库篇 (9) 六数据灾难恢复篇 (10)

一、Outlook Express篇 Outlook Express是WIN9X自带的邮件收发软件,它拥有相当多的用户,但由于其是随系统安装而来的,再加上WIN9X的极不稳定,重装系统后将丢失OE中的很多个性设置,甚至于收发的邮件,因此,在系统正常时备份相关的信息是必要的。本文以OE5.0以上版本为例介绍。 1.存储文件夹的改变 在OE的工具-选项-维护-存储文件夹中可以改变邮件的存放位置,这里必须把邮件存放在其它分区中如E:\MAIL中,或改变HKEY_CURRENT_USER\Software\Microsoft\OutlookExpress中的Store Root,可以导出这个注册表分支,存放在E:\MAIL中。 2.邮件规则的备份 OE的一个强大功能就是其邮件规则,这样可以有选择性的收取邮件,将不用的邮件直接在服务器上删除,这些规则可以在脱机状态下设定,而不象FOXMAIL的远程邮箱管理必须在线执行,这样并没有节省在线的时间。 在OE中设置了邮件规则(在工具-邮件规则-邮件中进行设置)后,在注册表中的HKEY-CURRENT-USER\Identities\{9ACEA700-E70A-11D3-9796-A034DB516564}\Software\Microsoft\Outlook Express\5.0\Rules\Mail保存你的该项设置,当然各人{}中的内容可能不同;你的机子上OE中有多个标识,这里将会有几个{}。 3.个性化的签名 在工具-选项-签名中可以设定自已个性化的签名,而且对不同帐号自动添加不同的签名,如用于投稿的帐号,要添加自己的通信地址,这样可以收到稿费。在新闻中发帖子,要

系统运维管理-备份与恢复管理(Ⅰ)

系统运维管理备份与恢复管理(Ⅰ) 版本历史 编制人: 审批人:

目录 目录 (2) 一、要求容 (3) 二、实施建议 (3) 三、常见问题 (4) 四、实施难点 (4) 五、测评方法 (4) 六、参考资料 (5)

一、要求容 a)应识别需要定期备份的重要业务信息、系统数据及软件系统等; b)应建立备份与恢复管理相关的安全管理制度,对备份信息的备份方式、备份频度、存储介质和保存期等进行规定; c)应根据数据的重要性和数据对系统运行的影响,制定数据的备份策略和恢复策略,备份策略须指明备份数据的放置场所、文件命名规则、介质替换频率和将数据离站运输的方法; d)应建立控制数据备份和恢复过程的程序,记录备份过程,对需要采取加密或数据隐藏处理的备份数据,进行备份和加密操作时要求两名工作人员在场,所有文件和记录应妥善保存; e)应定期执行恢复程序,检查和测试备份介质的有效性,确保可以在恢复程序规定的时间完成备份的恢复; f)应根据信息系统的备份技术要求,制定相应的灾难恢复计划,并对其进行测试以确保各个恢复规程的正确性和计划整体的有效性,测试容包括运行系统恢复、人员协调、备用系统性能测试、通信连接等,根据测试结果,对不适用的规定进行修改或更新。 二、实施建议 制定数据备份的规定,包括备份的策略、计划和容等信息,备份策略的制定要结合本身数据量多少、数据更新时间等要求进行制定,对备份的数据要进行定期的恢复性测试,保证该备份的可用性。数据的恢复管理不仅仅是灾难恢复的计划,应当针对不同的数据恢复要求和恢复的容制定多种适当的恢复策略,并定期对策略的有效性进行测试。

三、常见问题 多数公司没有对备份的数据进行恢复性测试。 四、实施难点 数据的恢复性测试需要建立测试的环境,投入较大;如果在原有系统上进行测试,应当不影响系统的正常运行,并确保原有系统能够快速的恢复。 五、测评方法 形式访谈,检查。对象系统运维负责人,系统管理员,数据库管理员,网络管理员,备份和恢复管理制度文档,备份和恢复策略文档,备份和恢复程序文档,备份过程记录文档,检查灾难恢复计划文档。 实施 a)应访谈系统管理员、数据库管理员和网络管理员,询问是否识别出需要定期备份的业务信息、系统数据及软件系统,主要有哪些;对其的备份工作是否以文档形式规了备份方式、频度、介质、保存期等容,数据备份和恢复策略是否文档化,备份和恢复过程是否文档化,对特殊备份数据(如数据)的操作是否要求人员数量,过程是否记录备案; b)应访谈系统管理员、数据库管理员和网络管理员,询问是否定期执行恢复程序,周期多长,系统是否按照恢复程序完成恢复,如有问题,是否针对问题进行恢复程序的改进或调整其他因素; c)应访谈系统运维负责人,询问是否根据信息系统的备份技术措施制定相应的灾难恢复计划,是否对灾难恢复计划进行测试并修改,是否对灾难恢复计划定期进行审查并更新,目前的灾难恢复计划文档为第几版; d)应检查备份和恢复管理制度文档,查看是否对备份方式、频度、介质、保存期等容进行规定; e)应检查数据备份和恢复策略文档,查看其容是否覆盖数据的存放场所、文

系统备份及恢复

系统备份及恢复 推荐的系统备份策略。系统需要备份的内容: ERDB ( 系统的控制组态内 容): c:\Program files\Honeywell\Experion PKS\Engineering Tools\System\Er Server 实时数据 库 (操作组态内容): C:\ Program files\Honeywell\ Experion PKS\Server\Data 操作流程图(包括子图): 用户自定 Station 设置文 件: C:\ Program files \Honeywell\ Experion PKS\Client\Station\*.stn \system\R**\*.stb QB 设置文件: 用户自定义目录 报表文件(自由格式报表或Excel报表) : 用户自定义目录 事件或历史数据文件及归档文件 (可选择备份或不 备): C: \Program files \honeywell\ Experion PKS\Server\Archive 用户自定义文件: 用户自定义目录 1系统备份介质建议: 移动硬盘 / 刻录光盘 / 磁带 / 远程网络计算机硬盘 1.1 ERDB备份(主Server:ServerB) Upload and Update Dbadmin – Backup Database 生成主*.bak 文件 Control Builder—File-Export生成project 备份文件. Snapshot/Checkpoint files — C:\Honeywell\Engineering Tools\System\ER\CPM***.snapshot 将以上生成的三类文件拷贝到备份目标盘er目录下 1.2 Server 数据库 (Server同步情况下, 只需备份一个 Server) C:\Program files\Honeywell\Experion PKS\Server\Data 目录到备份目标 盘。(不一定能直接copy, 与后台Service有关)。 bckbld –out filename –tag cda / backup function.(使用pntbld filename恢 复组态内容) 1.3 操作流程图(包括子图) 操作流程图(包括子图)备份到目标盘. 1.5 Station 设置文件(两台Server分别备份,并作标记) C:\Honeywell\Client\Station\*.stn 拷贝到备份目标盘station目录下 1.6QB 设置文件 (备份正式使用的那份文件) 用户自定义目录下*.qdb 文件拷贝到备份目标盘qckbld目录下 . 1.7 报表文件(自由格式报表或Excel报表) : C:\Honeywell\Server\Report 下自由格式报表或用户Excel 报表文件拷贝到备份目标盘Report目录下 1.8事件及历史数据文件和归档文件 (可选择备份或不备): C:\honeywell\Server\data ,Archive 和evtarchive目录拷贝到备份目标盘Archive目录下. 1.9 用户自定义文件备份到目标盘 2 使用备份恢复系统(适用于冗余Server) 2.1 ServerA 系统恢复(ServerB 工作正常情况下) ServerA 重新安装操作系统和PKS软 件 设置Servera与Serverb冗余 使ServerA 处于Backup 状态 在Station中(非ServerA station)作Server同步, 恢复Server实时数据库 在ServerB 中 Dbadmin--Recover Secondary Database ServerB中的流程图拷贝到ServerA响应目录下 备份盘中ServerA的Station目录下*.stn文件拷贝回ServerA 中: C:\Honeywell\Client\Station 目录覆盖同名文件. 备份盘中ServerA的qckbld目录中*.qdb文件恢复到ServerA相应目录中 报表文件文件恢复到ServerA相应目录中 历史数据文件从ServerB C:\honeywell\Server\Archive 目录拷贝到ServerA相应Archive目

FANUC系统数据备份与恢复教学内容

F A N U C系统数据备份 与恢复

一、FANUC系统数据备份与恢复 (一)概述 FANUC数控系统中加工程序、参数、螺距误差补偿、宏程序、PMC程序、PMC数据,在机床不使用是是依靠控制单元上的电池进行保存的。如果发生电池时效或其他以外,会导致这些数据的丢失。因此,有必要做好重要数据的备份工作,一旦发生数据丢失,可以通过恢复这些数据的办法,保证机床的正常运行。 FANUC数控系统数据备份的方法有两种常见的方法: 1、使用存储卡,在引导系统画面进行数据备份和恢复; 2、通过RS232口使用PC进行数据备份和恢复。 (二)使用存储卡进行数据备份和恢复 数控系统的启动和计算机的启动一样,会有一个引导过程。在通常情况下,使用者是不会看到这个引导系统。但是使用存储卡进行备份时,必须要在引导系统画面进行操作。在使用这个方法进行数据备份时,首先必须要准备一张符合FANUC系统要求的存储卡(工作电压为5V)。具体操作步骤如下: 1、数据备份: (1)、将存储卡插入存储卡接口上(NC单元上,或者是显示器旁边); (2)、进入引导系统画面;(按下显示器下端最右面两个键,给系统上电); (3)、调出系统引导画面;下面所示为系统引导画面: (4)、在系统引导画面选择所要的操作项第4项,进入系统数据备份画面;(用UP或DOWN键)

(5)、在系统数据备份画面有很多项,选择所要备份的数据项,按下YES键,数据就会备份到存储卡中; (6)、按下SELECT键,退出备份过程; 2、数据恢复: (1)、如果要进行数据的恢复,按照相同的步骤进入到系统引导画面; (2)、在系统引导画面选择第一项SYSTEM DATA LOADING; (3)、选择存储卡上所要恢复的文件; (4)、按下YES键,所选择的数据回到系统中; (5)、按下SELECT键退出恢复过程; (三)使用外接PC进行数据的备份与恢复 使用外接PC进行数据备份与恢复,是一种非常普遍的做法。这种方法比前面一种方法用的更多,在操作上也更为方便。操作步骤如下: 1、数据备份: (1)、准备外接PC和RS232传输电缆; (2)、连接PC与数控系统; (3)、在数控系统中,按下SYSTEM功能键,进入ALLIO菜单,设定传输参数(和外部PC匹配); (4)、在外部PC设置传输参数(和系统传输参数相匹配); (5)、在PC机上打开传输软件,选定存储路径和文件名,进入接收数据状态; (6)、在数控系统中,进入到ALLIO画面,选择所要备份的文件(有程序、参数、间距、伺服参数、主轴参数等等可供选择)。按下“操作”菜单,进入到操作画面,再按下“PUNCH”软键,数据传输到计算机中; 2、数据恢复: (1)、外数据恢复与数据备份的操作前面四个步骤是一样的操作;

信息安全系统备份与恢复管理办法

信息安全系统备份与恢复管理办法 1.总则 第一条为保障公司信息系统的安全,使得在计算机系统失效或数据丢失时,能依靠备份尽快地恢复系统和数据,保护关键应用和数据的安全,保证数据不丢失,特制定本办法。第二条对于信息系统涉及到的网络设备、网络线路、加密设备、计算机设备、应用系统、数据库、维护人员,采取备份措施,确保在需要时有备用资源可供调配和恢复。 第三条本管理办法中涉及到的设备主要指运行在信息技术部主机房中的网络设备、加密设备及计算机设备。 第四条信息系统备份手段根据不同信息的重要程度及恢复时间要求分为实时热备份和冷备份等。同一平台的系统应尽量使用同样的备份手段,便于管理和使用。信息技术部负责信息系统的备份与恢复管理,并制定数据备份计划,对数据备份的时间、内容、级别、人员、保管期限、异地存取和销毁手续等进行明确规定。 第五条信息技术部应根据各系统的重要程度、恢复要求及有关规定要求制定系统配置、操作系统、各应用系统及数据库和数据文件的备份周期和保存期限。 第六条对于重要系统和数据的备份周期及备份保存期限应遵循以下原则:

(一) 至少要保留一份全系统备份。 (二) 每日运行中发生变更的文件,都应进行备份。 (三) 生产系统程序库要定期做备份,每月至少做一次。 (四) 生产系统有变更时,须对变更前后的程序库进行备份。 (五) 批加工若有对主文件的更新操作,则应进行批加工前备份。 (六) 每天批加工结束后都要对数据文件进行批后备份,对核心数据须进行第二备份。 (七) 对批加工生成的报表也要有相应的备份手段,并按规定的保留期限进行保留。 (八) 用于制作给用户数据盘的文件应有备份。 (九) 各重要业务系统的月末、半年末、年末以及计息日等特殊日的数据备份须永久保留。 (十) 定期将生产系统的数据进行删减压缩,并将删减的数据备份上磁带,永久保留。 (十一) 以上未明确保存期限的各项备份的保存至少应保存一周。 2.设备备份 第七条信息系统电源设备应尽量保证有两套电源来源。 第八条对关键通讯线路和网点通讯线路必须采用双通讯线路;网络的运行线路和备份线路必须选用不同的网络服务供

论工控生产系统的数据备份及系统灾难恢复方法

论工控生产系统的数据备份及系统灾难恢复方法

目录 一、初识工控生产系统 (3) 1.应用架构与部署方式 (3) 2.硬件组成 (5) 3.操作系统 (8) 4.应用程序 (8) 二、工控机数据与系统保护分析 (9) 1.数据重要 VS 系统重要 (9) 2.硬件容易损坏 (9) 3.工控机应用程序复杂 (10) 4.昂贵的费用 (10) 三、对工控机的保护方案有哪些 (10) 1.冷备机 (10) 2.Ghost方案 (11) 3.磁盘克隆 (11) 四、理想的工控机保护方案 (12) 1.工控机需要备份什么 (12) 2.在线热备份 (12) 3.多种备份机制 (12) 4.灾难发生后的系统快速恢复 (13) 5.异机还原与系统迁移 (13) 五、Acronis到底能对工控干点啥 (13) 1.在线热备份,无停机时间 (17) 2.在线热备份,无停机时间生产快速恢复 (18) 3.更经济、更有效 (18)

一、初识工控生产系统 工控机(Industrial Personal Computer,IPC)即工业控制计算机,与传统的办公用计算机不同,工控机采用专用的硬件设备,使用特殊的制造工艺而成。在控制现场、路桥控制收费系统、医疗仪器、环境保护监测、通讯保障、智能交通管控系统、楼宇监控安防、语音呼叫中心、排队机、POS柜台收银机、数控机床、加油机、金融信息处理、石化数据采集处理、物探、野外便携作业、环保、军工、电力、铁路、高速公路、航天、地铁、智能楼宇、户外广告等诸多领域得到广泛的应用。我们将从多个方面来认识工控机,以下将进行基础知识的介绍。 1.应用架构与部署方式 工控机从应用架构与部署方式来分,可分为单节点工控设备、集中管控型工控系统、混合型工控系统。 单节点工控设备只负责对单个生产环节进行控制,不与其它生产设备产生必然的数据联系。例如,某机械生产机床设备配置一台工控机,并在前端配置LED按键式控制面板,生产工人通过前端LED面板的操作对生产设备进行参数的配置与调整,最后生产出预期的产品。如下图所示(本文中图片或来自网络,以达到读者对所讲述内容深入理解,仅供参考):

系统数据备份与恢复规程

密级:内部 系统数据备份与恢复规程 ***有限公司 202 年月

目录 第一章引言 (1) 1.1编写目的 (1) 1.2预期读者 (1) 1.3编写背景 (1) 1.3.1使用者 (1) 1.4文档结构 (2) 第二章数据备份功能要求详述 (3) 2.1备份环境 (3) 2.1.1备份环境 (3) 2.1.2存储网络环境 (4) 2.1.3备份方式及备份空间 (4) 2.2备份需求 (5) 2.2.1系统级备份 (5) 2.2.2应用级备份 (5) 2.2.3文件级备份 (5) 2.2.4数据库备份 (5) 2.3备份策略 (5) 2.3.1备份策略定义 (5) 2.3.2系统级备份策略 (6) 2.3.3应用级备份策略 (6) 2.3.4文件级备份策略 (6) 2.3.5数据库备份策略 (7) 第三章故障与恢复策略 (8) 3.1故障与恢复介绍 (8) 3.2设计原则 (9) 3.3故障与恢复策略 (9) 第四章备份与恢复步骤 (10) 4.1备份步骤 (10) 4.1.1系统级备份步骤 (10) 4.1.2应用软件备份步骤 (10) 4.1.3脱机应用文件备份步骤 (11) 4.1.4数据库备份步骤 (13) 4.2恢复步骤 (16) 4.2.1系统级故障恢复步骤 (16) 4.2.2应用软件故障恢复步骤 (16) 4.2.3脱机应用文件故障恢复步骤 (17) 4.2.4数据库故障恢复步骤 (18)

第一章引言 1.1 编写目的 本文档主要描述江西中磊支付平台的数据备份与恢复的需求、策略要求以及相应的步骤,为后期实施和维护管理过程中提供数据库备份与恢复的规范。 1.2 预期读者 江西中磊支付平台项目组项目经理、集成经理、开发经理、系统管理员。 1.3 编写背景 在江西中磊支付平台的软件实施过程中,数据的安全至关重要,一方面数据的丢失或者数据库系统无法正常运行影响江西中磊支付平台业务应用系统的正常运作,另一方面如果系统在崩溃后不能够按照预期的要求恢复到指定状态也将影响到江西中磊支付平台业务应用系统的正常运作,例如数据冲突或者状态不一致。特地编写此文档将对实施过程中的数据备份与恢复提供指导。 1.3.1使用者 本文档适用于参与江西中磊支付平台项目实施的工程师、江西中磊支付平台的系统管理员以及项目经理、开发经理、系统管理员。

系统数据备份与恢复管理制度

系统数据备份与恢复管理制度 一、目的 为规范数据备份管理工作,合理存储历史数据及保证数据的安全性,防止因硬件故障、意外断电、病毒等因素造成数据的丢失,保障中心技术资料的储备,特制订本管理制度。 二、适用范围 中心各部门、实验室。 三、备份介质 移动硬盘、光盘、邮盘等 四、制度内容 1、为了确保系统计算机系统的数据安全,使得在计算机系统失效或数据丢失时,能依靠备份尽快地恢复系统和数据,保护关键应用数据的安全,保证数据不丢失,特制定本制度。 2、拥有重要系统或重要数据的科室或部门应该及时对数据进行备份,防止系统数据的丢失;涉及数据备份和恢复的科室或部门要由专人负责数据备份工作,并认真填写数据备份记录表。 3、计算机信息数据备份的基本原则是“谁使用、谁备份”,即由计算机使用者按要求及时备份相关信息数据。 4、数据的备份分为定期备份和临时备份。定期备份是指按照规定的时间定期对数据进行备份;临时备份是指在特殊情况下(如电脑中毒、软件升级、更换设备等)进行的应急备份。各科室、部门可依据自身的工作特点选择不同的备份模式。 5、所有数据备份工作由各科室指定管理员进行详实记录,并建

立记录档案。备份的数据应该严格管理,妥善保存;备份数据资料保管地点应有防火、防热、防潮、防尘、防磁、防盗设施。 6、数据的备份、恢复、转出、转入的权限都应严格控制。严禁未经授权将数据备份出系统,转给无关的人员或单位;严禁未经授权进行数据恢复或转入操作。 7、一旦发生数据丢失或数据破坏等情况,要由系统管理员进行备份数据恢复,以免造成不必要的麻烦或更大的损失。 8、说明:其他相关规定按程序文件BZCDC/CX24-2011《计算机应用管理程序》执行。 五、附表 BZCDC/JL0050 《数据备份记录表》

FANUC系统的数据备份与恢复

引导画面得数据备份与恢复 一:参数得设定与修改 1.按下offset/seting 2.按下『setting』,出现setting画面. 3.在setting画面中,将PWE=1、出现P/S100报警,表示参数可以修改。 4.按『system』健。 5.按“参数”软件健,出现参数画面。 6.键入所需要修改得参数号。 7.按“搜索”健,页面直接翻到所需要修改得参数位. 8.在MDI方式下,可以修改所需要得参数。 9.参数修改后,将设定画面得参数写入保护开关置0(PEW=0)。 10.如果修改参数后,出现000号报警,说明必须重新上电后,参数才能生效。 二:引导画面数据得数据备份与恢复 1 :数据得分区与分类 1):ROM-FLASH-ROM,只读存储器,用于存储系统文件与机床厂家得(MTB)文件 2):SRAM-静态随机存储器,用于存储用户数据,断电后需要电池保护,具有易失性。2:数据得分类 1):系统文件—FANUC提供得CNC与伺服控制软件。 2):MTB文件-PMC程序、机床厂家编辑得宏程序执行器等 3):用户文件-系统参数、螺距误差补偿值、加工程序、宏程序、刀具补偿值、工件坐标系数据、PMC参数等等. 3:数据得备份与保存。 SRAM数据由于需要电池保护容易丢失,要通过“引导画面BACKUP”方式或”数据输入输出方式“保存前者保留得数据无法用WORD与写字板得软件打开.F-ROM数据相对稳定,不易丢失,但就是如果更换主板与存储器时,有可能丢失,其中得FANUC系统文件可由FANUC公司恢复,但就是机床厂家得PMC程序以及用户宏程序执行器很难恢复,所以备份数据十分必要。 三:SRAM数据得备份。 通过系统引导程序把数据备份到C-F卡中,该法简便易行,恢复容易。步骤如下: 1:CNC-SRAM得数据备份到C—F卡上。 1):启动引导系统(BOOTSYSTEM) 操作:同时按住软件右端两个健,并接通NC电源。系统就进入引导画面。 用软键『up』、『down』进行选择处理,按软键『select』,并按软键『yes』、『no』确认。2)用软键『up』、『down』选择到“SRAMDATA BACKUP"上,进入到SRAM DATA BACKUP”子画面上,便就是SRAM数据得备份画面。(通过此功能,可以将系统得用户数据,包括、螺距误差补偿值、加工程序、宏程序、刀具补偿值、工件坐标系数据、PMC参数等等全部存储到C-F中,或者以后恢复到CNC中。) 3)在该子画面中, 第一步:选择“1、、SRAM BACKUP”,显示确认得信息. 第二步:按『yes』健,就开始保存数据. 第三步:如果要备份得文件以及存在在卡中,系统就会提示就是否覆盖原文件? 第四步:在“”处显示现在正在写入得文件名。 第五步:结束后,显示以下信息。请按『select』键.

电子数据备份和恢复管理规程

电子数据备份和恢复管理规程 1.目的:本规程定义了GMP 计算机及自动化系统关于数据备份恢复的基本通用规程。规程涉及了数据的产生,存储和归档,采用独立的物理介质备份机制以避免系统因意外事故,网络中断,病毒恶意攻击,系统或软件参数修改等造成重要数据的丢失。 2.范围: 本操作规程适用于公司所有GMP计算机和自动化系统的电子数据管理,此类系统用于或为GMP法规环境提供支持。 3.职责 4.术语和定义 4.1备份/恢复:备份是指复制记录、数据和软件的过程,用以预防原始记录、数据和软件的完整性和可用性的损失。恢复是指随后在需要时还原己备份的记录、数据或软件 4.2存档:存档是指通过将记录和数据转移到另外的位置或系统,以使其不可在当前工作中使用的过程,这通常能使这些记录和数据不再变动。有时还需要同时保存支持这些记录和数据的应用程序。存档记录应该可以很容易地获取,以用于商业目的或监管目的。 5.程序 5.1应将计算机系统的数据和软件进行周期性的备份,并做好记录(见附件1)。所有备份介质存放在档案室,按照《档案管理规范(Q/CDGK3.18)》的相关要求进行管理,一律不准外借,不准流出公司,任何人员不得擅自取用,更不得私自再备份。归档的备份介质取用,需经质量负责人批准,并填写《档案借阅审批表》。借用人员使用完介质后,应立即归还,由档案管理员检查,确认介质完好。 5.2独立的数据文件,数据每次以独立的数据文件产生,可以由应用程序直接从磁盘分别调用,如HPLC Chemstation 产生的数据文件,这样文件的备份可以只备份新增的文件。 5.3文件型数据库的应用程序通常不提供备份功能,备份时需要从磁盘上直接复制数据库,比如Access 数据库。由于所有数据存贮与一个数据库内,需要对数据库全部复制。 5.4关系型数据库是同时存放数据及其关系的数据库,这些数据库通常由应用程序提供备份功能或自动备份功能,对于这类数据库应采用完全备份的方式进行备份,备份后的文件复制在备份磁盘上。 5. 5备份周期通常可以设定为一个月,如果程序自动备份,异地备份的周期可为一年。 5.6可通过备份前后文件或文件夹的大小、文件数量来核查被备份的文件或文件夹的完整性,并进行登记,表格见附件1。 5.7每半年应对之前的备份介质进行一次检查,应随机抽取至少一份备份介质,在该备份介质上调用至少1个备份数据,并打印相关报告,作为附件并登记,检查表格见附件2. 5.8存放备份数据的介质必须具有明确的标识;标识必须使用统一的命名规范,注明介质编号、介质的启用日期、保留期限和系统管理员等重要信息。 5.9 备份文件的保存时间至少为产品效期后一年,出口的原料药保存时间为该批产品销售后三年。过期或不能使用的备份媒介应通过受控的方式进行销毁或处置,由数据使用部门和质量管理人员现场见证销毁或处置过程,并提供

FUC系统的数据备份与恢复

F U C系统的数据备份与 恢复 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

引导画面的数据备份与恢复 一:参数的设定和修改 1.按下offset/seting 2.按下『setting』,出现setting画面。 3.在setting画面中,将PWE=1.出现P/S100报警,表示参数可以修改。 4.按『system』健。 5.按“参数”软件健,出现参数画面。 6.键入所需要修改的参数号。 7.按“搜索”健,页面直接翻到所需要修改的参数位。 8.在MDI方式下,可以修改所需要的参数。 9.参数修改后,将设定画面的参数写入保护开关置0(PEW=0)。 10.如果修改参数后,出现000号报警,说明必须重新上电后,参数才能生效。二:引导画面数据的数据备份与恢复 1:数据的分区和分类 1):ROM-FLASH-ROM,只读存储器,用于存储系统文件和机床厂家的(MTB)文件 2):SRAM-静态随机存储器,用于存储用户数据,断电后需要电池保护,具有易失性。 2:数据的分类 1):系统文件-FANUC提供的CNC和伺服控制软件。 2):MTB文件-PMC程序、机床厂家编辑的宏程序执行器等

3):用户文件-系统参数、螺距误差补偿值、加工程序、宏程序、刀具补偿 值、工件坐标系数据、PMC参数等等。 3:数据的备份和保存。 SRAM数据由于需要电池保护容易丢失,要通过“引导画面BACKUP”方式或”数 据输入输出方式“保存前者保留的数据无法用WORD和写字板的软件打开。F-ROM数据相对稳定,不易丢失,但是如果更换主板和存储器时,有可能丢失,其中的FANUC系统文件可由FANUC公司恢复,但是机床厂家的PMC程序以及用户宏程序执行器很难恢复,所以备份数据十分必要。 三:SRAM数据的备份。 通过系统引导程序把数据备份到C-F卡中,该法简便易行,恢复容易。步骤如下: 1:CNC-SRAM 的数据备份到C-F卡上。 1):启动引导系统(BOOT SYSTEM) 操作:同时按住软件右端两个健,并接通NC电源。系统就进入引导画面。 用软键『up』、『down』进行选择处理,按软键『select』,并按软键『yes』、『no』确认。 2)用软键『up』、『down』选择到“SRAM DATA BACKUP”上,进入到SRAM DATA BACKUP”子画面上,便是SRAM数据的备份画面。(通过此功能,可以将系统的 用户数据,包括、螺距误差补偿值、加工程序、宏程序、刀具补偿值、工件坐标系数据、PMC参数等等全部存储到C-F中,或者以后恢复到CNC中。) 3)在该子画面中, 第一步:选择“1..SRAM BACKUP”,显示确认的信息。

计算机化系统数据备份与恢复操作规程

计算机化系统数据备份与恢复 管理规程 目的:建立有效的计算机系统数据备份和恢复操作规程,采用独立的物理介质备份机制,避免系统因意外事故,网络中断,病毒恶意攻击或软件参数修改等造成重要数据的丢失。范围:适用公司使用的具有数据记录、储存和运算功能、软件的计算机化系统。 责任:检验中心、设备部、及各使用部门。 内容: 1 概述 计算机化系统的数据和软件进行周期性的备份,并做好记录。所有备份介质存放在指定位置有超级管理员进行管理,一律不准外借,不准流出公司,任何人员不得擅自取用,更不得私自再备份。归档的备份介质取用,需经质量负责人批准。借用人员使用完介质后,应立即归还,由超级管理员检查,确保介质完好。 1.1 备份/恢复 数据备份采用人工备份的方式,将原有数据复制到另一区域或另一存储设备,预防原始记录、数据和软件的完整性和可用性的损失。数据包括原始数据备份、计算机操作系统备份、应用软件备份。 数据恢复是指在主机系统发生故障或计算机化系统发生意外无法正常服务在指定时间内按设定步骤恢复,包括软件、各类数据等。 1.2 存档 是指通过将备份的数据采用各类备份介质转移到另外的位置或系统,以使其不可在当前工作中使用的过程,这通常能使这些记录和数据不再变动。有时还需要同时保存支持这些记录和数据的应用程序。存档记录应该可以很容易地获取,以便于监管。 2 程序 2.1 数据备份 2.1.1 超级管理员应对公司使用计算机化系统中涉及的数据进行备份管理,由每一计算机化系统的管理员进行数据备份和复核,再交由超级管理员进行存档管理。如检验中心精密仪器产生的检验数据进行备份,包括液相色谱系统、气相色谱系统、原子吸收系统、紫外-可见分光系统等相关原始数据。 2.1.2 备份介质

数据备份与恢复

一、摘要: 随着信息化建设的进展,各种应用系统的运行,必然会产生大量的数据,而这些数据作为企业和组织最重要的资源,越来越受到大家的重视。同样,由于数据量的增大和新业务的涌现,如何确保数据的一致性、安全性和可靠性;如何解决数据集中管理后的安全问题,建立一个强大的、高性能的、可靠的数据备份平台是当务之急。数据遭到破坏,有人为的因素,也有各种不可预测的因素。 有专业机构的研究数据表明:丢失300MB的数据对于市场营销部门就意味着13万元人民币的损失,对财务部门意味着16万的损失,对工程部门来说损失可达80万。而丢失的关键数据如果15天内仍得不到恢复,企业就有可能被淘汰出局。 实际上,我们很多企业和组织已有了前车之鉴,一些重要的企业内曾经不止一次地发生过灾难性的数据丢失事故,造成了很大的经济损失,在这种情况下,数据备份就成为日益重要的措施,我们必须对系统和数据进行备份!通过及时有效的备份,系统管理者就可以高枕无忧了。所以,对信息系统环境内的所有服务器、PC进行有效的文件、应用数据库、系统备份越来越迫切。 二、引言: 随着以计算机为基础的电子信息技术在社会各方面越来越广泛的深入应用,各种工作逐步走上了办公自动化网络管理的发展道路,大量的管理信息系统和专用办公软件被开发并投入使用,这对规范管理、提高工作效率起到了良好的促进作用。在实际工作中,信息系统和管理软件从开始投入使用起,就将随着工作的开展和时间的推移,持续记录并积累大量的数据。工作中的许多重要的决策就是以这些日常积累的数据为基础的。但信息系统在提供方便和高效的同时,在运行中却常常会出现一些意料之外的问题,如人为误操作、硬件损毁、电脑病毒侵袭、断电或其它意外原因造成网络系统瘫痪、数据丢失,给企业、单位和管理人员带来难以弥补的损失。避免这种损失的最佳途径就是建立可靠的数据备份恢复系统,但是大部分应用人员只是在受到损失后才意识到了数据备份的重要性。

FANUC数控系统数据备份与恢复

FANUC 使用存储卡数据备份和恢复 1.关闭系统插存储卡 2.起动引导系统方法及画面如下(BOOT SYSTEM ): 3. 注意事项:CF 卡如果初次使用请事先格式化;抽取或安装CF 卡请先关闭控制器电源避免CF 卡损坏;不要在格式化或数据存取的过程中关闭控制器电源避免CF 卡损坏。 4. 系统数据被分在两个区存储。F-ROM 中存放的系统软件和机床厂家编写PMC 程序以及P-CODE 程序。S-RAM 中存放的是参数,加工程序,宏变量等数据。通过进入BOOT 画面可以对这两个区的数据进行操作(按住以上两个键后同时接通CNC 电源,引导系统起动后,开始显示『MAIN MENV 画面』,下面对此画面及操作进行说明。 5. 操作方法:用软件UP DOWN 进行选择处理。把光标移到要选择的功能上,按软件SELECT ,英文显示请确认?之后按软件YES 或NO 进行确认。正常结束时英文显示请按SELECT 键。最终选择END 结束引导系统BOOT SYSTEM ,起动CNC ,进入主画面。 6. 软菜单:[<1][SELECT 2][YES 3][NO 4][UP 5][DOWN 6][7>]使用软键起动时,数字显示部的数字不显示。用软键或数字键进行1-7操作说明如下表: 序号 显示 键 动作 1 < 1 在画面上不能显示时,返回前一画面 2 SELECT 2 选择光标位置的功能 3 YES 3 确认执行时,按“是”回答 4 NO 4 不确认执行时,按“否”回答 5 UP 5 光标上移一行 6 6 光标下移一行 7 > 7 在画面上不能显示时,移向下一画面 SYSTEM MONITOR MAIN MENU 60M4-01 (显示标题。右上角显示的是引导系统的系列号和版号。) 1. SYSTEM DA T A LOADINC (把系统文件、用户文件从存储卡写入到数控系统的快闪存储器中。) 2. SYSTEM DA T A CHECK (显示数控系统快闪存储器上存储的文件一览表,以及各文件128KB 的管理单位数和软件的系列、确认ROM 版号。) 3. SYSTEM DA T A DELETE (删除数控系统快闪存储器上存储的文件。) 4. SYSTEM DA T A SA VE (对数控系统 F-ROM 中存放的的用户文件,系统软件和机床厂家编写PMC 程序以及P-CODE 程序写到存储卡中。) 5. SRAM DA T A BACKUP ( 对数控系统S-RAM 中存放的 CNC 参数、PMC 参数、螺距误差补偿量、加工程序、刀具补偿量、用户宏变量、宏P-CODE 变量、SRAM 变量参数全部下载到存储卡中,作备份用或复原到存储器中。注:使用绝对编码器的系统,若要把参数等数据从存储卡恢复到系统SRAM 中去,要把1815号参数的第4位设为0,并且重新设置参考点。备份:SRAM BACKUP[ CNC –---MEMORY CARD ];恢复:.RESTOR SRAM[ MEMORY CARD ----CNC ] ) 6. MEMORY CARD FILE DELETE (删除存储卡上存储的文件) 7. MEMORY CARD FORMA T (可以进行存储卡的格式化。买了存储卡第一次使用时或电池没电了,存储卡的内容被破坏时,需要进行格式化。) 10. END (结束引导系统BOOT SYSTEM ,起动CNC 。) *** MESSAGE *** SELECT MENU AND HIT SELECT KEY (显示简单的操作方法和错误信息) 〔SELECT 〕 〔YES 〕 〔NO 〕 〔UP 〕 〔DOWN 〕

Win7系统备份与还原机制

近来关于单分区方案可行性的讨论非常火热,关于数据的备份与还原也多次被提及。看来确有写点东西的必要了。 我们为什么要备份?从小的说,便于我们在紧急情况下迅速恢复正常工作状态;从大的说,数据无价——特别在计算机越来越多的成为我们个人生活写照的容器的今天,这一点尤为重要。 我们应当用什么来备份?我相信很多人会不假思索的说:“GHOST。”确实,GHOST 作为一款分区数据迁移软件是非常成功的,在中国的软件应用环境中在诸多因素的共同作用下它也得到了终端用户的极大接纳乃至神化,广泛应用于系统部署、系统备份等领域。但GHOST是基于硬盘分区的方案,这意味着把它不过是备份与还原体系的某一环节而已。而从现今流行的GHOST版本来看,缺乏在线备份、增量或差异备份、备份计划等不足使其实用性大打折扣。我不得不中断现有的工作来进行GHOST备份,我不得不只能将系统状态恢复到一个时间点上(除非您保留多个GHO文件),我不得不在日历上标注诸多的“今日宜GHOST”。对于无技术人群,即便有力图简化操作的“一键GHOST”,他们也无法有效的创建符合自己使用情况的备份文件(而脱离用户使用情况的备份等于什么也不是),同时误操作的较大可能使得数据丢失的风险大大上升。因而,在之前的几年中,对于父母使用的电脑,我并没有给他们装上什么“一键GHOST”。因为我明白,GHOST对于他们而言,非倒不能有效的实现应急还原,反而会成为毁灭数据的炸弹。对于有诸多新闻稿的父亲而言,这是不可想象的灾难。 备份绝不是只有GHOST能完成,诸多软件都在备份与还原这一领域奋斗着。我们正在使用的操作系统也向我们提供了丰富的备份与还原功能,何不先看看“系统能做什么”再做决断呢? 纵观近几代Windows操作系统的备份与还原功能发展史,不难看出微软在这方面做出了相当的努力。从XP下基于卷影复制的简单的文件备份与不太灵光的还原点,到Vista 下可用性大幅改进的还原点(我曾利用一台机器上数个月前的还原点成功的将系统从瘫痪状态迅速的恢复了过来,当然使用过老的还原点不是值得推荐的做法)、横空出世的CompletePC系统映像备份与WIN RE环境的引入,再到7之下进一步完善的备份管理与备份计划的引入,体会过这一变化过程的用户,肯定会感叹:Windows的备份功能越来越能用了,越来越好用了。 这篇文章将要介绍的,即是Windows7的备份与还原机制。事实上,这一备份与还原机制的核心在Vista时代就已奠定,在此依然向Vista表示敬意。

谈几种数控系统数据备份与恢复方法

谈几种数控系统数据备份与恢复方法 【摘要】本文系统的分析了备份机床参数的重要性,并归纳总结了几种常见数控系统的机床数据备份与回装的方法、注意事项与具体步骤。 【关键词】数控系统;参数;数据备份 引言 数控设备使技术密集型和知识密集型机电一体化产品,其技术先进、结构复杂、价格昂贵,在各行各业的生产上都发挥着重要作用。 数控机床参数用于调整机床功能,是机床厂家根据机床特点设定的,决定数控机床的功能和控制精度,是保证数控机床正常工作的关键,一旦参数丢失或误改动,容易使机床的某些功能不能实现或系统混乱甚至瘫痪,如轴补偿数据,是根据每台机床的实际情况确定的,即便是同厂家、同型号的两台机床,也是不一样的,一旦丢失,就需要用激光干涉仪重新进行检测、补偿,需要大量时间和精力,给工作带来很大的不便。所以在数控机床安装调试完毕或进行重大调整后,进行正确、完整、有效的参数备份是非常必要的。 1、参数恢复的方法 一般情况下,当参数发生改变和丢失时可以采用以下两种方式进行参数的恢复。 1.1根据故障现象进行正确的参数设置 这种方法适合处理许多常见的机床故障,例如主轴准停位置的调整,机床原点位置的调整,补偿反向间隙,螺距补偿参数设置等等。但是由于数控系统的参数数量非常相当庞大,当参数大范围丢失和改变时,最好借助于参数的备份与回装完成参数的恢复任务,这样既简单又可以保证准确性。 1.2利用机床的备份数据进行参数的下载和恢复 利用机床的备份数据进行恢复方法简单易行,效率高,可靠性高,是进行参数恢复的主要手段。下面着重介绍针对不同数控系统数据备份的方法和步骤。 2、常见数控系统参数备份和参数恢复的方法与步骤 2.1SINUMERIK 802D SL的参数备份与回装 SINUMERIK 802D SL的参数可以在系统内部备份,也可在CF卡上备份,或在计算机硬盘上备份。在机床调试完毕后,应备份以下数据:

相关文档
相关文档 最新文档