文档库 最新最全的文档下载
当前位置:文档库 › 基于补偿模糊神经网络的汽车双离合器式自动变速器起步控制策略研究

基于补偿模糊神经网络的汽车双离合器式自动变速器起步控制策略研究

基于补偿模糊神经网络的汽车双离合器式自动变速器起步控制策略研究
基于补偿模糊神经网络的汽车双离合器式自动变速器起步控制策略研究

【CN110705812A】一种基于模糊神经网络的工业故障分析系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910303394.0 (22)申请日 2019.04.15 (71)申请人 中国石油大学(华东) 地址 266580 山东省青岛市黄岛区长江西 路66号 (72)发明人 于强 张卫山 房凯  (51)Int.Cl. G06Q 10/06(2012.01) G06N 3/04(2006.01) G06N 5/04(2006.01) G05B 19/418(2006.01) (54)发明名称 一种基于模糊神经网络的工业故障分析系 统 (57)摘要 本发明提出了一种基于模糊神经网络 (Fuzzy network -FNN)的工业故障分析系统,包 括以下步骤:获取领域内专家经验知识、数据库 中所记载的历史故障数据以及相应故障模式解 释,并进行数据预处理消除异常和补全缺失值; 接下来进行知识数据模糊化;更新解释器,为新 增工业故障模式增加相应故障解释;使用模糊化 后的数据训练神经网络,动态更新神经网络连接 权值;基于神经网络正向推理方法对工业故障进 行诊断分析, 高效准确的判断数据或设备异常。权利要求书2页 说明书4页 附图1页CN 110705812 A 2020.01.17 C N 110705812 A

1.一种基于模糊神经网络的工业故障分析系统。其特征在于,知识获取与预处理模块、知识数据模糊处理模块、解释器更新模块、模糊神经网络训练模块、故障模糊推理模块,包括以下步骤: 步骤(1)、在知识获取与预处理模块,接收工作人员输入的与故障诊断分析相关的专家经验知识或是历史工业故障分析数据,经过清洗、筛选、和特征提取,形成有效的故障特征相关信息。建立工业故障特征数据集C, C={c 1,c 2,c 3,L ,c m }, 元素c i (i=1,2,L ,m)代表各种故障数据,以及故障原因分析数据集F,即故障数据的解释集合 F={f 1,f 2,f 3,L ,f n } 其中,元素f i (i=1,2,L ,n)代表各种可能的故障原因解释集合。 步骤(2)、在知识数据模糊处理模块,对故障诊断分析相关的专家经验数据知识进行模糊化处理,根据隶属度函数从具体的输入故障数据得到对模糊集隶属度。故障特征数据模 糊化后构成模糊向量: 是故障分析数据c i 的隶属度,同时将故障原因集合进行模糊处理后构 成故障原因模糊向量。 其中是故障原因f i 的隶属度,即可能性大小。故障分析模糊向量对应着模糊神经网络的神经元域,作为神经网络神经元的输入。 步骤(3)、在解释器更新模块,将故障原因分析数据集F,即故障数据的解释集合F={f 1,f 2,f 3,L ,f n }(元素f i (i=1,2,L ,n)代表故障原因解释集合)更新到综合数据库中,为解释器中新增工业故障进行故障解释。 步骤(4)、模糊神经网络训练模块,使用模糊化的专家经验知识以及历史故障数据训练模糊神经网络。模糊神经网络最上层为工业故障特征向量输入层,中间层网络为故障原因分析层,最下层网络为输出层。建立工业故障向量与故障原因向量模糊矩阵,作为模糊神经 网络连接权值矩阵: 矩阵中连接权值代表了故障特征向量到原因的模糊关系。其中r ij 表示故障数据中第i 个特征到第j种类故障的映射,即故障分析知识。设定故障诊断模型为β为特征系数,模糊矩阵r ij 将通过模糊神经网络对故障分析样本学习得到。通过实际故障样本不断对模糊神经网络进行训练,不断修正模糊矩阵r ij ,从而提高系统故障分析的准确性与可靠性。 权 利 要 求 书1/2页2CN 110705812 A

神经网络与模糊控制考试题及答案

一、填空题 1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成 2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 1 3、神经网络的学习方式有导师监督学习、无导师监督学习 和灌输式学习 4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法 5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习 6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类 7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。 7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控 制系统 8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。 8、不确定性、高度的非线性、复杂的任务要求 9.智能控制系统的主要类型有、、、 、和。 9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统 10.智能控制的不确定性的模型包括两类:(1); (2)。 10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。11.控制论的三要素是:信息、反馈和控制。 12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、 和。知识库的设计推理机的设计人机接口的设计 13.专家系统的核心组成部分为和。知识库、推理机 14.专家系统中的知识库包括了3类知识,它们分别为、、 和。判断性规则控制性规则数据

模糊控制的应用实例与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师 日期 2011 年 9 月 20 日

在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现 场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对 那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易 导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控 制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。(5)模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱, 尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值 ,输出变量为电机的电压变化量u。图2为电机调试之间的差值e及其变化率e c 输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 000r/s时,电机能很快稳定运行于2 000r/s;当设定转速下降到1 000r/s时,转速又很快下降到1 000r/s稳定运行。 图1

模糊神经网络在智能控制中的应用研究

模糊神经网络在智能控制中的应用研究1 郑子杰,王虎 武汉理工大学信息工程学院,武汉 (430070) E-mail :zhzijie.27@https://www.wendangku.net/doc/c04757999.html, 摘 要:本文简要介绍了神经网络(Neural Network )及模糊神经网络(Fuzzy Neural Network )的特点以及发展状况,并给出了模糊神经网络在智能控制中的几种应用,同时指出了今后研究中有待解决的一些问题,并对模糊神经网络技术将来的发展及其在工程上的应用作了展望。 关键词:神经网络,模糊神经网络,FFNC ,智能控制 中图分类号: TP183 文献标识码:A 1. 神经网络简介 神经网络是仿效生物处理模式以获得智能信息处理功能的理论。神经网络着眼于脑的微观网络结构,通过大量神经元的复杂连接,采用由底到顶的方法,通过自学习、自组织和非线性动力学所形成的并行分布方式,来处理难于语言化的模式信息[1]。自1943年第一个神经网络模型—MP 模型被提出至今,神经网络的发展十分迅速,特别是1982年提出的Hopfield 神经网络模型和1985年Rumelhart 提出的反向传播算法BP ,使Hopfield 的模型和多层前馈型神经网络成为用途广泛的神经网络模型,在语音识别、模式识别、图像处理和工业控制等领域的应用颇有成效。 神经网络的核心由其基本结构、学习规则及其工作方式三大部分组成。 1.1 基本结构 神经网络是由大量神经元广泛互连而成的复杂网络系统。单一神经元可以有许多输入、输出。神经元之间的相互作用通过连接的权值体现。神经元的输出是其输入的函数。常用的函数类型有:线性函数、Sigmoid 型函数和阈值型函数[2]。虽然单个神经元的结构和功能极其简单和有限,而大量神经元构成的网络系统其行为却是丰富多彩的。图1表示出单个神经元和Hopfield 模型的结构。 在图1(a)中, i u 为神经元的内部状态, i θ为阈值,i x 为输入信号, ij w 表示从j u 到i u 连接的权值, i s 表示外部输入信号,则神经元的输入为-i i j j i i n e t w x s θ=+∑,输出为 ()i i y f n e t =,其中f 是神经元的转 换函数。 在图1(b)中。Hopfield 模型是由许多神经元构成的互连网络,适当选取神经元兴奋模式的初始状态,则网络的状态将逐渐到达一个极小点即稳定点、从而可以联想出稳定点处的样本。 神经网络的基本特征是: (1)大规模并行处理。神经网络能同时处理与决策有关的因素,虽然单个神经元的动作速度不快,但网络的总体处理速度极快。 1本课题得到教育部重点项目(03120)(基于FSOC 嵌入式微控制器设计与研究)的资助。

模糊神经网络讲义

模糊神经网络(备课笔记) 参考书: 杨纶标,高英仪。《模糊数学原理及应用》(第三版),广 州:华南理工大学出版社 彭祖赠。模糊数学及其应用。武汉:武汉科技大学 胡宝清。模糊理论基础。武汉:武汉大学出版社 王士同。模糊系统、模糊神经网络及应用程序设计。 《模糊系统、模糊神经网络及应用程序设计》 本书全面介绍了模糊系统、模糊神经网络的基本要领概念与原理,并以此为基础,介绍了大量的应用实例及编程实现实例。 顾名思义,模糊神经网络就是模糊系统和神经网络的结合,本质上就是将常规的神经网络(如前向反馈神经网络,Hopfield神经网络)赋予模糊输入信号和模糊权值。 选自【模糊神经网络P17】 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌

关于模糊控制理论的综述

物理与电子工程学院 《人工智能》 课程设计报告 课题名称关于模糊控制理论的综述 专业自动化 班级 11级3班 学生姓名郑艳伟 学号 指导教师崔明月 成绩 2014年6月18日

关于模糊控制理论的综述 摘要:模糊控制方法是智能控制的重要组成部分,本文简要回顾了模糊控 制理论的发展,详细介绍了模糊控制理论的原理和模糊控制器的设计步骤, 分析了模糊控制理论的优缺点以及模糊控制需要完善或继续研究的内容,根 据各种模糊控制器的不同特点,对模糊控制在电力系统中的应用进行了分 类,并分析了各类模糊控制器的应用效能.最后,展望了模糊控制的发展趋 势与动态. 关键词:模糊控制;模糊控制理论;模糊控制系统;模糊控制理论的发展模糊控制是以模糊集理论、模糊语言变量和模糊控制逻辑推理为基础的一种智能控制方法,从行为上模拟人的思维方式,对难建模的对象实施模糊推理和决策的一种控制方法.模糊控制作为智能领域中最具有实际意义的一种控制方法,已经在工业控制领域、电力系统、家用电器自动化等领域中解决了很多的问题,引起了越来越多的工程技术人员的兴趣. 模糊控制系统简介 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术.1965年美国的扎德[1]创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理.1974 年英国的Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生. 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域.从信息技术的观点来看, 模糊控制是一种基于规则的专家系统.从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器. 相对传统控制, 包括经典控制理论与现代控制理论.模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型, 应用CRI 等各类模糊推理方法,

智能控制导论报告BP神经网络模糊控制

智能控制导论实验报告 2012-01-09 姓名:常青 学号:0815321002 班级:08自动化 指导老师:方慧娟

实验一:模糊控制器设计与实现 一、实验目的 1.模糊控制的特征、结构以及学习算法 2.通过实验掌握模糊自整定PID的工作原理 二、实验内容 已知系统的传递函数为:1/(10s+1)*e(-0.5s)。假设系统给定为阶跃值r=30,系统初始值r0=0.试分别设计 (1)常规的PID控制器; (2)常规的模糊控制器; (3)比较两种控制器的效果; (4)当通过改变模糊控制器的比例因子时,系统响应有什么变化? 三、实验设备 Matlab 7.0软件/SIMULINK 四、实验原理 1.模糊控制 模糊逻辑控制又称模糊控制,是以模糊集合论,模糊语言变量和模糊逻辑推理为基础的一类计算机控制策略,模糊控制是一种非线性控制。图1-1是模糊控制系统基本结构,由图可知模糊控制器由模糊化,知识库,模糊推理和清晰化(或去模糊化)四个功能模块组成。

针对模糊控制器每个输入,输出,各自定义一个语言变量。因为对控制输出的判断,往往不仅根据误差的变化,而且还根据误差的变化率来进行综合评判。所以在模糊控制器的设计中,通常取系统的误差值e 和误差变化率ec 为模糊控制器的两个输入,则在e 的论域上定义语言变量“误差E ” ,在ec 的论域上定义语言变量“误差变化EC ” ;在控制量u 的论域上定义语言变量“控制量U ” 。 通过检测获取被控制量的精确值,然后将此量与给定值比较得到误差信号e ,对误差取微分得到误差变化率ec ,再经过模糊化处理把分明集输入量转换为模糊集输入量,模糊输入变量根据预先设定的模糊规则,通过模糊逻辑推理获得模糊控制输出量,该模糊输出变量再经过去模糊化处理转换为分明集控制输出量。 2.PID 控制 在模拟控制系统中,控制器最常用的控制规律是PID 控制。PID 控制器是一种线性控制器。它根据给定值与实际输出值之间的偏差来控制的。其传递函数的形式是:)1 1()(s T s T k s G D I p ++ =,PID 控制原理

模糊神经网络的基本原理与应用概述

模糊神经网络的基本原理与应用概述 摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。本文旨在分析模糊神经网络的基本原理及相关应用。 关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。 Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications. Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.

1人工神经网络的基本原理与应用概述 人工神经网络的概念 人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。神经网络在输入信息的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态,这样具有特定结构的神经网络就可定义出一类模式变换即实现一种映射关系。由于人工神经元在网络中不同的联接方式,就形成了不同的人工神经网络模式,其中误差反向传播网络(Back-Propagation Network,简称BP网络)是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型【1,2】。 人工神经网络研究的发展简史 人工神经网络的研究己有近半个世纪的历史但它的发展并不是一帆风顺的,神经网络的研究大体上可分为以下五个阶段[3]。 (1) 孕育期(1956年之前):1943年Mcculloch与Pitts共同合作发表了“A logical calculus of ideas immanent in Nervous Activity”一文,提出了神经元数学模型(即MP模型)。1949年Hebb提出Hebb学习法则,对神经网络的发展做出了重大贡献。可以说,MP模型与学习规则为神经科学与电脑科学之间架起了沟通的桥梁,也为后来人工神经网络的迅速发展奠定了坚实的基础。 (2)诞生期(1957年一1968年):1960年Widrow提出了自适应线性元件模型,Rossenbaltt在1957年提出了第一种人工神经网络模式一感知机模式,由二元值神经元组成,该模式的产生激起了人工神经网络研究的又一次新高潮。(3)挫折期(1969年一1981年):1969年Minsky等人写的《感知机》一书以数学方法证明了当时的人工神经网络模式的学习能力受到很大限制。之后,人工神经网络的研究一直处于低潮。

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑和神经网络的结合成为可能。 2 模糊神经网络的学习算法 各种类型的模糊神经网络学习算法的共同方面是结构学习和参数学习两部分。结构学习是指按照一定的性能要求确定模糊系统的推理规则的条数,每条规则的前提和结论的隶属度函数以及由清晰化得到具体的规则数。参数学习是指进一步细化各隶属函数的参数以及模糊规则的其他参数,以使系统达到最优。结构学习主要是从输入输出数据中提取规则或由输入空间模糊划分获得规则,主要有启发式搜索、模糊网格法、树形划分法、基于模糊聚类的学习算

模糊控制的基本原理

模糊控制的基本原理 模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是模糊数学在控制系统中的应用,是一种非线性智能控制。 模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。一般用于无法以严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好地控制。因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。模糊控制的基本原理如图所示: i .......... 濮鬧挖制器.. (1) 模糊控制系统原理框图 它的核心部分为模糊控制器。模糊控制器的控制规律由计算机的程序实现,实现一步模糊控制算法的过程是:微机采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E; —般选误差信号E作为模糊控制器的一个输入量,把E 的精确量进行模糊量化变成模糊量,误差E的模糊量可用相应的模糊语言表示;从而得到误差E的模糊语言集合的一个子集e(e实际上是一个模糊向量); 再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u 为: u R 式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u 进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制 %二这样循环下去,■就实现了被控对象的模糊控制「..................... ""模糊控制(FUZZy Control/是'以模糊集合理论"模糊语言变量和模'糊逻辑推理''' 为基础的一种计算机数字控制。模糊控制同常规的控制方案相比,主要特点有:(1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据, 不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。 (2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。 (3)系统的鲁棒性强,尤其适用于时变、非线性、时延系统的控制。 ⑷ 从不同的观点出发,可以设计不同的目标函数,其语言控制规则分别是独立的,但是整个系统的设计可得到总体的协调控制。 它是处理推理系统和控制系统中不精确和不确定性问题的一种有效方法,同

一种递归模糊神经网络自适应控制方法

一种递归模糊神经网络自适应控制方法 毛六平,王耀南,孙 炜,戴瑜兴 (湖南大学电气与信息工程学院,湖南长沙410082) 摘 要: 构造了一种递归模糊神经网络(RFNN ),该RFNN 利用递归神经网络实现模糊推理,并通过在网络的第 一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN ,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN 分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 关键词: 递归模糊神经网络;自适应控制;交流伺服中图分类号: TP183 文献标识码: A 文章编号: 037222112(2006)1222285203 An Adaptive Control Using Recurrent Fuzzy Neural Network M AO Liu 2ping ,W ANG Y ao 2nan ,S UN Wei ,DAI Y u 2xin (College o f Electrical and Information Engineering ,Hunan University ,Changsha ,Hunan 410082,China ) Abstract : A kind of recurrent fuzzy neural network (RFNN )is constructed ,in which ,recurrent neural network is used to re 2alize fuzzy inference temporal relations are embedded in the network by adding feedback connections on the first layer of the network.On the basis of the proposed RFNN ,an adaptive control scheme is proposed ,in which ,two proposed RFNNs are used to i 2dentify and control plant respectively.Simulation experiments are made by applying proposed adaptive control scheme on AC servo control problem to confirm its effectiveness. K ey words : recurrent fuzzy neural network ;adaptive control ;AC servo 1 引言 近年来,人们开始越来越多地将神经网络用于辨识和控 制动态系统[1~3].神经网络在信号的传播方向上,可以分为前馈神经网络和递归神经网络.前馈神经网络能够以任意精度逼近任意的连续函数,但是前馈神经网络是一个静态的映射,它不能反映动态的映射.尽管这个问题可以通过增加延时环节来解决,但是那样会使前馈神经网络增加大量的神经元来代表时域的动态响应.而且,由于前馈神经网络的权值修正与网络的内部信息无关,使得网络对函数的逼近效果过分依赖于训练数据的好坏.而另一方面,递归神经网络[4~7]能够很好地反映动态映射关系,并且能够存储网络的内部信息用于训练网络的权值.递归神经网络有一个内部的反馈环,它能够捕获系统的动态响应而不必在外部添加延时反馈环节.由于递归神经网络能够反映动态映射关系,它在处理参数漂移、强干扰、非线性、不确定性等问题时表现出了优异的性能.然而递归神经网络也有它的缺陷,和前馈神经网络一样,它的知识表达能力也很差,并且缺乏有效的构造方法来选择网络结构和确定神经元的参数. 递归模糊神经网络(RFNN )[8,9]是一种改进的递归神经网络,它利用递归网络来实现模糊推理,从而同时具有递归神经网络和模糊逻辑的优点.它不仅可以很好地反映动态映射关系,还具有定性知识表达的能力,可以用人类专家的语言控制规则来训练网络,并且使网络的内部知识具有明确的物理意 义,从而可以很容易地确定网络的结构和神经元的参数. 本文构造了一种RFNN ,在所设计的网络中,通过在网络的第一层加入反馈连接来存储暂态信息.基于该RFNN ,本文还提出了一种自适应控制方法,在该控制方法中,两个RFNN 被分别用于对被控对象进行辨识和控制.为了验证所提方法的有效性,本文将所提控制方法用于交流伺服系统的控制,并给出了仿真实验结果. 2 RFNN 的结构 所提RFNN 的结构如图1所示,网络包含n 个输入节点,对每个输入定义了m 个语言词集节点,另外有l 条控制规则 节点和p 个输出节点.用u (k )i 、O (k ) i 分别代表第k 层的第i 个节点的输入和输出,则网络内部的信号传递过程和各层之间的输入输出关系可以描述如下: 第一层:这一层的节点将输入变量引入网络.与以往国内外的研究不同,本文将反馈连接加入这一层中.第一层的输入输出关系可以描述为:O (1)i (k )=u (1)i (k )=x (1)i (k )+w (1)i (k )?O (1)i (k -1), i =1,…,n (1) 之所以将反馈连接加入这一层,是因为在以往的模糊神经网络控制器中,控制器往往是根据系统的误差及其对时间的导数来决定控制的行为,在第一层中加入暂态反馈环,则只需要以系统的误差作为网络的输入就可以反映这种关系,这样做不仅可以简化网络的结构,而且具有明显的物理意义,使 收稿日期:2005207201;修回日期:2006206218 基金项目:国家自然科学基金项目(N o.60075008);湖南省自然科学基金(N o.06JJ50121)   第12期2006年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.34 N o.12 Dec. 2006

基于神经网络的模糊控制

基于神经网络的仿真实验 一、实验目的 1.熟悉神经网络的结构、特征及学习算法 2.通过实验掌握利用神经网络进行样本学习与训练的方法。 3.通过实验了解神经网络的结构、权值、学习速率、动量因子对控制效果的影响。 4.通过实验掌握用Matlab 实现神经网络控制系统仿真的方法 二、实验内容 1.给出仿真系统的设计过程和程序清单。 2.记录实验数据和曲线 三、实验步骤 1.在Matlab 下依据原理编写仿真程序并调试。 2.给定输入信号,或训练样本,运行程序,记录实验数据和控制曲线 3.修改神经网络结构参数,如权值、学习速率、动量因子、隐含层神经元个数等,重复步骤(2) 四、实验要求 1. 使用BP 网络逼近对象: 采样时间取2ms,输入信号为u(k)=2sin(10πt),神经网络为3-10-2结构,权值W1,W2的初始取值取[-1,+1]之间的随机值,取η=0.80,α=0.06。 2.取标准样本为3 神经网络为3-12-2结构,权值的初始取值取[-1,+1]之间的随机值,取η =0.70,α=0.05,训练最终目标为 。 3.被控对象为 输入指令为一方波信号:))4sgn(sin(8.0)(t k rin π=,采样时间为1ms ,η=0.60,采用有监督Hebb 学习实现权值的学习,初始权值取 [][]2.0,15.015.015.0321===K w w w W 五、实验程序 1.clear all; 清除所有文件; close all; 关闭所有已开文件; xite=0.80; 惯性系数为0.8; alfa=0.06; 学习速率为0.06; w2=rands(6,1); 初始化隐含层与输出层6行1列的权值矩阵; s t k y k y k u k yout 5.0) 1(1)1()()(2 3 ≤-+-+=) 2(632.0)1(10.0)2(26.0)1(368.0)(-+-+-+-=k u k u k y k y k y 1010-=E

模糊神经网络控制器的优化设计

文章 @=D N =D CM 9=C 8

络辨识器!"##$ 及被控对象%控制器的输入为偏差&和偏差变化率’&(输出为控制量)%神经网络辨识器!"##$ 用来逼近被控对象输出( 由其提供被控对象输出对输入的导数信息 %B (@4*(+C B 4*(+(D(E - 输出>A @B !+$4H I @B 4678!?@B !+$ $(@4*(+C B 4*(+(D E -式中F @B 与G @B 分别为高斯函数的中心值及宽度值参数2J $第三层!模糊规则层$> 该层的每个结点代表*条规则2输入>?!J $!B 5*$E ;K 4A !+$*B A !+$ +K ( B 4*(+(D(E C K 4*(+(D(E -输出>A !J $@4H @ 4?!J $@(@4*(+(D L !4E +$-M $第四层!输出层$> 所有规则层结点均与该层结点连接(完成解模糊(每个连接权代表该条规则输出隶属函数的中心值2 输入>?!M $ 4N L O 4* A O !J $P O (P O 为输出层连接权值-输出>A !M $4)Q 4 ?!M $ N L O 4* A !J $ O - * **第R 期 模糊神经网络控制器的优化设计 万方数据

模糊控制与神经网络

BP神经网络 BP (Back Propagation)神经网络是一种神经网络学习算法,全称基于误差反向传播算法的人工神经网络。 如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,够成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。 在人工神经网络发展历史中,很长一段时间里没有找到隐层的连接权值调整问题的有效算法。直到误差反向传播算法(BP算法)的提出,成功地解决了求解非线性连续函数的多层前馈神经网络权重调整问题。 BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。 神经网络 神经网络是: 思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。 逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面: (1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。 (2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。 (3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。 (4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。 纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。 【人工神经网络的工作原理】 人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。 所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

智能控制题库

智能控制题库

1. 试说明智能控制的的基本特点是什么? (1)学习功能(1分)(2)适应功能(1分)(3)自组织功能(1分) (4)优化能力(2分) 2、试简述智能控制的几个重要分支。 专家控制、模糊控制、神经网络控制和遗传算法。 3、试说明智能控制研究的数学工具。 智能控制研究的数学工具为:(1)符号推理与数值计算的结合;(2)离散事件与连续时间系统得结合;(3)模糊集理论;(4)神经网络理论;(5)优化理论 4.智能控制系统有哪些类型,各自的特点是什么? (1)专家控制系统(1分) 专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验。它具有启发性、透明性、灵活性、符号操作、不一确定性推理等特点。(2)模糊控制系统(1分) 在被控制对象的模糊模型的基础上,运用模糊控制器近似推理手段,实现系统控制的一种方法模糊模型是用模糊语言和规则描述的一个系统的动态特性及性能指标。(3)神经控制系统(1分) 神经网络具有某些智能和仿人控制功能。学习算法是神经网络的主要特征。 5、简述专家控制与专家系统存在的区别。 专家控制引入了专家系统的思想,但与专家系统存在区别:(1)专家系统能完成专门领域的功能,辅助用户决策;专家控制能进行独立的、实时的自动决策。专家控制比专家系统对可靠性和抗干扰性有着更高的要求。

(2)专家系统处于离线工作方式,而专家控制要求在线获取反馈信息,即要求在线工作方式。 6、试说明智能控制的三元结构,并画出展示它们之间关系的示意图。 把智能控制扩展为三元结构,即把人工智能、自动控制和运筹学交接如下表示:(2分) IC=AI∩AC∩OR OR一运筹学(Operation research)IC一智能控制( intelligent control); Al一人工智能(artificial intelligence); AC一自动控制(automatic Colltrol); ∩一表示交集. 8. 简述智能控制系统较传统控制的优点。 在传统控制的实际应用遇到很多难解决的问题,主要表现以下几点:(1)实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,无法获得精确的数学模型。(1分)(2)某些复杂的和包含不确定性的控制过程无法用传统的数学模型来描述,即无法解决建模问题。(1分)(3)针对实际系统往往需要进行一些比较苛刻的线性化假设,而这些假设往往与实际系统不符合。(1分)(4)实际控制任务复杂,而传统的控制任务要求低,对复杂的控制任务,如机器人控制、CIMS、社会经济管理系统等复杂任务无能为力。(1分) 智能控制将控制理论的方法和人工智能技术灵活地结合起来,其控制方法适应对象的复杂性和不确定性,能够比较有

相关文档