文档库 最新最全的文档下载
当前位置:文档库 › CCNP经典笔记

CCNP经典笔记

CCNP经典笔记
CCNP经典笔记

BGP协议

应用范围:1.ISP;2.MPLS-VPN;3.企业有多个internet出口,并且要精确控制流量进出internet

internet上的AS自治系统号和公网地址一样是全球统筹唯一的

BGP关心去目的网络的下一个AS是谁一般IGP关心去目的网络的下一跳router是谁即,BGP只管将路由指向下一个AS,而对在这个AS中的路由的指向不关心。

BGP中的路由是通往目的网络的下一跳的AS号。

BGP选择路由时,是依赖于路径上的属性(大多数属性可以)。

BGP会将自己通往目的网络路径最好的那一条路由通告给他人。

BGP广播

协议端口

RIP UDP 520

BGP TCP 179

BGP广播不像EIGRP,OSPF那样有确认数据包,而是利用TCP来实现可靠传输。

利用TCP连接的滑动窗口机制,使得能够有效传输大量路由

路径矢量型协议..每条BGP的广播发布一条路径,其中包括一系列此路经可达的网络以及路径属性等等

BGP表种类

邻居表:

BGP广播是单播,必须手工指定邻居;BGP邻居可以不直连;

BGP表:

1.从其他邻居那里得到的BGP广播;

2.要发给邻居的路由信息;

3.自己选出的最佳路由信息注意:某些路由即使进入了BGP表,但不一定能进入路由表。而数据转发是参照路由表的。

BGP消息类型

OPEN消息:用来建立邻居关系的。Router id的选取与OSPF类似

Keepalive消息:用来维持邻居关系

Update消息:用来发送路由信息。以路径为单位发送,一条路径的广播中可以包含多个网络。每个路径广播还包含该路径的属性。

Notification消息:用来报错。

BGP邻居Peer

在两个BGP邻居之间需要进行BGP路由交换

分为内部邻居和外部邻居

外部邻居EBGP neighbour,邻居双方属于不同的AS,通常外部邻居之间需要直连

内部邻居IBGP,邻居双方属于同一AS,内部邻居可以不直连,但必须保证能够建立TCP 连接。

Transit AS中的所有路由器都需要运行BGP(否则,需要在AS中进行路由重分布)且推荐

Transit AS内的IBGP是全连接的(即,所有IBGP间两两建立邻居关系)

[IBGP水平分割,从一个IBGP邻居那里学到BGP广播不会再告诉另一个BGP。]

router bgp AS //通过AS号判断是内部还是外部邻居

router# neighbor ip-address remote-as AS //邻居地址和所属的自治系统号

BGP广播的目的地址是用neighbor命令指定的ip-address,源地址为该广播输出接口的接口地址

邻居关系

A按照neighbor命令中的配置向邻居B发送BGP广播,以TCP包的方式

B收到TCP包后,比较TCP包中的源地址是否在自己的邻居列表中(即按neighbor命令核对)

所以可能有邻居发送的BGP广播的源地址与自己邻居列表中的配置的地址不一致的情况(尤其容易发生在内部邻居之间,因为内部邻居不一定直连)

解决方法是把BGP广播的源地址设置成自己的Loopback

neighbor ip-address update-source interface-type interface-number//指定向该邻居发送的BGP 广播的源地址

[注意:此时,要保证内部路由协议配置时保证IBGP邻居的Loopback地址相互可见]

[注意:外部邻居如果不直连,如果也是这样用Loopback作为源地址,必须手工改变TTL 值(默认为1),保证广播能够达到对方]

对于EBGP,路由的next hop指的是目的网络的下一跳自治系统的入口地址(即,该邻居发布广播包的源地址)

而该路由在IBGP中传播时,next hop是不变的,但该next hop地址对于IBGP邻居不一定可达,所以需要配置

neighbor ip-address next-hop-self //把向IBGP邻居发送的路由广播的next hoop地址改为自己

通过邻居组peer group,对于有相同属性的邻居配置成邻居组,可以简化配置(否则,对于每个邻居都需要重复配置)

neighbor name邻居组名字peer-group

neighbor name…//添加属性

BGP的网络广播也用network命令,但表达的含义与其他路由协议不同

network network-number [mask network-mask写mask的话必须extra match才会广播]//表示那些网络的路由会被广播,只会广播自己路由表中有的记录(必须是exact match的记录),不局限于直连网络,只要是路由表中存在的路由都可以广播

自己的路由表中没有东西是不会广播的

network-number必须与路由表中的记录能够exact match(地址,掩码全部相同)才会被广播,除非,auto-summary开启,且路由表中有此network的子网,且没有写mask时,才会将network 命令中配置的较大的网络号network-number会被广播出去

[如果network在路由表中不存在,但又想要在BGP中发布它(例如做手工路由汇总),可以添加空路由,强制在BGP中发布]

[建议写network命令前观察路由表,防止无法exact match。]

[通常建议把直连网络广播出来]

BGP同步

在BGP只运行在边界路由器上,而在AS内做路由重发布的方式的情况下,只有当BGP表中学到的路由同样能够通过IGP学到时,称为同步,只有达到同步,才会将此路由发布给其他EBGP邻居。

一般路由器上bgp synchronization是默认关闭的。

邻居关系的建立

1.idle状态:根据邻居的ip查找路由

2.connect状态:TCP三次握手建立连接

3.open sent状态,open confirm状态:发送OPEN消息,等待对方的OPEN消息

4.established状态:交换BGP信息

邻居关系不能建立的常见原因

1.没有邻居的路由;

2.TCP连接无法建立(中间路由有问题);

3.邻居对open消息无响应,持续处于active,可能是广播源地址与邻居的邻居列表不匹配,

自治系统号不一致等

sh ip bgp summary //最后一项的数字,表示从邻居那里获得多少BGP路由,如果是active等则表示邻居关系建立有问题

sh ip bgp nei //也能看出BGP状态

BGP邻居关系的认证

Router# neighbor {ip-address | peer-group} password password

sh ip bgp //看BGP表

第一列

* 代表下一条地址对于本路由器是可到达的

r 代表该路由虽然从BGP中学习到,但不能放入路由表,可能是由于从其他路由协议也获得到达相同网络的路由

s 代表该路由不广播给其他邻居

第二列

> 代表最佳路径

第三列

i 代表该消息是从内部邻居学习到的

next hop = 0.0.0.0 代表该network是路由器自己发布的(即写入了network命令)

path 代表去往network的路径,其中的i表示该路由的起源是IGP,?表示该路由的起源是路由再发布,e表示该路由的起源是EGP

sh ip bgp rib-failure //

EBGP邻居处学到的路由的管理距离是20,IBGP邻居处学到的路由的管理距离是200

BGP会话重新置位

由于BGP超时,更新速度较慢,为了改变的配置即刻生效,可以重置

hard reset:clear ip bgp neighbor-address//解除邻居关系,将邻居的TCP连接重新建立

soft reset:clear ip bgp neighbor-address soft out //不会解除邻居关系,而是重新发布自己的

BGP表,用于输出策略的即时生效router# neighbor ip-address soft-reconfiguration inbound

clear ip bgp neighbor-address soft in//用于输入策略的即时生效,开一个新的内存空

间存放从邻居收到的BGP原始信息,

并用输入策略过滤后重新放回BGP表clear ip bgp neighbor-address in //路由刷新,要求邻居重新发布BGP信息,但必

须邻居支持册功能

BGP路由汇总

一种方法是在路由器上写空路由,强制发布大网络号

另一种方法是在边界路由器上router# aggregate-address network mask summary-only(如果不加这个参数,大网络和小网络都会在BGP内发布)

BGP属性

Well-known共知属性,mandatory强制属性

通常属性:

1.AS Path Attribute

[BGP防止路由环路的方法,如果路由器一条path中发现自己的自治系统号,则不会接受]

2.Next-hop Attribute

3.Origin Attribute 路由起源:?路由再发布, e, I内部邻居发布三种,其中i的可信度最高,?

最低

4.Local Preference Attribute:一个自治系统有多个出口时,控制流量如何离开自治系统。

优先使用Local Pref值越大的路由器作为出口,默认为100

5.MED Attribute:即metric,多重出口选择因子。作用一,当IGP再发布到BGP中时,

用MED属性来记录该路由在原IGP中的metric值。作用二,影响对方的路由选择,以控制流量如何进入自治系统。

6.Weight Attribute(CISCO only):只在本地有效,不会传递给邻居。作用,一台路由器上有

多个出口时选择哪个出口。

BGP最佳路由的选择*

初始条件一,下一条路由可达(通过IGP路由可达)

初始条件二,如果同步开启,必须达到同步,才能开始最佳路由选择

最终操作,将BGP表中得到的最佳路由与路由表中比较,看是否存在管理距离更小的相同目的网络的路由,只有不存在时才能进入路由表。

1.同一路由器上有不同出口,选择highest weight

2.多条路径,highest local preference(只有内部邻居才有该值,如果不是都是内部邻居则

跳过该步骤)

3.选择next-hop= 0.0.0.0

4.shortest AS path

5.lowest origin code选择最好路由起源

6.lowest MED(通常是在自治系统之间交换的)

7.prefer EBGP path over IBGP path

8.oldest route for EBGP | the path through the closest IGP neighbor

9.the path with lowest neighbor BGP router ID

10.the path with lowest neighbor IP address

使用route-map修改MED和Local Preference

Local Preference通常在内部邻居间传递

router# bgp default local-preference value //修改默认LocProf,一旦修改后从该路由器向其他邻居的BGP表

router-map name permit 10

match ip address ACL

set local-preference 400

route-map name permit 20

ip router bgp 100

neighbor 192.168.28.1 route-map name in //将从邻居192.168.28.1学习到的满足ACL的BGP路由的LocalPref设置成400,并向内部邻居发布

[route-map可以绑定在out方向上(对向邻居发布的信息进行属性修改),也可以绑定在in 方向上(对从邻居收到的信息进行属性修改)]

MED通常在外部邻居间传递(发给邻居的广播中会使用设置的MED)

防止自治区域成为传输网络transit network,可以在BGP路由器上进行路由过滤来实现(让AS 1来的路由信息不被发布给AS 2,且来自AS 2的路由信息不被发布给AS 1)

CCNP闫辉老师讲解【递归路由】实验手册(课堂笔记)

递归路由实验手册 实验要求: ①R1能够R4的4个子网,并且实现路径的冗余备份 ②实现非对称路由:R1的ICMP echo包和R4的ICMP reply包使用不同路径 分析:如果只在R2上配置静态路由: ip route 10.0.1.0 255.255.255.0 f0/1 200.2.2.4 ip route 10.1.1.0 255.255.255.0 f0/1 200.2.2.4 ip route 10.2.1.0 255.255.255.0 f0/1 200.2.2.4 ip route 10.3.1.0 255.255.255.0 f0/1 200.2.2.4 那么如果R2路由down掉,想切换到R3这条链路,必须在R3上进行同样的配置: ip route 10.0.1.0 255.255.255.0 f0/1 200.2.2.4 ip route 10.1.1.0 255.255.255.0 f0/1 200.2.2.4 ip route 10.2.1.0 255.255.255.0 f0/1 200.2.2.4 ip route 10.3.1.0 255.255.255.0 f0/1 200.2.2.4 如果网络中有成百上千条路由条目,进行这样的配置简直能让人疯掉。 ------------------------------------------------------------------------------------------------------------------------------ 下面,我们来尝试在R1直接配置到目标网段的静态路由: ip route 10.0.1.0 255.255.255.0 f0/0 200.2.2.4 ip route 10.1.1.0 255.255.255.0 f0/0 200.2.2.4 ip route 10.2.1.0 255.255.255.0 f0/0 200.2.2.4 ip route 10.3.1.0 255.255.255.0 f0/0 200.2.2.4 此时来查看R1,R2,R3的路由表: R1(config)#do show ip route -------------------------------------------------------------------------------------- Gateway of last resort is not set 1.0.0.0/24 is subnetted, 1 subnets C 1.1.1.0 is directly connected, Loopback0 100.0.0.0/24 is subnetted, 1 subnets C 100.1.1.0 is directly connected, FastEthernet0/0 10.0.0.0/24 is subnetted, 4 subnets S 10.3.1.0 [1/0] via 200.2.2.4, FastEthernet0/0 S 10.2.1.0 [1/0] via 200.2.2.4, FastEthernet0/0 S 10.1.1.0 [1/0] via 200.2.2.4, FastEthernet0/0 S 10.0.1.0 [1/0] via 200.2.2.4, FastEthernet0/0

cisco学习笔记

CCNP学习笔记 Eigrp: 一.特点: DV型(距离矢量) 快速收敛(与OSPF不同,有备份路由,遇到故障,无需重新计算,收敛速度最快) 支持VLSM(发送路由更新时是否携带子网) 保证100%不携带环路 用弥散更新算法 部分更新,触发更新,网络结构发生变化,就更新变化的部分 等开销和非等开销的负载均衡 支持多种不同的网络层协议(ipx ip ) 用组播和单播和不使用广播 汇总:即自动汇总,也可手动汇总 配置简单,任何网络配置都一样 二.四个部分: 邻居发现和恢复机制 RTP可靠传输协议 DUAL的有限状态机 协议独立单元 三.三张表: 邻居表 拓扑表:放路由,直连路由汇总路由通道路由重发布路由 路由表通过DUAL算法,算出最佳路由 四.几个概念 AD:我的邻居到目标网络有多远 FD:我到邻居的距离+AD(最小的FD即使最佳路径,,也称后继路由器;次优路由既可行后继路由;次优路由的AD要小于最佳路由的FD) 五.Eigrp的五个包: Hello: Update 查询包,应答包:当去目标网络没有主路由备份路由,将会向邻居发送查询和应答 RIP发送协议用的是UDP520端口,是不可靠的。(Ip包上传时,都封装到了TCP里面,因为TCP存在可靠机制,而eigrp ospf 都是单独的一块,无靠靠机制,所以有个查询和应答)ACK包 六.邻居关系是如何建立的: 互相Hello包:5s一次15s未收到宣告邻居失效 debug eigrp packets hello 更新使用组播,重传使用单播 度量值计算: 带宽延迟可靠性负载MTU 度量值计算公式: Metric=(BW+delay)*256 BW=10的7方/沿途更新入向接口(收这条更新的接口)所有带宽的最小值 Delay=/沿途更新入向接口的延迟的总和/10

CCNP笔记day7-ROUTER-

路由day7 ◆第六部分:VPN(续) XX 配置site-to-site VPN R1上使用SDM配置 R2上使用以下命令配置 R2(config)#! R2(config)#crypto isakmp policy 1 R2(config-isakmp)# encr aes R2(config-isakmp)# authentication pre-share R2(config-isakmp)# group 2 R2(config-isakmp)#! R2(config-isakmp)#crypto isakmp key cisco address 100.100.100.1 R2(config)#! R2(config)#! R2(config)#crypto ipsec transform-set ccnp esp-aes esp-sha-hmac R2(cfg-crypto-trans)#! R2(cfg-crypto-trans)#! R2(cfg-crypto-trans)#crypto map to-R1 10 ipsec-isakmp % NOTE: This new crypto map will remain disabled until a peer and a valid access list have been configured. R2(config-crypto-map)# set peer 100.100.100.1 R2(config-crypto-map)# set transform-set ccnp R2(config-crypto-map)# match address 101 R2(config-crypto-map)#! R2(config-crypto-map)#! R2(config-crypto-map)#interface FastEthernet0/0 R2(config-if)# crypto map to-R1 R2(config-if)#! R2(config-if)#! R2(config-if)#ip route 192.168.80.0 255.255.255.0 100.100.100.1 R2(config)#! R2(config)#! R2(config)#$ 101 permit ip 192.168.30.0 0.0.0.255 192.168.80.0 0.0.0.255 *Mar 1 00:14:32.947: %CRYPTO-6-ISAKMP_ON_OFF: ISAKMP is ON R2(config)#$ 101 permit ip 192.168.30.0 0.0.0.255 192.168.80.0 0.0.0.255 R2(config)# *Mar 1 00:17:09.695: %CRYPTO-4-RECVD_PKT_NOT_IPSEC: Rec'd packet not an IPSEC packet. (ip) vrf/dest_addr= /192.168.30.98, src_addr= 192.168.80.107, prot= 1 R2(config)# *Mar 1 00:18:10.175: %CRYPTO-4-RECVD_PKT_NOT_IPSEC: Rec'd packet not an IPSEC packet. (ip) vrf/dest_addr= /192.168.30.98, src_addr= 192.168.80.107, prot= 1 R2(config)# *Mar 1 00:19:10.647: %CRYPTO-4-RECVD_PKT_NOT_IPSEC: Rec'd packet not an IPSEC packet. (ip) vrf/dest_addr= /192.168.30.98, src_addr= 192.168.80.107, prot= 1

DynamicsforSpaceClaim学习笔记(中文)

关节选项 关节类型 求解方式 碰撞 马达 关节类型 弹簧初始速度为零转矩限制 自动产生电机转矩 弹性 阻尼 范围;幅度 弹簧 位置 平移 转动

关节类型: 铰链 槽副, 圆柱形 求解方式: 直接 迭代 直接和迭代 Hinge 铰链副 铰链接头除去一个DOF(自由度),使受影响的刚体仅能围绕所选择的轴线旋转。与所有关节一样,有两种附接铰链接头的方式: 将其直接附接到属于刚体的实体的边缘或轴上,该实体附接在刚体和世界之间的接合处。将它连接在两个单独的实体(每个属于一个单独的刚体)之间。 在第一种情况下,您只需从功能区菜单中选择铰链工具,然后左键单击要添加关节的刚体的边缘或轴,黄色的铰链图标将出现在边缘或轴上。参见联合状态。 在第二种情况下,您希望通过铰链接头连接两个刚性体,只需从功能区菜单中选择铰链接头。然后,按住Ctrl键单击其中一个刚体,然后单击另一个刚体上的边缘或轴,铰链应该围绕其旋转。边缘或轴上将出现紫色铰链图标。参见联合状态。

当选择一个铰链(或多个铰链)时,可以从属性选项卡更改该铰链的属性。 接头属性 属性指定关节的初始状态。 启用:指定是否启用关节。 刚体之间的碰撞:指定是否可以在两个连接的刚体之间产生触点。默认为关闭。如果启用碰撞,如果两个物体具有重叠的几何结构,则可能会出现干扰效应。 类型:关节的类型。 求解类型:指定解决此关节的求解器。 直接和迭代:(默认),直接AND迭代求解器将看到这个关节。为了使材料对的分离解算器类型获得稳定的摩擦,迭代和直接求解器必须看到关节。 迭代- 只有迭代求解器将看到这个关节。将导致大质量比的不稳定性。 直接- 只有直接求解器会看到这个关节。当涉及具有拆分解决类型的材料对时,这可能导致伪影。 Component1:与此关节相关联的第一个组件的名称。 Component2:与此关节相关联的第二个组件的名称。 刚体1:与该关节相关的第一刚体的名称。 刚体2:与该关节相关的第二刚体的名称。 反向:只有当接头连接到两个物体时才可见。将交换两个附着的刚体,有效地翻转接头的方向。 角位置:此铰链接头的当前角度。 弹性

CCNP考试心得

CCNP考试总结及心得体 会 紧张而又刺激的cisco认证CCNP(Route and Switch)考证终于宣告一段落,总共用时六个月,以下是我的三门的考试成绩: CCNP ROUTE(642-902)—— 815分 CCNP SWITCH(642-813)—— 934分 CCNP TSHOOT(642-832)——1000分 总的来说,CCNP的考试还是比较简单的,当然题量略多,尤其是路由部分,主要是考验一个人的耐心、毅力!所谓贵在坚持,我记得有人曾经说过这样一句话:“人不去逼自己,永远不知道自己有多强大!”。话不多说,接下来介绍一下我考NP的一些心得和方法,仅供参考 (*^__^*) 嘻嘻…… 首先是CCNP ROUTE(642-902)路由部分: 1> 个人认为路由部分是最简单的,虽说我考的分数是最低的,但是考过的人都知道,路由虽说题库给的题量很多,背起来非常辛苦,很累。但是,考试的时候就会发现,真的很简单。我背题库的方法,跟大多数人大同小异,首先解决的当然是数量最多的选择题,NP路由选择题总共是380道,全英文,不解释,谁让他是美国佬的东西呢!我背

这380道题的方法就是按照题库给的分类的方法: 先背第一个Routing部分,不要直接去看题库(PDF文件),从这里面打开,一个部分一个部分按照上面的顺序依次往下背,全部背完之后再回过头来总的看一遍,然后全部画上对号,整体做一遍,不要在乎得了多少分,关键是做错的题,点击Eed Exan交卷之后,左下角打开Retake 会看到下面这个

被红色区域圈起来的部分就是做错的题,记住错题要反复去做,当你做题的正确率达到95%以上(所有的选择题加在一起),时间不超过40分钟,那么此时说明选择题已经ok,可以看拖图题了。(我这个方法只适合于急着拿证书的,想完全弄懂每一题,建议去鸿鹄论坛,下载相应的解题视频,边看边记)。 2> 拖图题部分,题库总共给了23题,我的方法是看一题、做一题,把这题库完全ok再去看下一题,所谓的完全ok就是记住每一个选项对应的答案以及答案的位置,比如下面这一题 答案:

CCNP路由-课堂笔记以及相关知识点整合(吐血推荐)

课程安排: D1,路由基础汇总,EIGRP协议介绍及配置 D2,OSPF协议介绍及基本配置 D3,OSPF协议介绍及高级配置 D4,多协议互操作及路由控制(收发过滤) D5,BGP协议介绍及配置 资料推荐: 模拟器,Packet Tracer、GNS3(调用IOS) 远程登录,cmd、putty、secureCRT 路由基础: 路由,一条路由表示一个网段 路由器,运行路由协议、生成路由表、根据路由表转发报文。 路由协议,共享路由信息的方式 路由表,收集不同方式获取的路由,组成路由表 路由协议: 作用范围:自治系统AS(1-65535) IGP,一个AS内传递路由。RIP EIGRP OSPF EGP,AS间传递路由。BGP 传递路由方式: 距离矢量路由协议, 路由器间分享路由表

RIP EIGRP BGP 链路状态路由协议, 路由器间分享直连链路信息(确保可达,可靠) OSPF 路由传递是否携带掩码: 有类,RIPv1 IGRP 不携带掩码,自动汇总 无类,RIPv2 EIGRP OSPF BGP 携带掩码,支持VLSM,支持手动汇总 路由注入路由表: 管理距离值小,度量值小 管理距离值,衡量协议(路由获取方式)优劣 直连0,静态1,EIGRP5\90\170,OSPF110,BGP20\200 RIP120 度量值,衡量路径优劣 RIP,跳数hop,1-15 EIGRP,带宽、延时、可靠性、负载 OSPF,开销(与带宽成反比) 查找路由表: 最长匹配,掩码最长 递归查找,找到出接口 Show ip route 192.168.1.0/24 serial 1/0 //递归查找

CCNP路由笔记

CCNP路由笔 一OSPF篇: OSPF EIGRP都是用4个逻辑分支1 发现邻居(发送hello报文)2建立邻居表(two way)3 建立拓扑表4建立路由表(选择最佳路由) 流程为down –init- two way(建立邻居成功DR BDR选举完成)-exstat(交换之前会选出主从关系确定谁先发送数据)-exchange(交换DB过程)loadiing(交换lsu)full(完成整个数据交换ospf真个过程建立完成)。 基础知识 1.ABR(至少有一个接口与另外两个OSPF区域相连) 骨干路由器(至少有一个接口在AREA 0区域内) 内部路由器(所有接口都再这个区域内) 指定路由器DR(在交换数据链路LSA时不是每个路由器都相互转发而是通过 DR/BDR进行2. DRother向DR,BDR发送DD,LSA request或者LSA UPdate时目标地址是AllDRouter(224.0.0.6);或者理解为:DR侦听224.0.0.6 DR,BDR向DRother发送DD,LSA Request或者LSA Update时目标地址是AllSPFRouter(224.0.0.5);或者理解为:DRother侦听224.0.0.5 并且所有的DROTHER与DR只会形成TWOWAY邻居关系但是不会形成full 只有DR或BDR出现故障才回重新选举,即使加进来的优先级或者RID再打也不会重新选举,如果DR出现故障那么BDR接替,如果BDR出现故障重新选举BDR,DR保持不变 3各类LSA

1类路由器LSA:每台路由器上都会有1类LSA 他指出了这个路由器的RID和所有的IP地址ABR会有很多1类LSA,每个区域的LSA都会在ABR中列出`。 2类网络LSA:是有DR生成描述中转网络子网及该子网的路由接口 这里的10.5.5.0为DR所创建的中转网络,他显示的是DR的接口。 只有DR与BDR会形成FULL状态,DRother与DR之间形成FULL与BDR之间形成FULL 所有DROTHER之间形成twoway状态。 总结:只需使用l 类和2类LSA , OSPF 就能知道区域内的完整拓扑.路由器使用SPF 过程建立拓扑模型后,便可计算出前往区域内每个于网的最佳(开销量低的)路由 建立DR ip ospf priority 10 三 3类lsa(汇总LSA) 存在OSPF 区域的原因之一是让工程师能够降低路由器内存和计算贤顿的消耗。 一个区域内的路由器建议在30台路由器之内,并且不建议在骨干区域放置为业务区域。汇总LSA会把区域内的所有子网都通告出去。 ABR生成的汇总LSA 内部路由器也会有三类LSA是ABR发过来的r0-r1-r3 R1为ABR的话那么RO的3;类LSA是由R3-R1子网内的信息发过来的通力R3是由R0-R1 从上图可知1类LSA区域0所有的RID的IP地址 2类LSA在区域0中得所有网段 3类LSA描述了区域0中所有其他区域需要学习的LSA

Cisco DHCP EIGRP CCNP 笔记

2011年1月27日13:21:59 CCNP 课程简介 DCHP EIGRP 路由-BSCI(Building Scalable Cisco Internet Works) 14days 交换-BCMSN(Building Cisco Multilayer Switched Networks) 6days 安全-ISCW(Implementing Secure Converged Wide-Area Networks) 6days 优化-ONT(Optimizing Converged Cisco Networks) 4days 分层概念:OSI七层模式,TCP/IP层【特点:跨层封装】(OSI应用于理论,TCP/IP应用于实际) 实际网络部署:接入层(规划IP、二层:vlan,流量过滤:ACL……安全特性)、分布层(策略【policy】:三层交换和路由器)、核心层(转发) DHCP:Dynamic Host Configuration Protocol 【动态主机分配协议】 Client端初始化连接Discovery message; Server端接收到消息会回送 offer message; Client端回送request message(作用:1、相当于ACK 2、让server2回收地址); Server1端回送acknowledgement message; 多个sever服务器存在时,client端先来先得; 封装形式:Bootstrap protocol引导 Ethernet IP UDP Bootp DHCP FCS 实验:机架实验,配置省略; 路由器接口开启自动获取IP地址命令:ip address dhcp; Client 和 server 中间有路由器时使用Helper Addressing Overview下放地址; 实验:DHCP helper-address 实验,PT模拟;(部分配置省略)

ccnp交换学习笔记最终整理版

第一天vlan_trunk_vtp VLAN优点: 隔离广播域,提高了安全性,便于管理。 一个VLAN对应一个广播域,对应一个逻辑子网。 End-to-End VLAN(端到端的VLAN): 在VLAN中的用户,与实际物理位置无关,如果用户移动到另一个区域,VLAN信息不会变。 Local VLAN(本地VLAN): Local VLAN建议把相同的VLAN信息放在相同的机架上。 ECNM(企业组件网络模型)----一个高性能的网络包括4大组件:安全性、实用性、可升级性、易管理。 安全性:一般双冗余 可升级性:每个VLAN在不同的子网 划分VLAN的两种方式: (1)Port-based基于端口的----静态VLAN(重点)移动性差 (2)MAC-based基于MAC地址的----动态VLAN 实验: 需求R4与R6都划到VLAN10中,在交换机配置如下: SW1: vlan 10 //新建VLAN10 name HR //给VLAN10起个名字 int f0/4 switchport access vlan 10 //把这个接口划到VLAN10中 switchport mode access //把这个接口设为接入端口。一般用在这个接口接的是非交换设备。 int f0/6 switchport access vlan 10 switchport mode access show vlan brief 查看VLAN信息 低端交换机,如2900上配置: 特权模式下:

SW3#vlan database SW3(vlan)#vlan 10 name WOLF SW3(vlan)#exit//它有双重意义:先应用创建的VLAN10,然后退出 int f0/6 switchport access vlan 10 switchport mode access int f0/4 switchport access vlan 10 switchport mode access 以上都是基于端口的VLAN 动态VLAN简单介绍 VLAN Management Policy Server(VMPS)---VLAN管理策略服务器,其实是一台交换机(如:Catalyst 4000/5000) 这个报文叫VQP----VLAN查询协议,这种报文封装UDP端口号1589 SVI交换虚拟接口,每个VLAN都有一个SVI。(config)#vmps server A.B.C.D //此命令用于指向SVI地址。VMPS客户端配置。 interface range fastEthernet 0/1,f0/6 //表示接口f0/1和接口f0/6,这两个接口都划为VLAN10 switchport access vlan 10 interface range fastEthernet 0/1-6 //表示接口f0/1至接口f0/6这六个接口都划为VLAN10 switchport access vlan 10 MAC Address Table MAC地址表: Switch(config)#mac-address-table aging-time 300 (vlan 1) //aging-time MAC地址表的老化时间,默认300秒(5分钟), (vlan 1)是说针对VLAN1改,这里打括号是说这是可选的,有些交换机是不支持的。 show mac-address-table aging-time VLAN的范围: 保留的VLAN:0,4095 可手工配置的Ethernet VLAN:2-1001 为FDDI、Token Ring保留的:1002-1005 扩展VLAN:1006-4094。创建扩展VLAN的要求:一是跟型号有关,3550以上可以支持,二是把VTP的模式设置为透明模式。 Trunk---一条物理介质,多输多个VLAN 做Trunk时,分两个方面:封装、模式 (1)封装:802.1q(dot1q)、ISL ISL:cisco私有的,在以太网帧前封装了一个头部,

CCNP自学笔记----EIGRP

CCNP自学笔记----EIGRP 在当前各未来的路由选择环境中,增强内部网关路由选择协议(EIGRP)提供了诸如路由选择信息协议第1版(RIPV1)和内部网关路由选择协议(IGRP)等传统的距离矢量路由选择协议所没有的优点和特性。这些优点包括会聚速度快,占用的带宽少以及支持多种被路由的协议。 EIGRP是一种CISCO专有协议,同时具备链路状态和距离矢量路由选择协议的优点: 1.快速会聚:EIGRP采用扩散更新算法(DUAL)来实现快速会聚。 2.占用的带宽更少:EIGRP不发送定期更新,而是在前往目的地的路径或度量值发生变化时使用部分更新。 3.支持多种网络层协议:EIGRP使用协议无关模块(PDM)来支持IP,APPLETALK和IPX,以满足特定的网络层需求。 4.在不同数据链路层协议和拓扑之间提供无缝连接性:使用EIGRP时,无需针对第2层协议做特殊的配置;而其他路由选择协议(如OSPF)对于不同的第2层协议(如以太网和帧中继)需要采用不同的配置。 传输EIGRP信息的IP分组使用其IP报头中使用协议号88。 与传统的路由选择协议相比,EIGRP最重要的优点之一是占用的带宽。使用EIGRP时,运行数据流是以多播或单播而不是广播方式传输的,因此终端不受路由选择更新和查询的影响。与其他协议相比,EIGRP和(IGRP)的一个重要优点是,支持在度量值不等的路径之间均衡负载,让管理员能够在网络中更好地分配流量。 EIGRP使用多播地址224.0.0.10。EIGRP路由器从属于同一个自主系统的路由器那里收到HELLO分组后,将与该路由器建立邻接关系。如果在保持时间过后仍未收到分组,将删除相应邻接关系以及从该邻居那里获悉的所有拓扑表条目,就像该邻居发送了一条指出所有这

CCNP个人学习笔记

01路由表的来源 1.路由表的来源有三种:直连的路由、静态路由、动态路由; 2.动态路由协议可分为三种:距离矢量路由协议、链路状态路由协议、混合路由协议;1.直连路由 由路由器根据接口的IP地址和子网掩码计算而得出。 2.静态路由 1.静态路由 静态路由是管理员告诉路由器它不知道的网络怎么走,它自己知道的(它直连的网络)你就别说了;而动态路由协议是路由器本身要告诉其它路由器与它直连的网络有哪些,所以它只发布与它直连的网络; R1(config)# R1(config)#ip route 192.168.10.0 255.255.255.0 192.168.20.2 //ip route +网络号+子网掩码+下一跳地址 或 R1(config)#ip route 192.168.20.0 255.255.255.0 fastEthernet 0/1 //ip route +网络号+子网掩码+出口接口 R1(config)#no ip route 192.168.20.0 255.255.255.0 fastEthernet 0/1 //删除静态路由 2.浮动路由 浮动静态路由本身是静态路由,浮动的含义是当原来的路由失效时,该路由才开始启动;因此在配浮动静态路由时需要将其管理距离做相应的调整,使得大于正常使用的其他路由协议获悉的路由。 //管理距离:直连C为0;静态为1;EIGRP为90;OSPF为110;RIP为120; R1(config)# R1(config)#ip route 192.168.10.0 255.255.255.0 fastEthernet 0/1 130 //浮动路由 //相对于一般静态路由,浮动静态路由只不过是在后面多加一个管理距离而已 //正常情况下,浮动路由不会出现路由表中 3.默认路由 R1(config)# R1(config)#ip route 0.0.0.0 0.0.0.0 fastEthernet 0/1 //默认路由 3.动态路由 1.距离矢量路由协议 1).运行距离矢量路由协议的路由器定期向自己的邻居广播或组播更新自己的整个路由表;//RIPv2组播IP为224.0.0.9; 2).配置: router rip network 10.0.0.0 version 2 end

ccnp ccie mpls 知识点 笔记

D1, MPLS IPv6 GRE PPPoE D2,路由交换总结,排错思路 D2-3.交换排错实验 D3-5,路由排错实验:RIP EIGRP OSPF 重发布BGP D5,综合实验 MPLS ,多协议标签交换 根据标签(而非目的IP地址)交换报文的一种交换机制2.5层 IP缺点 报文转发基于报文的目的ip地址,路由表全 查找路由表,最长匹配,递归查找,慢———》CEF改进 ———》MPLS 标签动态,便于构造隧道 ———》MPLS 标签固定长度,查找快 工作过程key point 路由给每条路由分配标签 通过X协议和邻居共享(路由---标签)映射关系

根据标签转发报文 名词 LSR,标签交换路由器,支持MPLS的路由器LSRouter LSP,标签交换路径,单向LSPath Lable,32bit++标签20bit +EXP3bit +栈底指示位1bit+TTL8bits EXP,表示报文优先级 栈底指示位,多个标签时用于标识最后一层标签 TTL,存活时间,跳数限制,用于防环 标签动作 压入,插入表签 交换,交换标签 弹出pop,弹出标签(弹出最外层or 弹出所有)FEC ,转发等价类,标签代表内容 Mpsl表格 架构 控制层面 运行路由协议,生成路由表 运行标签发布协议,生成标签库LIB

数据层面,存放最终转发用的表格,执行转发决策路由表RIB ——》IP 转发表FIB 标签库LIB-----》标签转发表LFIB RIB ,routing information base show ip route LIB , label information base show mpls ldp bindings IP FIB ,ip forward information base show ip cef LFIB lanel forward information base show mpls forwarding-table 应用: MPLS ip 单播 MPLS VPN ,用动态标签隧道构造虚拟专用网MPLS TE,用动态标签隧道优化流量工程 LDP,标签发布协议 TCP/UDP 646 端口 报文类型 Hello,发现邻居

CCNP笔记

分层 ?协议分层 ? o OSI 7层理论 o TCP/IP 4/5层实践 3. ?封装、解封装 ?跨层封装 ?网络分层 ? o核心层(高速转发) o分布层(策略) o接入层(IP编址、VLAN、ACL、Security等)路由器基本功能 ?路由选择 ?分组转发 路由协议的分类 1、按静态、动态 2、按IGP、EGP ?IGP:RIP、OSPF、IS-IS、EIGRP ?EGP:BGP 3、按设计原理 ?距离向量:RIP ?高级距离向量(混合型):EIGRP ?链路状态:IS-IS、OSPF ?路径向量:BGP 4、按有类、无类 ?有类:RIPv1 ?无类:RIPv2、EIGRP、OSPF、IS-IS、BGP 静态路由特征

1、静态路由的优点 ?占用的CPU和RAM资源较少 ?可控性强,也便于管理员了解整个网络路由信息 ?不需要动态路由更新,可以减少对带宽的占用 ?简单和易于配置 2、静态路由的缺点 ?配置和维护耗费管理员大量时间 ?配置时容易出错,尤其对于大型网络 ?当网络拓扑发生变化时,需要管理员维护变化的路由信息 ?随着网络规模的增长和配置的扩展,维护越来越麻烦 ?需要管理员对整个网络的情况完全了解后才能进行恰当的操作和配置 3、静态路由使用场合 ?网络中仅包含几台路由器,使用动态路由协议可能会增加额外的管理负担 ?网络仅通过单个ISP接入Internet ?路由器没有足够的CPU和内存来运行动态路由协议 ?可以通过浮动静态路由为动态路由提供备份 ?链路的带宽较低,动态的路由更新和维护会带来额外的链路负担 动态路由特征 1、动态路由的功能 ?发现远程网络信息 ?动态维护最新路由信息 ?自动计算并选择通往目的网络的最佳路径 ?当前路径无法使用时找出新的最佳路径 2、动态路由的优点 ?当增加或删除网络时,管理员维护路由配置的工作量较小 ?当网络拓扑结构发生变化时,路由协议可以自动进行调整来更新路由表 ?配置不容易出错 ?扩展性好,网络规模越大,越能体现出动态路由协议的优势 3、动态路由的缺点 ?需要占用额外的资源,如路由器CPU时间和RAM以及链路带宽等 ?需要掌握更多的网络知识才能进行配置、验证和故障排除等工作,特别是一些复杂的动态路由协议对管理员的要求较高

南京CCNP培训 CCNP学习笔记之EIGRP上

南京CCNP培训CCNP学习笔记之EIGRP上 IGRP-是思科私有的具有链路状态路由协议特征的高级距离矢量路由协议,属于IGP,无类路由协议 封装在IP协议中,协议号88,使用组播地址为:224.0.0.10 EIGRP的特点 1.高级的距离矢量路由协议 2.收敛速度最快 3.支持VLSM,不连续子网 4.增量更新(部分更新) 5.支持多种网络层协议,支持IP,IPV6,IPX 6.组播和单播代替了广播更新 7.EIGRP是100%无环路的路由协议 8.支持等价负载均衡和非等价负载均衡(独特) EIGRP使用的三张表 邻居表,确保直连邻居之间能够双向通信 拓扑表,拓扑表中存放着前往目标地址的所有路由 路由表,从拓扑表中选择达到目标地址的最佳路由器放入路由表 EIGRP使用Hello包来建立和维护邻居关系。 EIGRP形成邻居的两个参数, AS号必须一致, K值必须一致, 认证要一致, EIGRP 报文:

Hello 建立和维护邻居关系 Update 发送路由更新 Query 查询 Reply 回应 ACK 确认 EIGRP的可靠传输协议RTP,用于管理EIGRP报文的发送和接收,实现可靠传输。 RTO为重传超时定时器,针对3种EIGRP的可靠报文(update,query,reply)最大的重传16次,如果16次还没有收到ACK的确认包,则重置邻居关系。 EIGRP的弥散更新算法及相关术语 DUAL算法叫做扩展更新算法。 Success 后继最优路由,放在路由表里面, FS 可行后继backup路由, AD 公告距离下一跳路由器到目标网段的metric值,FD 可行距离本路由器到目标网段的metric值, FC 可行条件FC = FS的AD < S的FD, EIGRP的Metic参数 Banbwidth 带宽 Delay 延迟 Reliability 可靠性 Load 负载 Mtu mtu EIGRP中不同网络类型默认的带宽和延迟

CCNP路由笔记

CCNP 路由笔 一OSPF 篇: OSPF EIGRP 都是用 4 个逻辑分支 1 发现邻居(发送 hello 报文)2 建立邻居表( two way ) 3 建立拓扑表 4 建立路由表(选择最佳路由) 流程为down -nit- two way(建立邻居成功 DR BDR选举完成)-exstat (交换之前会选出 主从关系确定谁先发送数据) -exchange (交换 DB 过程) loadiing (交换 lsu ) full (完成整个数据交换 ospf 真个过程建立完成)。 基础知识 1. ABR (至少有一个接口与另外两个 OSPF 区域相连) 骨干路由器(至少有一个接口在 AREA 0 区域内)内部路由器(所有接口都再这个区域内) 指定路由器DR (在交换数据链路LSA时不是每个路由器都相互转发而是通过 DR/BDR 进行 2. DRother 向 DR,BDR 发送 DD,LSA request 或者 LSA UPdate 时目标地址是 AllDRouter(224.0.0.6); 或者理解为: DR 侦听 224.0.0.6 DR,BDR 向 DRother 发送 DD,LSA Request 或者 LSA Update 时目标地址是 AllSPFRouter(224.0.0.5); 或者理解为: DRother 侦听 224.0.0.5 并且所有的 DROTHER 与 DR 只会形成 TWOWAY 邻居关系但是不会形成 full 只有 DR 或 BDR 出现故障才回重新选举,即使加进来的优先级或者 RID 再打也不会重新选举,如果 DR 出现故障那么 BDR 接替,如果 BDR 出现故障重新选举 BDR,DR 保持不变

一个初学者的CCNP之路

一个初学者的CCNP之路 ---NP考后感 首语: 今天,随着最后一科的满分通过,终于标志着我长达1年多的NP奋战之路暂时告一段落。首先自恋一点,自己恭喜一下自己终于3科全满分3000分通过NP。 或许有人会问,有必要都考满分嘛。我会回答你,没必要。每个人的看法都是不同的。要相互尊重。考试和学习是两码事情。那有人又会问,我干嘛要考满分。是这样的:原本我也没想都考满分的,当时第一科825的时候不小心考了满分,后来看到网上一篇文章《3000分四科全满分PASS NP——我也顶多是个Paper》,我觉得人家可以,我也可以。虽说讨论分数没什么意义,因为大家都知道这里是怎么回事。但是,我把自己的目标定在了3000分。仅此作为对自己学习和考试的鞭策。满分不是我的最终目的,真正的目的是给自己定一个高的目标,从而去为之而奋斗。为什么是高的目标,而不是底的目标,因为,你有一个高的目标,即使你并不能真正的达到这个层次,但是你也得到了更多,学到了更多。而如果,你得过且过,总是把目标一而再再而三的降低,那么你将学到的更少,得到的也就更少。所以实际考NP,如果你有时间完全可以把它定位到IE,那么你将会收获更多的知识。我坚信这样一个道理:一个大学老师,他的知识水平应该在大学这个层次,而一个小学老师,虽然是大学学历,但是,他可能维持在小学的层次。因此,有条件我们就应该给自己一个高的定位,有一个高的目标,为之付出努力,收获自己的耕耘。如果你还是一个学生,那么我羡慕你们,因为我老了。所以知道年轻才是资本,时间就是金钱的道理。所以也希望那些学生们能够珍惜你们的时间,正真的让自己活得精彩,而不只是只知道ABCD,把什么事情都抛给了明天。古人云:少壮不努力,老大徒伤悲。否则,我就是你们的前车之鉴-30岁了还一无所成。 为什么要恭喜自己,因为自己知道自己是通过付出大量的努力来学习CISCO 的,而并非纯靠背TK来通过NP的。当然,我尊重别人的学习方式。真正付出了汗水的耕耘,那么收获才是有价值的。 为什么要写这篇文章,因为之前通过RHCE考试后,我写过一篇文章《一个初学者的RHCE之路》,所以也想在NP通过后写一篇文章出来,一是总结自己学习的历程,二是希望对那些初学CCNP的人能够提供一些帮助,似乎网络上关于学习过程的文章少了点。虽说现在NP、IE满天飞,但是真正学习知识的人还是少数。更何况没钱的人还是多数,有多少能考得起IE的。基本上NP的知识点已经覆盖到了IE,但是,只是NP的深度、广度不如IE罢了。这也就是所谓的认证的层次化吧。 那为什么要起这个名字,一是因为想和自己的前一篇文章做一个对应,二是我虽然3年前通过的NA但是一直都没有从事网络系统集成这个行业,所以没有经验,故为初学者,因此而得名。 声明: 1.不要向我索取资料,我的所有资料均来源于网络。如果你有这种想法, 那等同于乞丐。为什么会这样说,因为我见过太多的不劳就想而获的人。 2.本文首发3个地方,转载请注明出处,本人保留最终权利。

ccnp详细笔记-rip 总结

RIP 一、距离失量特点: 周期更新; 邻居; 广播更新; 更新整个路由表 水平分割 二、RIPV1与RIPV2的区别 RIPV1: 有类;(自动汇总及不支持子网掩码) 广播更新(FFFF.FFFF.FFFF); 发送V1版本,接收任何版本; 管理距离: RIPV2: 无类------不自动汇总及携带掩码; 组播(224.0.0.9) 发送V2版本,接收V2版本 管理距离: 三、五个知识点: 如图: (一)Rip的验证: MD5散列函数,把一个整个的数据变成等长的数据,如:5G的数据经过MD5算法,变成128等长的数据。 配置: 定义:KEY Chain +名字比作:钥匙扣 定义:KEY +密码比作:钥匙环 定义:KEY-string +密码。比作:钥匙 注:两端保证环和钥匙相同。 到接口下调用: Ip rip authentication key chain Ip rip authentication key mode md5 (二)、版本互操作:

No version 2 (改为版本1) Show ip protocol 查看版本号 接口下:Ip rip receve version 1 2 版本1和版本2都能接收。 Ip rip send version 1 2 发送V1和V2版本。 (三)、解决不连续子网问题: 有两个方法: 1.升级版本1为版本 2. #Version 2 因为版本2可以支持不连续子网。 2.使用辅助地址(第二地址) 将不连续的子网构成连续的子网。在接口配多个地址: Interface s1/1 Ip address 172.16.3.1 255.255.255.0 secondary 查看: Show runn 一定是先加入到rip 进程(network 172.16.3.0)才能删去不连续的地址(no network 45.1.1.0)。 (四)、被动接口(只收更新,不发送更新)。 Rip 每经过30秒主动发更新。 Router rip Passive-interface s1/1 (五)、rip 单播指邻居(单播更新) Debug ip paclet detail 查看IP的详细调试信息。 单播更新:router rip Neighor 34.1.1.2 指向邻居的接口 注:保证更新方式匹配,互相指向对方的接口。 指定单播的接口(被动接口),可发送接收单播,组播也能从该接口发出或经过。 如图: 1、R1和R4之间可以进行rip变换; 2、R2不想从R4接收更新,R4能 接收R2的更新。 方法:把R4设为被动接口; R1和R4使用单播更新。 R4#: Route rip Passive interface f0/0 Neighbor +IP地址指向R4的端口 Neighbor +IP地址指向R1的端口 用debug 查看: 说明:R1上也发给R2组播,R1和R4单播更新,收到单播,只能发单播,不会发组播了。 六、偏移列表(控制度量的工具) 方法是通过修改路数来实现偏移列表,(模拟来修改链路来实现)

相关文档