文档库 最新最全的文档下载
当前位置:文档库 › 脂质体

脂质体

脂质体
脂质体

脂质体的研究

76期基础药学基地班耿红健 09104103

摘要

脂质体是由磷脂双层构成的具有水相内核的脂质微囊。最早是1965年被英国Banghan 等人作为研究生物膜的模型提出的,其一经发现,就引起生物学家、药学家的兴趣。它能使药物对淋巴及网状内皮系统具有一定靶向性,同时具有降低药物毒性、缓释性、组织亲和性、提高药物稳定性、提高疗效、改变给药途径等多优点。但未加修饰的脂质体靶向性不强,而修饰脂质体膜表面是提高其靶向性和稳定性、延长体内循环作用时问的一种效途径。目前已研制出多种不同功能的脂质体,例如长循环脂质体、pH敏感脂质体、温度敏感脂质体、长循环脂质体等等。脂质体为给药途径的研究开辟了广阔的空间,给广大患者带来福音。

关键词:脂质体脂质微囊给药途径药物载体靶向组织亲和

Abstract

Liposomes are formed by a bilayer lipid cores with aqueous microcapsules. Was first in 1965 by the British, who Banghan biofilm model as a research made, one is found to lead to biologists, pharmacists interest. It makes drugs on lymphatic and reticuloendothelial system has a certain target, while a decrease of drug toxicity, slow release, tissue compatibility, increased drug stability, improve efficacy, to change the route of administration and other advantages. But unadorned targeted liposome is not strong, and modified liposome membrane surface to improve its targeting and stability, extended circulation in vivo role of a effective way to ask. Has developed a variety of different functions of the liposomes, such as long circulating liposomes, pH sensitive liposomes, temperature-sensitive liposome, so long circulating liposomes. Liposomes as drug delivery means of opening up a vast space, bring the gospel to the majority of patients.

Key words: lipid microencapsulated liposome drug delivery route of administration and targeting organizations pro-

前言

脂质体(1iposomes)是一种新型药物载体,[1]是由类似于生物膜结构的双分子层微小囊泡,可以包裹水溶性和脂溶性药物,主要材料是磷脂和胆固醇。在给药系统研究领域中,脂质体非常引人瞩目,一是因为所用材料磷脂和胆固醇是生物细胞膜的主要成分,是机体内源性物质,具有良好的生物相容性和可降解性,无毒无免疫原性;二是脂质体的组成结构和生物细胞相似,易与细胞发生吸附、融合、脂交换、内吞而被细胞摄取;三是具有一定的弹性和变形性,比相同粒径的其他类型的纳米粒容易进入病灶组织;此外,脂质体表面还很容易进行修饰。试验证据表明,脂质体作为药物载体,具有可以提高药物治疗指数、降低药物毒性、减少副作用、具有靶向性、可缓释长效以减少药物剂量、具脂质体细胞亲和性和组织相容性等特点。

由于脂质体具有以上的优越性,科学家们一直致力于它的研究开发,在脂质体表面节能型修饰,研发出了多种功能的新型脂质体药物载体,例如柔性脂质体、免疫脂质体、pH敏感脂质体、阳离子脂质体、热敏脂质体、隐形脂质体(长循环脂质体)、前体脂质体、磁性脂质体、膜融合脂质体、固体纳米脂质体等等长循环脂质体[2]

又称长效脂质体 ,是一种表面含有天然或合成聚合物修饰的类脂衍生物的新型脂质体。它在血液中驻留时间延长 ,从而延长药物作用时间 ,具有长效作用。常用的修饰物有聚乙二醇

(PEG ) 和神经节甘酯( GM1) 。GM1 增强膜刚性 ,减少单核吞噬细胞系统 MPS 的摄取 ,这种长循环脂质体在血液中的滞留量与被 MPS摄取量的比值高于传统脂质体几十倍。但 GM 难以大量获得 ,且有一定的免疫毒性。含有 PEG的类脂衍生物 ,它们在脂质体表面具有高度修饰的作用 ,能形成空间位阻层 ,这种立体位阻能够保护脂质体不被识别、摄取 ,使其消除减慢 ,作用时间延长。如以聚乙二醇二硬脂酰磷脂酰乙醇胺修饰的紫杉醇脂质体 ,用药24 h后在血液中潴留 >35%,在肝、脾组织中摄取 <10%,而传统脂质体在血液中仅潴留 10%,被单核吞噬细胞捕获 >50% 。目前 ,该类脂质体已被成功用于临床 ,如盐酸比柔比星脂质体Doxil 是第一个得到美国认可的长循环脂质体。长循环脂质体的研制给脂质体药物传输系统注入了新的活力和希望,早期曾有报道,将聚乙二醇(PEG)偶联到牛血清蛋白上,会延长该物质的血循环时间。据此,[3]采用聚乙二醇单甲醚(PEG-MM)与磷脂酰乙醇胺(PE)结合成酯(PEG-PE),将其组装到脂质体膜上,可以延长脂质体的血循环时间。由于PEG 化脂质体具有很好的应用前景,因而近年来各国学者对其进行了广泛的研究。在短短几年内,已报道十余种PEG化脂质体衍生物。除了上述的第一个上市的PEG化阿霉素脂质体外,众多学者还对化疗药物、抗生素、肽类等多种药物进行了长循环脂质体化的研究。脂质体长循环化赋予了脂质体与众不同的特性,使脂质体的研究和应用进入了一个全新的阶段。

2 pH敏感脂质体

[4]pH敏感脂质体是基于肿瘤间质处的 pH值比正常组织低的特点而设计的一种具有细胞内靶向和控制药物释放作用的脂质体。目前常用的 PH敏感脂质体为二油酰磷脂酰乙醇胺DOPE 。当脂质体处于中性 pH环境时 ,DOPE的羧基离子可提供有效静电进行排斥 ,使脂质体保持稳定 ,当 pH改变时 ,双层脂质体可转变成六角相 ,引发脂质体膜不稳定、聚集、融合、释放内容物。从而将包封物导入细胞质并主动靶向到病变组织 ,提高药物的靶向性。采用不同的膜材或调节脂质组成比例 ,可获得具有不同 pH敏感性的脂质体。[5]要形成稳定的脂质体 ,还要加入含有滴定酸性基团的物质 ,最常见的是含有羧基的脂质 ,如油酸、半琥珀酸胆固醇、棕榈酰同型半胱氨酸等。TENU等应用 pH敏感脂质体作为干扰素的载体可以激发巨噬细胞的宿主防卫反应 ,而非 pH敏感脂质体却无此作用。

3 温度敏感脂质体

[6]温度敏感脂质体是指当温度达到脂质材料的相变温度时 ,脂质体双分子膜在由“凝胶”态转变到“液晶”态结构时 ,其磷脂的脂酰链紊乱度及活动度增加 ,膜的流动性增大 ,所包封药物的释放速率增大。人们提出使肿瘤或局部感染病灶升温 ,使局部温度高于相变温度 ,使脂质体包封的药物在局部快速释放 ,以提高脂质体的靶向性。KAKINUMA等应用此类脂质体携载顺铂结合大鼠脑瘤局部加热 41 ℃, 30 min ,可显著增加药物在脑肿瘤部位的聚集。黎维勇等以二棕榈酰磷脂酰胆碱和单棕榈酰磷脂酰胆碱为原料制备了温度敏感多柔比星脂质体 ,发现其在 39 ℃下迅速释放 ,前 20 s释放药物 50%,42 ℃下药物释放达到 >60%,具有较好的温度控释特性。迄今为止 ,温度敏感脂质体已被尝试用于大分子物质、抗生素以及抗肿瘤药物的载体 ,其中抗肿瘤药物载体的研究较为深入。热敏脂质体对人体无毒、无免疫抑制作用,通过改变病灶部位的局部温度就可改变脂质体的通透性,促使所载的药物释放,故具有提高生物利用度、降低全身副作用以及避免产生耐药性等优势。[7]但其也存在一些问题:如热敏脂质体的膜材一般为合成磷脂,造价高,难以进入临床;其热敏性受多种因素,如制备工艺、脂质体粒径大小、脂质体的种类、成膜材料等影响;热疗过程中,药物释放和局部温度的控制难以量化,从而影响了热敏脂质体联合热疗作为癌症治疗手段的推广和普及;另外,长循环热敏脂质体虽具备长循环和靶向释药的作用,但其亲水性高分子材料的嵌入在一定程度上降低了脂质体的热敏性。

4 前体脂质体

[8]前体脂质体是将磷脂、药物及附加剂等以适宜方法制成的不具备完整脂质双分子层

囊泡结构的一种液态或固态制剂 ,经稀释或水化即能转化成脂质体。前体脂质体可在一定程度上克服传统脂质体聚集、融合及药物渗漏等稳定性问题 ,为工业化生产奠定了基础。[9]有文献报道 ,以泡腾颗粒为载体的吲哚美辛前体脂质体用于口服给药 ,不仅具有较好的抗炎作用 ,同时还具有良好的细胞保护作用 ,能显著减轻非甾体抗炎药所致的细胞坏死作用。高晓黎等考察了替加氟前体脂质体和药物溶液的小肠吸收情况 ,结果表明前者能显著促进药物的小肠吸收。

5 磁性脂质体

[10]磁性脂质体是在脂质体中掺入铁磁性物质制成 ,在体外磁场的作用下 ,把抗肿瘤药物选择性地输送和定位于靶细胞 ,从而降低药量 ,减少毒性 ,提高疗效。在交变磁场作用下 ,到达靶区的磁场粒子能迅速升温至有效治疗温度 ,导致肿瘤组织坏死 ,而无磁性脂质体的正常组织则不受损伤 ,[11]日本的 KUBO等报道应用磁性多柔比星脂质体定向治疗仓鼠骨内瘤 ,结果显示 ,应用磁性多柔比星脂质体磁导向治疗与单纯静脉滴注多矛比星溶液相比 ,具有明显的抗肿瘤活性 ,同时应用磁导向治疗可减少多柔比星引起的体质量减轻。化疗是目前恶性肿瘤的主要治疗手段之一,但传的注射途径应用化疗药物,效果不佳,因为药物在到肿瘤部位之前,要经过同蛋白结合、代谢、排泄等步,血液中药物浓度迅速降低,最终只有少量药物到达瘤部位。近期研究表明磁靶向载体与化疗药物协同置在药物稳定系统中,在足够强的外磁场作用下将性载体定位于肿瘤,使所含药物定位集中释放在肿部位,可以显著提高肿瘤部位的药物浓度,增强化疗果。

6 免疫脂质体

[12]免疫脂质体是机体修饰的脂质体的简称 ,是指将抗体或受体转接到脂质体表面 ,利用抗原抗体特异性结合反应 ,将脂质体靶向到特异性细胞和器官。免疫脂质体携带药物具有靶向性强、毒副作用小、半衰期长、运载量大等优点。可用于各种疾病的治疗 , 但研究最多的还是用于肿瘤导向治疗。[13]HUWYLER等用两端分别连接磷酯和Ox 单抗的 PEG200026为膜材制备的柔红霉素脂质体 ,显著提高了药物在脑组织中的浓度。方瑾等采用新型偶联剂 SATA,将抗人体结肠癌的单抗与载有紫杉醇的脂质体偶联制成免疫脂质体。体外细胞毒实验结果显示 ,紫杉醇免疫脂质体有明显靶向专一性 ,优于普通脂质体和游离药物。

7 膜融合脂质体

[14]膜融合脂质体是一种低毒高效的新型基因导入载体 ,可与特定病毒如人免疫缺陷病毒Ⅰ型、流感病毒、仙台病毒等融合 ,继而将这些病毒特异性地导入到靶细胞内。目前 ,膜融合脂质体主要应用于介导蛋白质类药物、介导基因药物及作为疫苗载体。[12]制备阳离子膜融合脂质体包裹 DNA体外转染及稳定性研究表明 ,阳离子膜融合脂质体介导的 DNA 转染效率 42. 3%,明显高于阳离子脂质体介导的转染效率23. 9%,且具有很好的稳定性。NAKANISHI等在脂质体基础上 ,引入能与细胞膜融合病毒 ,通过病毒包膜上的两个膜蛋白模拟病毒感染细胞的特性 ,能与细胞膜合并从而将分子特异性地导入到靶细胞内 ,同时还具有低毒、快速、高效的特点。

8 柔性脂质体

[15]在普通脂质体中加入某些表面活性剂如胆酸钠、脱氧胆碱钠等即为柔性脂质体 ,是一种新型的皮肤给药转释系统 ,可转运各种极性药物透过皮肤 ,具有柔韧性好、渗透性强的特点。龙晓英等制备双氯芬酸钠柔性脂质体体外研究表明 ,柔性脂质体在 4,8,12 h的累积透过量显著高于普通脂质体及乳膏 ,12 h的累积透过率与后二者相比分别增加了 3. 4倍及 6. 9倍。郭健新等以逆相蒸发 2探针式超声法制备的胰岛素柔性脂质体具有明显降血糖作用 ,而相近浓度和包封率的胰岛素普通脂质体及溶液无降血糖效果。说明柔性脂质体能显著促进胰岛noside2based liposomes induce no synthase in primed mouse素的经皮

转运。[16]柔性纳米脂质体(flexible narlo—liposomes,FNL)又称传递或变形脂质体,是

将表面活性剂(如胆酸钠、去氧胆酸钠)加入到制备脂质体的类脂材料中制成的具有高度自身变、可高效地穿过比其自身小数倍的皮肤孔道的类脂质,具有高效渗透性、高度柔韧性和亲

水性。柔性纳米脂质的结构类似生物膜,是一种多功能的定向药物载体,能使多的药物保留

在皮肤中,减少药物进入血循环的鼍,在表和真皮内形成药物贮库,形成一个缓释模型,使

药物持久对病变局部起治疗作用。

9结束语

作为药物载体,脂质体本身就具有靶向、长效、低毒、缓释、无免疫原性及保护包封药

物等优点,所以脂质体日益受到广大医学科研人员的重视。脂质体是一种定向药物载体,属

于靶向给药统的新剂型。它可以将药物粉末或溶液包埋在径为纳米级的微粒中,这种微粒具

有类细胞结,进入人体内主要被网状内皮系统吞噬,从而活机体的自身免疫功能,并改变被

包封药物的内分布,使药物主要在肝、脾、肺和骨筒等组织器官中积蓄,从而提高药物的治

疗指数,减少药物的治疗剂量和降低药物的毒性。脂质体由双分子层组成,主要由磷脂为膜

材及附加剂构成。其形状为球形,直径大小约为几十纳米到几十微米。它与胶束、微乳液、液晶、单分子膜、多分子膜、主一客体系等统称为“分子有序组合体”。目前脂质体己广泛

研究应用于口腔医学及临床医学中,同时其给药系统也正向着基因给药,脑部给药等高技术

给药领域深入发展。相信随着脂质体研究工作的不断深入,科研思路的不断拓宽,不同理论

互相渗透、互相补充,最终脂质体相关技术将成为医学科研工作和临床治疗中更加重要的手段。

参考文献:

[1]陈少峰,刘满荣;简述脂质体在中药药剂中的应用;海峡药学2011,23(1):23-25

[2]曹纯洁;长循环脂质体的研究进展;药学实践杂志2005,23(1):12-15

[3]Tirrel DA.Pulsed and Self —Regulated Drug Delivery. Kost Jed,Boca Raton:CRC Press,1990:109—116

[4]王剑磊;pH敏感型脂质体的研究进展;中国新药杂志,1999;440-442

[5]KunathK, von Harpe A,Fischer D,Kissel T.Galactose-PEI-DNA complexes for targeted gene delivery:degree of substitution affects complex size and transfection efficiency.J Control Release 2003;88:159-172

[6]孙摇飞;热敏脂质体的研究进展;药学进展;2010,34(9):399-405

[7]王丽;磁性热敏脂质体在肿瘤热化疗中的研究进展;东南大学学报;2009,28(4):325-352

[8]周臻;兰索拉唑前体脂质体的制备及其特性考察;中国药剂学杂志;2007,5(3):75-79

[9] NICOLE M, MAISCH, CANDACE S. Lansoprazole IV:A new delivery method for an estabilished PPI[J]. Formulary, 2003, 38:705-707

[10]辛盛昌;紫杉醇磁性脂质体纳米粒的制备;2006,41(10):933-938

[ 11 ] Votairas PA. Hydr odynamics of magnetic drug targeting

[ J ]. J Bi omech, 2002, 35: 813 - 821 .

[12] 张志荣援靶向治疗分子基础与靶向药物设计[酝]援北

京:科学出版社,圆园园缘:员郾

[13]GUO;Immunizaton Schedule of Liposomal Rabies Vacce in Animals ;CHEMRES CHINESE UNIVRSITIES 2 0 1 0,2 6 ( 5 ),8 1 O一8l5

[14] 杨彤;新型脂质体的研究;医药导报;28(3):336-338

[15]Brannon PL.Blanehette JO.Nanopartiele and targeted tlystems for canW thel-.apy[J].^由OrugOel/vRev,2004,56(11):1649·1659

[16]陈桐楷;柔性纳米脂质体经皮给药新载体的研究进展;药学进展;2009,12(6):732-734

脂质体综述

中药脂质体 摘要:药物治疗是肿瘤治疗的重要手段之一,但目前的一线化疗药物因为其毒性作用及多药耐药性限制了其临床应 用。而新型抗癌药物成本高昂、研发周期过长,无法满足 临床需要。因此利用新的剂型如脂质体,以提高药物疗效、 降低毒性作用成为了研究的热点 关键词:脂质体、肿瘤、靶向性、化疗 脂质体(liposomes)是一种类似于生物膜结构的双分子层微小囊泡,可以包裹水溶性和脂溶性药物,主要材料是磷脂和胆固醇。在给药系统研究领域中,脂质体非常引人瞩目,一是因为所用材料磷脂和胆固醇是生物细胞膜的主要成分,是机体内源性物质,具有良好的生物相容性和可降解性,无毒无免疫原性;二是脂质体的组成结构和生物细胞相似,易与细胞发生吸附、融合、脂交换、内吞而被细胞摄取;三是具有一定的弹性和变形性,比相同粒径的其他类型的纳米粒容易进入病灶组织,如透过肿瘤组织的毛细血管壁进入肿瘤组织[1]。此外,脂质体表面还很容易进行修饰,如用聚乙二醇(PEG)修饰的长循环脂质体,用对特定组织或细胞有特异结合性的配基进行修饰的主动靶向脂质体,双层脂膜掺入胆酸盐之后形成的柔性脂质体,以及掺入带碱性脂质成分制

备的用于基因转染的阳离子脂质体等[2]。通过选用合适的磷脂成分以及调整磷脂成分、胆固醇的用量比例,还可以制备pH敏感、热敏感的脂质体,利用病变局部pH、温度等的改变而在该处选择性释放药物。大量试验证据表明,脂质体作为药物载体,具有可以提高药物治疗指数、降低药物毒性、减少副作用、具有靶向性、可缓释长效以减少药物剂量、具脂质体细胞亲和性和组织相容性等特点。中药脂质体的疗效是由脂质体所包裹的中药成分所决定的,目前脂质体主要用于包裹毒性大、不稳定或吸收效果差的中药,中药脂质体在抗癌、抗菌、免疫调节、酶系统疾病治疗、镇静方面以及肝炎治疗中都有所应用[3]。 脂质体具有的独特分子结构和理化性质使其具有如下特点:①靶向性。脂质体能选择性地分布于人体内某些组织和器官,俗称药物导弹。②缓释性。药物被包在脂质体内,在组织和血液中的扩散速率降低,药物作用的时间延长。③长效性。在脂质体双分子层的保护下,药物可避免氧化、降解和破坏,药物的疗效延长。④无毒性。脂质体膜与哺乳动物的细胞相似,对机体无免疫原性,不会引起局部组织损伤、不诱发过敏反应。⑤与细胞有亲和性。可增加药物通过细胞膜的能力,起到增强疗效的作用。⑥给药途径多样性。脂质体不仅可静脉给药,也可通过皮肤、皮下、肌肉、黏膜给药,还可以将脂质体制成涂擦剂、膏剂、口服液等。⑦可控性。在制备的过程中,通过改变其表面的性质如颗粒大小、表面电荷等改变脂质体药物的靶向性,从而控制药物在体内的分布[4]。 脂质体的基本成分磷脂的性质是决定脂质体物理稳定性、与药物

脂质体制备方法

微脂体(又称脂质体)及其制备方法一二 微脂体(又称脂质体) 微脂体起源于1960 年代中期,Bangham博士等人首先提出,在磷酸脂薄膜上加入含盐分的水溶液后,再加以摇晃,会使脂质形成具有通透性的小球;196 8年,Sessa 和Weissmann 等人正式将此小球状的物体命名为微脂体(liposo me)并做出明确的定义: 指出微脂体是由一到数层脂质双层膜(lipid bilayer) 所组成的微小的囊泡,有自行密合(self-closing)的特性。微脂体由脂双层膜包裹水溶液形成,由于构造的特性,可同时作为厌水性(hydrophobic)及亲水性(hydrophilic)药品的载体,厌水性药品可以嵌入脂双层中,而亲水性药品则可包覆在微脂体内的水溶液层中。如同细胞膜,微脂体的脂质膜为脂双层构造,由同时具有亲水性端及厌水性端的脂质所构成,脂双层由厌水性端相对向内而亲水性端面向水溶液构成,组成中的两性物质以磷酸脂质最为常见。微脂体的形成是两性物质在水溶液中,依照热力学原理,趋向最稳定的排列方式而自动形成。微脂体的性质深受组成脂质影响,脂质在水溶液的电性,决定微脂体是中性或带有负电荷、正电荷。此外,磷酸脂碳链部分的长短,不饱和键数目,会决定微脂体的临界温度(transition temperature, Tc),影响膜的紧密度。一般来说,碳链长度越长临界温度越高,双键数越多则临界温度越低,常见的DPPC(dipalmitoylp hosphatidylcholine)与DSPC(distearoylphosphatidylcholine)的临界温度分别是42℃与56℃,而Egg PC(egg phosphatidylcholine)与POPC(palmitoyl oleoyl phosphatidylcholine)的Tc 则低于0℃。临界温度影响微脂体包裹及结合药物的紧密度,当外界温度高于Tc时,对膜有通透性的药物,较容易通过膜;此外,当外界温度处于临界温度时,微脂体脂质双层膜中的脂质,会因为流动性不一致而使微脂体表面产生裂缝,造成内部药物的释出。在磷脂质内加入胆固醇,会对微脂体性质产生下列影响:增加微脂体在血液中的安定性,较不易发生破裂;减少水溶性分子对微脂体脂膜的通透性;增加微脂体的安定性,使其在血液循环中存在的时间较长。 微脂体可依脂双层的层数或是粒子大小,加以命名或分类: (1) Multilamellar vesicle(MLV)是具有多层脂双层之微脂体,粒子大小介于100-1000 nm,特色是粒子内具多层脂质膜,一般而言,干燥后的脂质薄膜,

脂质体与当前国内外脂质体研究进展

摘要 脂质体作为药物载体具有很多优点, 但是其主动靶向性和稳定性较差, 为了克服上述缺点,近年来国内外研制出许多新型脂质体。通过检索近 20 年来国内外有关新型脂质体的相关文献, 对其进行综合分析和总结,提出脂质体在制剂中应用研究中存在的问题与建议,对新型脂质体如长循环脂质体、pH敏感脂质体、温度敏感脂质体、前体脂质体、磁性脂质体、免疫脂质体、膜融合脂质体、柔性脂质体等的研究及应用做一综述, 并展望了新型脂质体的发展前景。脂质体在制剂中应用是新剂型和新技术的现代化重要标志,也是国际化的需要,作为一种新型药物载体,研制出稳定的脂质体是脂质体作为药物载体走向实用的前提,因此具有十分重要的意义。 关键词:脂质体,药物载体,临床研究,综述

Abstract Liposome as drug delivery system has many advantages, but its less active targeting and stability, in order to overcome these shortcomings, both at home and abroad in recent years we have developed many novel liposome. By retrieved near 20 years to both at home and abroad about new fat mass body of related literature, on its for integrated analysis and summary, made fat mass body in preparations in the application research in the exists of problem and recommendations, on new fat mass body as long cycle fat mass body, and pH sensitive fat mass body, and temperature sensitive fat mass body, and Qian body fat mass body, and magnetic fat mass body, and immune fat mass body, and film fusion fat mass body, and flexible fat mass body, of research and the application do a summary of, and prospect has new fat mass body of development prospects. Application in liposome preparation are important signs of modernization of new dosage forms and technologies, as well as international needs, as a novel drug delivery system, developed stable liposomes is towards practical premise of liposome as drug carriers, it has a very important significance. Keywords:Liposome ,Drug carrier ,Clinical research ,Overview

脂质体的研究与应用

脂质体的研究与应用 摘要:脂质体是某些细胞质中的天然脂质小体有关脂质体的研究进展进行了检索、分析、整理和归纳,综述了脂质体的分类、制备方法及研究进展。 关键字:主动载药;被动载药;药物载体;前体脂质体;靶向给药脂质体(Liposomes)是由磷脂胆固醇等为膜材包合而成。磷脂分散在水中时能形成多层微囊,且每层均为脂质双分子层,各层之间被水相隔开,这种微囊就是脂质体。脂质体可分为单室脂质体、多室脂质体,含有表面活性剂的脂质体。按性能脂质体可分为一般质体(包括上述单室脂质体、多室脂质体和多相脂质体等)特殊性能脂质体、热敏脂质体、PH敏感脂质体、超声波敏感脂质体、光敏脂质体和磁性脂质体等。按电荷性,脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。 脂质体作为药物载体在恶性肿瘤的靶向给药治疗方面极具潜力。为克服脂质体作为载体的靶向分布不理想、稳定性较差的缺点,近年来开发了一些新型脂质体,如温度敏感型、PL敏感型、免疫、聚合膜脂质体。前体脂质体概念的提出和研究,提供了克服脂质体不稳定的较好思路。 目前,制备脂质体的方法较多,常用的有薄膜法、反相蒸发法、溶剂注入法和复乳法等,这些方法一般称为被动载药法,而pH梯度法,硫酸铵梯度法一般被称为主动载药法。 1被动载药法 脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。陈建明等[1]在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。 1 )薄膜分散法 此法是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。 2)超声分散法 将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。 3)冷冻干燥法 脂质体混悬液在贮存期间易发生聚集、融合及药物渗漏,且磷脂易氧化、水解,难以满足药物制剂稳定性的要求。目前,该法已成为较有前途的改善脂质体制剂长期稳定性的方法之一。 4 )冻融法 此法首先制备包封有药物的脂质体,然后冷冻。在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合重新形成脂质体。分别用反相蒸发法、乳化法和冻融法制备了甲氧沙林脂质体。 5)复乳法

关于药物脂质体的研制分析

关于药物脂质体的研制分析 一、前言 脂质体作为一种新型的载药系统,得到广泛的应用和研究。评价脂质体质量的指标有外观、粒径分布和包封率等。其中包封率是衡量脂质体内在质量的一个重要指标。对于亲脂性药物,由于其对磷脂膜的亲和性,可以在制备过程中得到很高的包封率,且不易渗漏。而亲水性药物在制备时则必须包封在脂质体囊内部或多层脂质体层间的水性介质中,除一些特殊药物外包封率普遍不高,且易泄露。制备中为了得到更大的包封率,不得不增加囊内的容积,而这与控制脂质体在有效的粒径范围内又相互矛盾。 二、制备方法 1、常规方法 对于一些亲水性药物,使用常规的制备方法也可以得到满意的包封率。胡静等用简单的薄膜水化-机械分散法研究了硫唑嘌呤(Aza)脂质体包封率的影响因素。这些因素包括卵磷脂与胆醇摩尔比、缓冲液(PBS)pH值、水相用量及药脂重量比。通过正交设计得到最佳处方所制得的3批硫唑嘌呤脂质体形态圆整,大小均匀,粒度范围0.01~0.42μm,包封率均达30%以上。但在实验中发现药脂重量比增加时,包封率反而下降,这说明Aza的利用率在减少。 2、三维网状脂质体 亲水性药物在脂质体内包封的多少取决于在脂质体形成时其在囊内溶液和囊间溶液中的分配,此比率越高,包封率也越高。因此提高囊内溶液的体积可以提高药物的包封率。M. Brandl等通过提高单位体积内磷脂的浓度,以增加在内相中的体积同时又不改变脂质体的形状和大小,从而增加药物的包封率。它将磷脂溶解在水性介质中达到200-300mM浓度,形成一种半固体的糊状物,再用一步高压匀质法使磷脂“强制水化”制成了“Three-dimensional liposome network”。通过电镜观察,发现这种糊状物包埋了水溶性的标记药物,而且还具有缓释作用。所谓一步高压匀质法就是将磷脂粉末和药物分散在水或磷酸盐缓冲液中,轻微振摇后在GM Lab 40 匀质机中高压匀质切割即得脂质体。 3、将药物引入制好的空白脂质体中 由于脂质体一般为混悬液,在储存和运输中难免出现渗漏,聚合等现象影响了包封率和粒径。采用空白脂质体加药物的方法可能可以解决这一问题。 Anye首先提出了前提脂质体(proliposome )的概念,将水溶性甘露醇分散在脂质体膜材的乙醇溶液中,挥干乙醇制的粉状的前体脂质体,此前体脂质体是以甘露醇为主要支架,磷脂膜粘附在其上的结构。该前体脂质体易于保存。药物

脂质体包载技术在化妆品中的应用

脂质体包载技术在化妆品中的应用摘要:脂质体包载技术是将功效成分包裹于脂质体囊泡内的制备技术,由此制成的化妆品脂质体具有皮肤护理和功能性成分载体的作用,有着非常重要的实际研究和应用价值,是目前功效性化妆品的研究热点。本文将对脂质体包载技术在化妆品中的研究现状和应用做一下概括,并对其发展前景做一下展望。 引言:脂质体最初是1965年英国学者Banyhanm和Standish将磷脂分散在水中进行电镜观察时发现的。1976 年Gregoriadis等鉴于脂质体的特殊结构和磷脂生物相容性好等特点,研究用脂质体作为载体包裹药物,发现载药脂质体体内分布与单纯药物有所不同、在血循环中半衰期延长、药物的毒副作用明显改善,药物的溶解性也发生了变化。后经多年研制,人们发现各种脂质和脂质混和物均可用来制备脂质体,而磷脂最为常用,如卵磷脂、丝氨酸磷脂和神经鞘磷脂以及合成的二棕榈酰磷脂酰胆碱、二硬脂酰磷脂酰胆碱等,且脂质体具有粒径小、剂量小、稳定性强、靶向性高、缓释可控和安全无毒等特点,便将脂质体广泛用于多个领域。1986 年,Dior为法国Lancome公司开发了世界上第一个叫做“capture”的脂质体化妆品,随后在各个国家逐渐推广。目前,含各种脂质体的化妆品已经得到广泛应用。 一:脂质体的结构和性能 1.1 脂质体的结构 脂质体是一种人工制备的类脂质小球体,由一个或多个酷似细胞膜的类脂双分子层包裹着水相介质组成.当磷脂分散在水中时形成多层囊泡,而且每一层均为脂质双分子层,各层之间被水相隔开,这种由脂质双分子层组成,内部为水相的闭台囊泡称为脂质体,由于它的结构类似生物膜,故又称为人工生物膜。

2018年新型制剂微球脂质体行业分析报告

2018年新型制剂微球脂质体行业分析报告 2018年10月

目录 一、新型注射制剂兴起,关注微球和脂质体 (6) 1、剂型是药物的表现形式,注射剂型独具优势 (6) 2、传统注射制剂存在诸多缺陷,新型注射制剂应运而生 (7) 3、关注进展最快的注射用微球和脂质体 (9) (1)微球:长效化优势明显,市场表现较好,技术壁垒较高 (9) ①微球制剂长效化优势明显,上市后取代普通制剂,市场份额可超50% (9) ②微球主要用于多肽类药物,近些年多肽药物发展迅速,微球制剂市场空间广阔 (12) ③微球制剂产业化技术壁垒较高,研发成本高昂,研发周期长,竞争格局良好13 (2)脂质体:靶向性好,抗肿瘤药物前景广阔,技术壁垒较高 (15) ①脂质体作为药物运载体,靶向性强,在提高药物疗效的同时可降低药物副作用 (15) ②脂质体主要用于抗肿瘤药物,抗肿瘤药物市场增长迅速,前景广阔 (17) ③脂质体工业化生产较难,技术壁垒较高,竞争格局良好 (18) 二、全球注射微球脂质体的崛起之路 (19) 1、三十余年的发展,全球注射微球脂质体市场稳步增长 (19) 2、回溯全球90年代制剂发展,探寻微球脂质体的崛起原因 (21) (1)技术端:制剂水平的进步和相关技术突破 (21) (2)政策端:专利法案推动科研成果转化,政策鼓励剂型创新 (24) (3)需求端:全球疾病谱变化,肿瘤等慢性病患者人数增加 (26) 三、国内外代差明显,三大因素推动行业快速发展 (27) 1、微球脂质体处于起步阶段,销售额增长迅速 (27) 2、“技术+政策+需求”三因素推动行业快速发展 (29) (1)技术端:技术已有突破,产品质量不断提升 (29)

脂质体

脂质体(Liposomes)是由磷脂胆固醇等为膜材包合而成。磷脂分散在水中时能形成多层微囊,且每层均为脂质双分子层,各层之间被水相隔开,这种微囊就是脂质体。脂质体可分为单室脂质体、多室脂质体,含有表面活性剂的脂质体。按性能脂质体可分为一般质体(包括上述单室脂质体、多室脂质体和多相脂质体等)特殊性能脂质体、热敏脂质体、PH敏感脂质体、超声波敏感脂质体、光敏脂质体和磁性脂质体等。按电荷性,脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。 脂质体作为药物载体在恶性肿瘤的靶向给药治疗方面极具潜力。为克服脂质体作为载体的靶向分布不理想、稳定性较差的缺点,近年来开发了一些新型脂质体,如温度敏感型、PL敏感型、免疫、聚合膜脂质体。前体脂质体概念的提出和研究,提供了克服脂质体不稳定的较好思路。 脂质体作为目前最先进的,被喻为"生物导弹"的第四代给药系统成为靶向给药系统的新剂型。 脂质体的靶向性 通过改变脂质体的给药方式、给药部位和粒径来调整其靶向,另外,还可在脂质体上连接某种识别分子,通过其与靶细胞的特异性结合来实现专一靶向性。 靶向性是脂质体作为药物载体最突出的优点,脂质体进入体内后,主要被网状内皮系统吞噬,从而使所携带的药物,在肝、脾、肺和骨髓等富含吞噬细胞的组织器官内蓄积。 1.天然靶向性是脂质体静脉给药时的基本特征,这是由于脂质体进入体内即被巨噬细胞作为外界异物吞噬的天然倾向产生的。脂质体不仅是肿瘤化疗药物的理想载体,也是免疫激活剂的理想载体。 2. 隔室靶向性是指脂质体通过不同的给药方式进入体内后,可以对不同部位具有靶向性,可以通过各种给药方式进入体内不同的隔室位置产生靶向性。在组织间或腹膜内给予脂质体时,由于隔室的特点,可增加对淋巴结的靶向性。 3. 物理靶向性这种靶向性是在脂质体的设计中,应用某种物理因素的改变,例如用药局部的pH、病变部位的温度等的改变而明显改变脂质体膜的通透性,引起脂质体选择性地在该部位释放药物。弱离子性药物的脂质体,在进入体内后,可以选择性地在肿瘤的低pH局部释放药物。这种受pH影响释放药物的脂质体称为pH敏感脂质体。 4.配体专一靶向性这种靶向性是在脂质体上连接某种识别分子,即所谓的配体,通过配体分子的特异性专一地与靶细胞表现的互补分子相互作用,而使脂质体在靶区释放药物。 脂质体的分类 1. 阳性脂质体 阳性脂质体(cationic liposome)又称阳离子脂质体,正电荷脂质体(Positiveiy charged liposome)是一种本身带有正电荷的脂质囊泡。 1.1 阳性脂质体的组成大多数阳性脂质体是由一种中性磷脂和一种或多种阳性成分 组成。 中性磷脂成分:阳性脂质体中使用的中性磷脂成分上与常规脂质体相似,如胆固醇(cho1)、磷脂酰胆碱(PC)、磷脂酚乙醇胺(PE)等。 阳性成分:多为合成的双链季铵盐型表面活性剂,具有体外稳定性好,体内可被生物降解的优点,但均具有一定的细胞毒性。

实验十五 脂质体的制备.

实验十五脂质体的制备 一、实验目的 1. 掌握注入法制备脂质体的工艺。 2. 掌握脂质体包封率的测定方法。 二、实验原理 60年代初 Banghan 等发现磷脂分散在水中可形成多层囊,并证明每层囊均为双分子脂质膜组成且被水相隔开,称这种具有生物膜结构的囊为脂质体。197l 年Ryman 等人提出将脂质体作为药物载体, 即将酶或药物包囊在脂质体中。近年来脂质体作为药物载体在传递给药系统中的研究有了迅速的发展。 脂质体系一种人工细胞膜, 它具有封闭的球形结构, 可使药物被保护在它的结构中, 发挥定向作用。特别适于作为抗癌药物载体,以改善药物的治疗作用,降低毒副作用等。脂质体系由磷脂为骨架膜材及附加剂组成。用于制备脂质体的磷脂有天然磷脂, 如豆磷脂,卵磷脂等;合成磷脂,如二棕榈酰磷脂酰胆碱,二硬脂酰磷脂酰胆碱等。磷脂在水中能形成脂质体是由其结构决定的。磷脂具有两条较长的疏水烃链和一个亲水基团。当较多的磷脂加至水或水性溶液中, 磷脂分子定向排列, 其亲水基团面向两侧的水相, 疏水的烃链彼此对向缔合形成双分子层, 并进一步形成椭圆形或球状结构——脂质体。常用的附加剂为胆固醇,它也是两亲性物质,与磷脂混合使用,可制备稳定的脂质体,其作用是调节双分子层流动性,减低脂质体膜的通透性。其它附加剂有十八胺,磷脂酸等,这两种附加剂可改变脂质体表面电荷的性质。 脂质体可分为三类:小单室(层脂质体,粒径在 20~50nm,凡经超声波处理的脂质体混悬液, 绝大部分为小单室脂质体; 多室(层脂质休, 粒径约在 400~1000nm; 大单室脂质, 粒径约为 200~1000nm,用乙醚注入法制备的脂质体多属这—类。 脂质体包封率的测定包封率的定义可用下式表示: 包封率% =(W总 - W游离 / W总 x 100

一种新型脂质体热敏脂质体

一种新型脂质体热敏脂质体脂质体是一种定向药物载体,属于靶向给药系统的一种新剂型。它可以将药物粉末或溶液包埋在直径为纳米级的微粒中,这种微粒具有类细胞结构,进入人体内主要被网状内皮系统吞噬,从而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。脂质体由双分子层组成,主要由磷脂为膜材及附加剂构成,其成分不但是形成脂质体双分子层的基础物质,而且本身也具有极为重要的生理功能。按性能脂质体可分为一般脂质体、热敏脂质体、pH敏感脂质体、微波敏感脂质体、声振波敏感脂质体、光敏感脂质体和磁性脂质体等。 热敏脂质体的释药原理 在研究的各种新型脂质体中,热敏脂质体(温度敏感脂质体)是一个很有发展前途的分支,它有效利用了脂质体和热疗的双重优势来提高治疗效果,降低毒副作用。 在正常的体温下,脂质体膜呈致密排列的胶晶态,亲水性药物很难透过脂质体膜而扩散出来。当脂质体随血液循环经过被加热的靶器官时,局部的高温使磷脂分子运动加强,脂质体膜的结构发生变化,原来排列整齐致密的胶晶态磷脂双分子层在较高温度下变成疏松混乱的液晶态。脂质体在由凝胶态转变到液晶结构的相变温度(Tm)时,其磷脂的脂酰链紊乱度及活动度增加,膜的流动性也增大,这种结构的变化导致脂质体膜的通透性发生改变,脂质体内部

包封的药物借助于跨膜浓度梯度而大量扩散到靶器官中,在靶部位形成较高的药物浓度,对周围的肿瘤细胞产生较强的杀伤作用,从而达到局部化疗的作用;而偏出相变温度时药物释放则缓慢。因此,根据这一原理用相变温度较低的类脂制备的脂质体,在未加热的器官中药物浓度比较低,对正常细胞产生的杀伤作用很小,使化疗药物所致的恶心、呕吐等副作用明显降低,减轻了病人的痛苦,增加了用药的顺应性;而当机体全身或局部温度升高到41~42℃时,就可以引起脂质体迅速释放内含药物,发挥药效。 制备热敏脂质体的材料 合成磷脂一般以二棕榈酰磷脂酰胆碱(DPPC)为主,通过加入其他不同碳链长度的磷脂来调节脂质体膜的释放特性。例如,DPPC (Tm=41℃)通常与二棕榈酰磷脂酰甘油(DPPG)(Tm=41℃)按一定比例混合以得到不同的Tm。由于合成磷脂的纯度高,脂酰基的烃链长度基本一致,受热时分子运动规律相近,因此有比较固定的相变温度。但合成磷脂的制备工艺复杂,成本高,因此限制了热敏脂质体在临床上的推广应用。 高分子聚合物各国学者试图用廉价的合成高分子材料替代合成磷脂,制备具有热敏性的类脂泡囊,以降低成本,增加实用性。经体外试验证明,这类高分子类脂小囊具有良好的热敏性,但受到生物相容性和生物可降解性的限制。 天然磷脂天然磷脂也可作为制备热敏脂质体的材料,但是由于组成天然磷脂的脂酰基的烃链长短不一,形成脂质体时这些烃链容

脂质体及其制备方法的选择

脂质体及其制备方法的选择 1.脂质体概述 1965年,英国学者Bangham和Standish将磷脂分散在水中进行电镜观察时发现了脂质体。磷脂分散在水中自然形成多层囊泡,每层均为脂质的双分子层;囊泡中央和各层之间被水相隔开,双分子层厚度约为4纳米。后来,将这种具有类似生物膜结构的双分子小囊称为脂质体。此两位学者曾获得过诺贝尔奖提名。 某些磷脂分散在过量的水中形成了脂质体,该脂分子本身排成双分子层,在磷脂的主要相变温度(Tm)以上,瞬间形成泡囊,且泡囊包围水液,根据磷脂种类及制备时所用温度,双分子层可以是凝胶或液晶状态。在凝胶态时磷脂烃链是一种有规律的结构,在液态时烃链是无规律的,每一种用来制备脂质体的纯磷脂由凝胶状态过渡到液晶状态时均具有特征的相变温度。这种相变温度(Tin)是根据磷脂性质而变(见下表),它可在-20~+90℃之间变化,双分子层的不同成分混合物可引起相变温度的变化或相变完全消失,当双分子层通过相变温度时,被封闭的 所有这些都明显影响脂质体的稳定性和它们在生物体系中的行为。 脂质体根据其脂质膜的层数和腔室的数量,可以分为单层脂质体,多层脂质体和多囊脂质体,单层脂质体。不同类型的脂质体其结构特点各不相同,见下图表。 1971年,英国Rymen等人开始将脂质体用作药物载体。所谓载体,可以是一组分子,包蔽于药物外,通过渗透或被巨嗜细胞吞噬后载体被酶类分解而释放药物,从而发挥作用。它具有类细胞结构,进入动物体内主要被网状内皮系统吞噬而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。脂质体技术是被喻为“生物导弹”的第四代靶向给药技术,也是目前国际上最热门的制药技术。至于药物在脂质体中的负载定位,其取决于所载药物的性质,见下图。

国外部分公司脂质体药物研发现状

国外部分公司脂质体药物研发现状 摘要:目的介绍国外脂质体药物的开发现状。方法综述了14 家外国公司所发展的脂质体技术平台和正在开发的脂质体药物。结果和结论目前主要有3 类脂质体药物正在被开发:化疗药物\疫苗和核酸类药物。并且国外从事脂质体药物研发的公司都有自己的专利技术。关键词:药剂学;研究进展;综述;脂质体 中图分类号:R94 文献标识码:A 自从1965 年Bangham 等人发现脂质体,近40 年已经过去了。在这40 年中,经过众多科研人员的不懈努力,脂质体领域出现了许多里程碑式的工作,如:pH 梯度法的发明,长循环脂质体的制备及主动靶向脂质体的发明等。作为一种先进的药物传递系统,脂质体的优势已经被越来越多的人所承认(这里讲的药物是一个广义的概念,既包括化学药物,也包括蛋白质类及核酸类药物)。 作者将简要介绍国外脂质体药物的研发现状。所谓脂质体药物,指的是以脂质体为载体的治疗或预防性药物。由于在国外,新药的研发工作主要由制药公司完成,所以将着重介绍国外从事脂质体药物开发的公司,它们所采用的新技术和开发的脂质体药物。 1 ALZA ALZA 是一个专门从事药物传递系统(drug delivery systems,DDSs)开发的公司[1,2]。它的主要技术平台就是隐型脂质体(STEALTH. liposomes,实际上就是长循环脂质体)技术。众所周知,尽管传统的脂质体可以提高药物的疗效,降低药物的不良反应,但是它们在体内很容易被免疫系统识别和吞噬;因此脂质体可能还没有到达靶区,就已经被机体清除掉了。采用STEALTH.技术,则可以避免这种情况。由于长循环脂质体表面覆盖着一层 PEG(polyethylene glycol)凝胶,它可以成功的逃脱免疫系统的吞噬和破坏。并且,如果长循环脂质体的粒径小于150 nm,它可以有效的穿透肿瘤区的血管,在肿瘤区富集,这样就改变了药物在体内的分布,降低了毒性。 ALZA 采用STEALTH.技术,已经成功的开发了阿霉素脂质体注射液Doxil.。Doxil.主要用于治疗复发性卵巢癌和AIDS 相关的Kaposi’s肉瘤。 2 Antigenics 目前Antigenics 正在开发两个脂质体产品[3,4]:Aroplatin. 和ATRA-IV.。ATRA-IV. (又名ATRAGEN. )是全反式维甲酸(all-trans-retinoic acid)的脂质体注射制剂。全反式维甲酸主要用于治疗急性早幼性骨髓性白血病(acute promyelocytic leukemia), 但是它的口服制剂存在一个重要缺陷,那就是药效的持续时间太短。将其制成脂质体制剂后,药物的血药浓度增加,起效时间明显延长。现在Antigenics 受FDA 委托,正在研究用ATRA-IV. 治疗T 细胞非Hodgkin 氏淋巴瘤(T cell non-Hodgkin’s lymphoma)的可行性。Aroplatin. 是第三代铂类抗癌药物,它的结构和奥沙利铂(Oxaliplatin.) 相似。细胞实验表明, Aroplatin. 可能用于治疗对其他铂类药物(卡铂 carboplatin, 顺铂cisplatin)产生耐药性的肿瘤。用Aroplatin. 脂质体治疗结肠癌的实验正在进行中。 3 Aphios Aphios 之所以在脂质体公司中拥有一席之地[5,6],主要是由于它发展了一种独特的脂质体

脂质体研究进展

医学生 脂质体研究进展 文字表述:关键词: 脂质体、膜、人工、赋形剂  摘要 脂质体是一种人工制备的磷脂类生化物质,属携有双层包膜的脂质小囊。它作为药物的人工膜和赋形剂,可将治疗药剂准确地命中病变部位、组织和细胞。脂质体包裹药物可用于肿瘤、免疫等方面的治疗。 关键词 脂质体、膜、人工、赋形剂 脂质体是一种人工制备的携有双层包膜的磷脂质小囊,可作为各类治疗药剂的人工膜和赋形剂。通过各种给药途径,它可使所包裹的药物具有打靶作用,准确地击中病变部位、组织和细胞,从而增强药物的疗效。 1 脂质体的主要用途 主要用途有:作为疫苗的包膜;作为NDA片段的输送赋形剂以治疗各种皮肤病;以含脂质体的药

物治疗哮喘所致支气管缩窄;脂质体包裹的药物可用于缓解或预防手术后伤口粘连;这类药用化合物可应用于肿瘤治疗;此类药物在用于基因治疗时免用病毒载体;作为化妆品软膏可促进皮肤神经酰胺生长等。 脂质体抗肿瘤药可准确击中靶器官胰腺[1],亦可用来治疗头颈部鳞癌[2]。脂质体药物具有对体内硬肿瘤打靶的功能[3],用于治疗胃或结直肠癌的肝转移或人乳头状瘤病毒的感染[4,5]。脂质体及其包裹的药物可在体内外渗,进入硬瘤组织[6]。投给脂质体进行体内动力疗法时,可观察到大 鼠RR1022肿瘤模型的荧光变化[7]。这类药物可用于治疗艾滋病并发的Kaposi肉瘤[8]。脂质体能促进药物输入人白血病细胞[9]。 脂质体复合物可用于人树突状细胞的基因转移和介导DNA接种[10,11]。它还被用于对肺泡巨噬细胞的药物打靶和白喉毒素A基因的介导[12,13]。有关脂质体药物使激活的单核细胞凋亡的问题曾展开过争论[14,15]。据报道,以脂质体包裹HBsAg经淋巴结传送可获致免疫性[16]。 此外,脂质体还可用作加速伤口愈合药物的包膜及基因疗法的佐料。 2 所使用的药物和脂质体类型 2.1抗肿瘤药剂

脂质体的制备概要

实验十五 脂质体的制备

一实验目的 1.了解脂质体(liposome)在细胞 工程技术中的应用及其制备方法。 2.掌握采用超声波法、冰冻干燥法 和冻融法三种不同的方法制备脂 质体的方法并了解该技术在细胞 工程中的应用。

二实验原理 脂质体(liposome)的制备技术,一般采用超声波法、振荡法、乙醚蒸发法、去污剂透析法、冰 冻干燥法和冻融法等。制备方法 不同,所得脂质体结构、大小不 同,性质和用途也就不同(表15-1)。

种类制备方法大小(m) 特性 多层大脂质体(MLV) 乙醚蒸发法、醇醚水 法、振荡法、液相快 速混合振荡法 0.1~50 易制备,包被物释放 速度慢 单层小脂质体(SUV) 直接超声波法、溶剂 超声波法、乙醚注射 法 0.02~0.05 体积小,适合包被离 子、小分子药物等 单层大脂质体(LUV) 递相蒸发法、去污剂 (胆酸纳等)透析法、 冰冻干燥法 0.05~0.5 适合包被蛋白质、 RNA、DNA片段、 大分子药物及细胞融 合 单层巨大脂质体(GUV) 冻融法5~30 适合包被蛋白质、 RNA、DNA片段, 除菌处理较难

本实验采用超声波法、冻融法、冰冻干燥 法三种不同类型的方法,超声波法的原理是:在超声波作用下,磷脂类双亲媒性分子被打碎为分子或分子团,并自动重新排布成类似生物膜的双分子层囊泡。冻融法是在超声波法形成的小脂质体基础上,通过冷冻和融解过程使其破裂,重组为大体积脂质体,在通过透析时膜内外渗透压的变化而膨胀为更大体积的脂质体。冰冻干燥法语原理与冻融法基本一致,只在处理条件上有所不同。

三实验用品 1.器材 超声波清洗机、光学显微镜、荧光显微镜、荧光 分光光度计、漩涡混合器、核酸蛋白检测仪、柱层析装置、冰冻干燥机。 2.试剂 1)磷脂液:100mg经丙酮-乙醚法纯化的卵磷 脂,57.2mg胆固醇,溶于1ml氯仿。 2)荧光液:钙黄绿素(calcein)47mg溶于 100ml Tris缓冲液。 3)Tris 缓冲液:称取Tris 0.12g,EDTA 0.288mg,溶于80ml去离子水中,用0.1 mol/L 盐酸调Ph7.2,再加水至100ml。

脂质体及其制备方法的选择

脂质体及其制备方法的 选择 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

脂质体及其制备方法的选择 1.脂质体概述 1965年,英国学者Bangham和Standish将磷脂分散在水中进行电镜观察时发现了脂质体。磷脂分散在水中自然形成多层囊泡,每层均为脂质的双分子层;囊泡中央和各层之间被水相隔开,双分子层厚度约为4纳米。后来,将这种具有类似生物膜结构的双分子小囊称为脂质体。此两位学者曾获得过诺贝尔奖提名。 某些磷脂分散在过量的水中形成了脂质体,该脂分子本身排成双分子层,在磷脂的主要相变温度(Tm)以上,瞬间形成泡囊,且泡囊包围水液,根据磷脂种类及制备时所用温度,双分子层可以是凝胶或液晶状态。在凝胶态时磷脂烃链是一种有规律的结构,在液态时烃链是无规律的,每一种用来制备脂质体的纯磷脂由凝胶状态过渡到液晶状态时均具有特征的相变温度。这种相变温度(Tin)是根据磷脂性质而变(见下表),它可在-20~+90℃之间变化,双分子层的不同成分混合物可引起相变温度的变化或相变完全消 都明显影响脂质体的稳定性和它们在生物体系中的行为。 脂质体根据其脂质膜的层数和腔室的数量,可以分为单层脂质体,多层脂质体和多囊脂质体,单层脂质体。不同类型的脂质体其结构特点各不相同,见下图表。 1971年,英国Rymen等人开始将脂质体用作药物载体。所谓载体,可以是一组分子,包蔽于药物外,通过渗透或被巨嗜细胞吞噬后载体被酶类分解而释放药物,从而发挥作用。它具有类细胞结构,进入动物体内主要被网状内皮系统吞噬而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。脂质体技术是被喻为“生物导弹”的第四代靶向给药技术,也是目前国际上最热门的制药技术。

脂质体的研究现状及主要应用

脂质体及其医药应用 化学01 马高建2010012222 摘要:脂质体是一种天然脂类化合物悬浮在水中形成的具有双层封闭结构的囊泡,目前可由人工合成的磷脂化合物来制备。它作为一种高效的载体,近年来在医药、化妆品和基因工程领域等都有广泛应用,国内外在这方面进行了大量的研究,并取得了一些进展。本文将对脂质体的研究现状和其在医药方面的应用做一下概括,并对脂质体的发展前景做一下展望。 关键词:脂质体、制备、医药、应用 脂质体最初是1965年英国学者Banyhanm和Standish将磷脂分散在水中进行电镜观察时发现的。磷脂分散在水中自然形成多层囊泡,每层均为脂质双分子层,囊泡中央和各层之间被水隔开,双分子层厚度约4 nm,后来将这种具有类似生物膜结构的双分子小囊泡称为脂质体,又称人工膜。 1988年,第一个脂质体包裹的药物在美国进行临床试验,现在用脂质体包裹的抗癌药、新疫苗、其他各种药品、化妆品、农药等也开始上市。 我国的脂质体研究始于上世纪70年代,经过近30年的研究,我国在脂质体的研究和应用方面取得了可喜的成果。目前我国已有多个以脂质体作载体的新药剂型进入临床验证阶段。 当前脂质体的医药应用研究主要集中在模拟膜的研究、药品的可控释放和体内的靶向给药,此外还有如何在体外培养中将基因和其他物质向细胞内传递。由于脂质体具有生物膜的特性和功能,它作为药物载体的研究已有多种,主要用于治疗癌症的药物,它可将包封的活性物质直接运输到所选择的细胞上,故有“生物导弹”之称。 1 脂质体及其分类 脂质体(或称类脂小球、液晶微囊),是一种类似微型胶囊的新剂型,是将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状载体剂型,其内部为水相的闭合囊泡。由于其结构类似生物膜,故又称人工生物膜。脂质体主要有双分子层组成,磷脂(卵磷脂、脑磷脂、豆磷脂)和胆固醇是形成双分子层的基础物质,再加入其他附加剂制备而成。 1.1 结构 脂质体可以是单层的封闭双层结构,也可以是多层的封闭双层结构。在显微镜下,脂质体的外形除了常见的球形、橄榄形外,还有长管状结构,直径可以从几百A到零点几毫米(mm),而且各种大小和形状的结构可以共存。 1.2 性质 1.2.1 相变温度T c在加热情况下,脂质体的磷脂分子两条碳氢链从有序的凝胶

脂质体了解知识

脂质体 科技名词定义 中文名称:脂质体 英文名称:liposome 定义1: (1)某些细胞质中的天然脂质小体。(2)由连续的双层或多层复合脂质组成的人工小 球囊。借助超声处理使复合脂质在水溶液中膨胀,即可形成脂质体。可以作为生物 膜的实验模型,在研究或治疗上用来包载药物、酶或其他制剂。 应用学科:生物化学与分子生物学(一级学科);方法与技术(二级学科) 定义2:(1)某些细胞质中的天然脂质小体。(2)由连续的双层或多层复合脂质组成的人 工小球囊。借助超声处理使复合脂质在水溶液中膨胀,即可形成脂质体。它可以作 为生物膜的实验模型,或在临床上用于捕获外源性物质(如药物、酶或其他制剂)后 将它们更有效地运送到靶细胞,经同细胞融合而释放。 应用学科:细胞生物学(一级学科);细胞培养与细胞工程(二级学科) 本内容由全国科学技术名词审定委员会审定公布 求助编辑百科名片 脂质体 脂质体(liposome)是一种人工膜。在水中磷脂分子亲水头部插入水中,脂质体疏水尾部伸向空气,搅动后形成双层脂分子的球形脂质体,直径25~1000nm不等。脂质体可用于转基因,或制备的药物,利用脂质体可以和细胞膜融合的特点,将药物送入细胞内部生物学定义:当两性分子如磷脂和鞘脂分散于水相时,分子的疏水尾部倾向于聚集在一起,避开水相,而亲水头部暴露在水相,形成具有双分

子层结构的的封闭囊泡,称为脂质体。药剂学定义脂质体 (liposome): 系指将药物包封于类脂质双分子层内而形成的微型泡囊体。 目录 分类 组成与结构 脂质体的质量控制与评价 脂质体的特点 脂质体作为药物载体的临床应用 给药途径 脂质体的体内过程 新型靶向脂质体 简介 机会性真菌感染是中性粒细胞减少的癌症患者一种常见的致残和致死病因,对这些患者需实施经验性抗真菌治疗。为确定伏立康唑与制霉菌素B 和氟康唑相比,预防或治疗中性粒细胞减少的癌症患者真菌感染的利与弊,丹麦北欧Cochrane中心的J?尴rgensen等检索了Medline和Cochrane(截至2005年5月)数据库,并检索了相关文献和试验数据,从中提取相关随机试验数据进行分析,并于今年1月25日在线发表了分析结果。[Cochrane Database Syst Rev 2006, (1): CD004707] 编辑本段分类 脂质体的分类 1.脂质体按照所包含类脂质双分子层的层数不同,分为单室脂质体和多室脂质体。 小单室脂质体(SUV):粒径约0.02~0.08um;大单室脂质体 (LUV)为单层大泡囊,粒径在0.1~lum。 多层双分子层的泡囊称为多室脂质体 (MIV),粒径在1~5um之间。 2.按照结构分:单室脂质体,多室脂质体,多囊脂质体 3.按照电荷分:中性脂质体,负电荷脂质体,正电荷脂质体 4.按照性能分:一般脂质体,特殊功效脂质体 编辑本段组成与结构 脂质体的组成与结构 脂质体的组成:类脂质(磷脂)及附加剂。

脂质体在药剂领域的研究进展

脂质体在药剂领域的研究进展 摘要:目的:本文对脂质体特点、制备方法、最新进展及其在药剂领域的应用进行概述,总结分析脂质体在药剂领域的发展方向和前景。方法:查阅中国知网、Science direct、Web of Science等主流数据库的文献,并总结归纳。结果:发现脂质体在药剂领域(中药、化学药、生物制品等)应用广泛,近年来取得很大进展,部分药物已用于临床。结论:脂质体作为一种新型药物载体,不断发展与完善在药剂领域具有十分广阔的应用前景。 关键词:脂质体、药物递送、靶向、研究进展 Research Progress of Liposomes in Pharmaceutical Field Dan Zhao, school of pharmacy, Pharmaceutics 1302, 3131602034 Abstract: Objective: this article summarizes the characteristics of liposomes, preparation methods, latest developments and their applications in pharmacy field, and to conclude the development direction and prospects of liposomes in pharmaceutical field. Methods: The literatures of mainstream databases such as China Knowledge Network, Sciencedirect and Web of Science were reviewed and summarized. Results: Liposomes have been widely used in pharmaceutical field (traditional Chinese medicine, chemical medicine, biological products, etc.) and have made great progress in recent years. Some drugs have been used in clinic. Conclusions: As a new drug carrier, liposomes have very wide application prospects in pharmaceutical field. Keywords: liposomes, drug delivery, targeting, research progress 脂质体是指由磷脂等类脂质构成的双分子层球状囊泡,它将药物包封于双分子层内而形成微型载药系统。除常见的类脂质双分子层外,它也可以是多层同心脂质双分子层。上个世纪60年代中期,脂质体技术应用于化妆品领域, 但直到 20世纪 70年代才将脂质体应用于药物载体, 并引起广泛关注1。因为脂质体具有诸多优良的特性,例如可通过修饰进行靶向给药、毒性及免疫反应小2等等,其后被广泛用于生命科学及工程领域。 1.脂质体及脂质体药物制剂的特点 脂质体具有以下特点3: 1)脂质体本质上是一种囊泡; 2)脂质体很小一般在 1 μm 以下(1 000 μm =1 mm); 3)脂质体的囊泡壁一般是由两层磷脂分子构成,也可以是多层同心脂质双分子层; 4)磷脂在一定条件下才能形成脂质体 ,并非把磷脂放在水中就产生脂质体 ,磷脂在水中或甘油中搅拌只能形成乳化颗粒; 5)脂质体可以包裹其他物质(如药物)形成不同内容物脂质体,通过电、超声、热、光等致孔可以使药物从脂质体释放,并且所形成孔的大小和分布会影响释药速度4。 脂质体药物制剂具有以下特点5: 1)体内可降解; 2)低免疫原性; 3)保护药物活性基团; 4)可制备靶向制剂; 5)延长药物半衰期。 理想的脂质体载药系统应具备以下特点:包封率高,药物不易渗漏、粒径分布范围窄、稳定性好,氧化降解速度缓慢3。虽然近年来脂质体药物的研究取得了很大的进步,如多柔

相关文档