文档库 最新最全的文档下载
当前位置:文档库 › 常见的几个函数不等式及其应用

常见的几个函数不等式及其应用

常见的几个函数不等式及其应用
常见的几个函数不等式及其应用

常见的几个函数不等式及其应用

武汉市教育科学研究院 孔峰

在近几年的高考中,无论是国家考试中心的数学命题,还是一些独立命题省市的数学命题,有一些函数不等式在命题中出现的频率很高,它们在函数的性质的应用中和函数不等式的证明中发挥着很重要的作用,下面分别介绍这些函数不等式.

一、函数不等式的介绍

(1))1()1ln(1->≤+≤+x x x x

x

证明:令x x x f -+=)1ln()(,则x

x

x x f +-=

-+='1111)(. 当01<<-x 时,0)(>'x f ;当0>x 时,0)(<'x f . 所以)(x f 在0=x 时取得极大值,故0)0()(=≤f x f , 所以)1()1ln(->≤+x x x .

令x x

x x g +-

+=1)1ln()(,则2

2)1()1()1(11)(x x x x x x x g +=+-+-+='. 当01<<-x 时,0)(<'x f ;当0>x 时,0)(>'x f .

所以)(x f 在0=x 时取得极小值,故0)0()(=≥g x g ,

)1)(1ln(1->+≤+∴x x x

x . 综上可知,)1()1ln(1->≤+≤+x x x x

x

.

变式:)0(1ln >-≤x x x , ②

)0(11

ln >≥+x x x . ③

(2))1)(1

(21ln ≥-≤x x x x ④

)10)(1

(21ln ≤<-≥x x

x x ⑤

证明:令)1

(21ln )(x

x x x f --=,则02)1()11(211)(22≤--

=+-='x x x x x f . 所以函数)(x f 在),0(+∞单调递减.

所以,当1≥x 时,0)1()(=≤f x f ;当10≤

变式:)0(1

)1ln(≥+≤

+x x x

x ⑥ (3))1(1)

1(2ln ≥+-≥x x x x ⑦

)10(1

)1(2ln ≤<+-≤x x x x ⑧

证明:令1)

1(2ln )(+--=x x x x f ,则0)1()1()(2

2≥+-=

'x x x x f . 所以函数)(x f 在),0(+∞单调递增.

当1≥x 时,0)1()(=≥f x f ;当10≤

(4))10(2

11)1ln(112ln 1≤<<-+≤-x x x ⑨

证明:令x x x f 1)1ln(1)(-+=

,则2

21

)1(ln )1(1)(x x x x f +++-=',

而)

1(ln ]1)1][ln(1)1[ln()1(ln 1)1(ln )(2

2222

2

x x x x x x x x x x x x x x f ++-++++=++-

+=', 由⑥式)0(1

)1ln(≥+≤

+x x x

x 知,0)(<'x f , 所以)(x f 在10≤

ln 1

)1()(-=≥f x f .

由⑦式)1(1

)

1(2ln ≥+-≥x x x x 知

211)1ln(1<-+x x . 综上可知,不等式⑨成立.

(5))0(1

)

211()1ln(≥++≤

+x x x x x ⑩ 证明:令1)

211()1ln()(++-+=x x x x x f ,则0)1(2)(2

2≤+-=

'x x x f . 故0)0()(=≤f x f . 所以,不等式⑩成立.

变式:)0)(1

1

1(21)11ln(>++≤+x x x x ?

利用上述类似构造函数方法,还可以得到以下一些重要不等式: (6)贝努尼不等式:当1->x 时,

)0,1(1)1(<≥+≥+αααα或x x , ?

)10(1)1(<<+≤+αααx x ?

(7))0(2

1

)1ln(2≥-≥+x x x x ?

二、常见的函数不等的作用

利用上述介绍的函数不等式,无论是去研究函数性质,还是去证明函数不等式或证明数列不等式都会带来许多便利.下面分别联系近几年高考的命题进行说明。

(1)求函数的单调区间或研究函数的单调性,求函数的极值或最值

例1 (2008年湖南卷,理21)已知函数x

x x x f +-+=1)1(ln )(22

.

(Ⅰ)求函数)(x f 的单调区间;

(Ⅱ)若不等式e )1

1(≤++αn n

对任意的*∈N n 都成立,求α的最大值.

解:(Ⅰ)对)(x f 求导数,得

2

2

)1()1(211)1ln(2)(x x x x x x x f +-+-+?+='

)]111(21)1[ln(12x

x x x +-+-++=

. 由不等式④)1)(1(21ln ≥-≤x x x x ,⑤)10)(1

(21ln ≤<-≥x x

x x 可知:

当0≥x 时,11≥+x ,有)11

1(21)1ln(x

x x +-+≤+,0)(≤'x f ;

当01≤<-x 时,110≤+

1(21)1ln(x x x +-+≥+,0)(≥'x f .

因此,当0≥x 时,)(x f 为减函数;当01≤<-x 时,)(x f 为增函数.

(Ⅱ)由e )11(≤++αn n 可知,1)1

1ln()(≤+?+n n α,所以n n

-+≤

)11ln(1α. 记]1,0(1

∈=t n

,则t t 1)1ln(1-+≤

α,]1,0(∈t . 由不等式⑨)10(211)1ln(112ln 1≤<<-+≤-x x x ,可知12

ln 11)1ln(1-≥-+t t , 12

ln 1

-≤

∴α. 所以,α的最大值为

12

ln 1

-. (2)利用常用不等式求参数的取值范围 例2 (2010年全国卷,理22)设x x f --=e 1)(.

(Ⅰ)证明:1->x 时,1)(+≥x x

x f ;

(Ⅱ)设0≥x 时,1

)(+≤ax x

x f ,求a 的取值范围.

解:(Ⅰ)利用分析法,结合①式)1()1ln(1->≤+≤+x x x x

x

可以证明.

(Ⅱ)因为1e

110+≤-

x 在0≥x 时恒成立,

所以01>+ax 在0≥x 时恒成立,则0≥a .

另一方面,由1e

110+≤-

x ,得x a x

x 11e e --≤. 令t x =e ,由0≥x 知1≥t .

)1(ln 1

1≥--≤∴t t

t t a .

由不等式⑦)1(1)1(2ln ≥+-≥x x x x 可知)1(1)

1(2ln ≥+-≥t t t t ,

所以1>t 时,

2

1)1(211ln 11=-+-->--t t t t t t t . 又由导数定义可知11

ln lim

1=-→t t

t ,

所以21ln )1(lim 1=-+→t t t t ,故2

1

ln 11≥--t t t .

综上,所求a 的取值范围为]21

,0[.

例3 (2014年湖南卷,理22)已知常数0>a ,2

2)1ln()(+-+=x x

ax x f . (Ⅰ)讨论)(x f 在区间),0(+∞上单调性;

(Ⅱ)若)(x f 存在两个极值点21,x x ,且0)()(21>+x f x f ,求a 的取值范围. 解:(Ⅰ)2

22)2)(1()

1(4)2(41)(++--=+-+='x ax a ax x ax a x f . 因为0)2)(1(2>++x ax ,所以当01≤-a ,即1≥a 时,0)(≥'x f 恒成立,则函数)(x f 在区间),0(+∞上单调递增.

当10<

1)(,1ln 0000x x g k kx x 解之得2e -=k . (Ⅱ) 由2

e mx x

= ,得2e x

m x

=.

令2e )(x x g x =,则3

)

2(e )(x x x g x -='.

当20<x 时,0)(>'x g . 所以2=x 是极小值点.

从而可知,在4e 2

>m 时有两个交点.

(Ⅲ) 记a b a b a f b f b f a f M a

b b a ---+=---+=e e 2e e )()(2)()(,令0>=-t a b , 则t

a b M a t a t a a a b b a e e 2e e e e 2e e --+=---+=++ )]2()2(e [2e )1e 2e 1(e ++-=--+=t t t

t t

a t t a

.

再令0),2()2(e )(>++-=t t t t h t , 在2≥t 时,可知0)(>t h .

在20<

t

t -+<22e .

事实上,令t t t -+='22,则1>'t ,且1

1

2+'-'=t t t .

只需证)1(ln 1

)

1(2>''<+'-'t t t t .

而由常见不等式⑦)1(1

)

1(2ln ≥+-≥x x x x 可知上式恒成立.

从而0)2()2(e )(>++-=t t t h t 在0>t 时恒成立.

所以0>M ,即a

b a f b f b f a f -->

+)

()(2)()(. (4)利用常用不等式研究存在性问题

例5(2011年湖南卷,文22)设函数)(ln 1

)(R ∈--=a x a x

x x f .

(Ⅰ)讨论)(x f 的单调性;

(Ⅱ)若)(x f 有两个极值点1x 和2x ,记过点))(,(11x f x A ,))(,(22x f x B 的直线的斜率为k ,问:是否存在a ,使得a k -=2?若存在,求出a 的值,若不存在,请说明理由.

解:(Ⅰ))(x f 的定义域为),0(+∞.

22211

'()1a x ax f x x x x -+=+-=

令1)(2+-=ax x x g ,其判别式42-=?a .

当22≤≤-a 时,0≤?,0)(≥'x f ,故)(x f 在),0(+∞上单调递增. 当2-x ,有0)(≥'x f ,故)(x f 在),0(+∞上单调递增.

当2>a 时,0>?,012

=+-ax x 的两根为2421--=a a x ,2

4

22-+=a a x .

故)(x f 在),0(1x 上单调递增,在),(21x x 上单调递减,在),(2+∞x 上单调递增. (Ⅱ)由(Ⅰ)知,2>a ,且a x x =+21,121=x x .

因为12

12121212

()()()(ln ln )x x f x f x x x a x x x x --=-+

--,

所以2

12

12121212121ln ln 2ln ln 11)()(x x x x a x x x x a x x x x x f x f k --?-=--?-+=--=

若存在a ,使得a k -=2,则1ln ln 212

1=--x x x x .

而121=x x ,所以2

221ln 2x x x -=. 由不等式④)1)(1

(21ln >-≤

x x

x x 可知上式不可能成立, 故不存在a ,使得a k -=2.

(5)利用常用不等式证明不等式

例6 (2013年全国大纲卷,理22)已知函数x

x x x x f ++-

+=1)

1()1ln()(λ. (Ⅰ)若0≥x 时,0)(≤x f ,求λ的最小值;

(Ⅱ)设数列}{n a 的通项n a n 131211++++= ,证明:2ln 41

2>+-n

a a n n .

解:(Ⅰ)由已知0)0(=f ,2

2

)

1()21()(x x x x f +--='λλ,0)0(='f . 若21

<λ,则当)21(20λ-<'x f ,所以0)(>x f .

若2

1

≥λ,则当0>x 时,0)(<'x f ,所以0)(

综上,λ的最小值是2

1

.

(Ⅱ)由不等式⑩)0(1)

211()1ln(≥++≤

+x x x x x ,令n

x 1=,有 )1

11(21)11ln(++<+n n n .

于是)1

1

1(21ln )1ln(++<-+n n n n ,

)2

1

11(21)1ln()2ln(+++<+-+n n n n ,

……

)21

121(21)12ln()2ln(n

n n n +-<--,

以上各式相加,得

n n n n n n 41)21211(ln 2ln +++++<- n a a n n 41

2+

-=. 所以2ln 41

2>+-n

a a n n .

例7(2016全国卷Ⅰ,理21)已知函数2)1(e )2()(-+-=x a x x f x 有两个零点.

(Ⅰ)求a 的取值范围;

(Ⅱ)设x 1,x 2是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)令t x =-1,则1+=t x .

因为函数2)1(e )2()(-+-=x a x x f x 有两个零点, 所以21e )1()(at t t g t +-=+有两个零点,而0≠t , 所以t t t t t

t a e )(e e )1(122

1

--+-=-=. 记t t t

t m e )(e )(12

---=,则1

321

2

23

e 2]e )(e )2(e[)(+----+-=-++-=t t

t t

t t t

t t

t m .

列表如下:

所以,当0>a 时,)(t g 有两个零点,其中一个零点01>t ,另一个零点02

综上,a 的取值范围为(0,)+∞.

(Ⅱ)由(Ⅰ)可知0>a 时,)(t g 有两个零点1t 和2t ,其中0111>-=x t ,0122<-=x t ,

即存在01>t ,02

2

1

212

11

121t m t t t m t t a t t =-=

=-=++.

下面证明021<+t t .

记21e )1()(t t t m t +-=,则2

1

e )1()(t t t m t +-+=-,先证明不等式)()(t m t m >-在0>t 时恒成

立.

(ⅰ)当1≥t 时,0)(>-t m ,0)(-. (ⅱ)当10<

1

21e )1(e )1(t t t t t t ++-->+, 只需证t t t -+<11e 2,即t

t

t -+<11ln 2. 记

111>=-+u t t ,只需证)1(1

)1(2ln >+->u u u u 恒成立. 令1)

1(2ln )(+--=u u u u F ,则0)1()1()(2

2≥+-=

'u u u u F , 所以0)1()(=>F u F ,从而)()(t m t m >-在)1,0(∈t 时恒成立. 所以,)()(t m t m >-在0>t 时恒成立.

因为)()(21t m t m a ==,02-t ,所以)()(22t m t m <-. 所以)()()(221t m t m t m ->=.

又)(t m 在),0(+∞上单调递减,所以21t t -<,从而021<+t t , 所以0)1()1(21<-+-x x ,故221<+x x .

总之,从2006年开始,在近十年的高考数学命题中,这些常见的函数不等式在全国

卷中出现的频率是最高的,其次在湖南省、湖北省、陕西省的独立命题中出现也很频繁,在山东省、天津市、辽宁省、广东省等省市的独立命题也时常出现.这些不等式是一种很好的桥梁,能够有效地将一些条件和结论联系起来,无论处理选择题与填空题,还是解决解恨答题,恰当的使用的确能起到事半功倍的效果,要引起广大教师和考生的高度重视,对导数和函数这一部分的复习起到画龙点睛的作用.

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

基本不等式及其应用(优秀经典专题及答案详解)

专题7.3 基本不等式及其应用 学习目标 1.了解基本不等式的证明过程; 2.会用基本不等式解决简单的最大(小)值问题. 知识点一 基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R);(4)????a +b 22≤a 2+b 2 2(a ,b ∈R); (5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 知识点四 利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【特别提醒】 1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立. 2.连续使用基本不等式时,牢记等号要同时成立. 考点一 利用基本不等式求最值

【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5 的最大值为_______ 【答案】1 【解析】因为x <54 ,所以5-4x >0, 则f (x )=4x -2+ 14x -5=-????5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+ 14x -5 的最大值为1. 【方法技巧】 1.通过拼凑法利用基本不等式求最值的实质及关键点 拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键. 2.通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】6 【解析】由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy , 所以3xy ≤????x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 【方法技巧】通过消元法利用基本不等式求最值的策略 当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值. 考点二 利用基本不等式解决实际问题 【典例2】 【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果

SXA204高考数学必修_利用函数单调性解抽象函数不等式问题

利用函数单调性解抽象函数不等式问题 抽象函数是指没有给出函数的具体解析式,仅含有抽象的函数符号、抽象的函数结构式或抽象的函数关系式的一种函数,特别是抽象函数不等式问题,是抽象函数的最常见题型.下面介绍两例. 例1 若()f x 是定义在(0,+∞)上的减函数,且对一切a 、b ∈(0,+∞),都有()a f b =()f a -()f b ,且(4)f = 1,解不等式(6)f x +-1()f x >2. 解:因为()a f b =()f a -()f b ,且(4)f = 1, 所以有(6)f x +-1()f x >2?(6)f x +-1()f x >2(4)f ?2(6)f x x +-(4)f >(4)f ?26()4x x f +>(4)f . 由于()f x 是 (0,+∞)上的减函数,因此有210,60,6 4.4 x x x x ?>??+>??+???>-??-<

几个重要不等式及其应用

几个重要不等式及其应用 一、几个重要不等式 以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。 1、算术-几何平均值(AM-GM )不等式 设12,,,n a a a L 是非负实数,则12n a a a n +++≥L 2、柯西(Cauchy )不等式 设,(1,2,)i i a b R i n ∈=L ,则2 22111.n n n i i i i i i i a b a b ===?????? ≥ ??? ??????? ∑∑∑等号成立当且仅当存在R λ∈,使 ,1,2,,.i i b a i n λ==L 变形(Ⅰ):设+ ∈∈R b R a i i ,,则∑∑∑===??? ??≥n i i n i i n i i i b a b a 1 2 112;等号成立当且仅当存在R λ∈, 使,1,2,,.i i b a i n λ==L 变形(Ⅱ)设i i b a ,同号,且0,≠i i b a ,则∑∑∑===??? ??≥n i i i n i i n i i i b a a b a 1 2 11。等号成立当且仅当n b b b ===Λ21 3.排序不等式 设n n n j j j b b b a a a ,,,,,212121?≤?≤≤≤?≤≤是n ,,2,1?的一个排列,则 n n j j j n n n b a b a b a b a b a b a b a b a b a n ΛΛΛ++≤+++≤+++-2211321112121. 等号成立当且仅当 n a a a ===Λ21或n b b b ===Λ21。(用调整法证明). 4.琴生(Jensen )不等式 若()x f 是区间()b a ,上的凸函数,则对任意的点()b a x x x n ,,,,21∈Λ* ()n N ∈有 ()()()12121 ( ).n n x x x f f x f x f x n n +++≤+++??? ?L L 等号当且仅当n x x x ===Λ21时取得。(用归纳法证明) 二、进一步的结论 运用以上四个不等式可得以下更一般的不等式和一些有用的结论,有时用这些结论也会起到意想不到 的效果。 1. 幂均值不等式 设0>>βα,),,2,1(n i R a i Λ=∈+ ,则

基本不等式应用题

基本不等式应用题 最值问题 一.教学目标:1.进一步掌握用均值不等式求函数的最值问题; 2.能综合运用函数关系,不等式知识解决一些实际问题。 二.教学重点、难点:化实际问题为数学问题。 三.教学过程: (一)复习:1.均值不等式: 2.极值定理: (一)练习题 1、已知R y x ∈,,且2=+y x ,求xy 的取值范围。 2、已知R y x ∈,,且2=xy ,求y x +的取值范围。 3、已知R y x ∈,,且2=+y x ,求22y x +的取值范围。 4、已知0,>y x ,且211=+y x ,求y x 2+的最小值。 5、已知0,,>z y x ,且4=++c b a ,求证:abc c b a 8)4)(4)(4(≥---。 6、(选做题)已知R y x ∈,,且222=+y x ,求y x +的取值范围。 7 1.4,2224,24x y x y x y x y +=++=+已知求的最小值。 变式题:已知求的最小值。22222.,4,log log ,24,log log x y R x y x y x y R x y x y ++∈+=+∈+=+已知、求的最大值。变式题:已知、求的最大值。

3+1,a b R x y x y ∈+=+已知a,b,x,y ,且 求的最小值 (二)新课讲解: 例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少? (2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元? 例3.某工厂要建造一个长方体无盖贮水池,其容积为34800m ,深为3m ,如果池底每21m 的造价为150元,池壁每21m 的造价为120元,问怎样设计水池能使总造价最低,最低总 造价是多少元? 例4.如图,设矩形()ABCD AB AD >的周长为24,把它关于AC 折起来,AB 折过去后,交DC 于P ,设AB x =,求ADP ?的最大面积及相应的x 值。 例5.甲、乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/ 时,已A

基本不等式及其应用

2 第二节基本不等式及其应用 考纲解读 a + b I — 了解基本不等式 ab (a ,b ?R )的证明过程. 2 会用基本不等式解决简单的最大(小)值问题 利用基本不等式证明不等式 . 命题趋势探究 基本不等式是不等式中的重要内容,也是历年高考重点考查的知识点之一,其应用范围涉及高中数学的很多 章节,且常考常新,但考查内容却无外乎大小判断、求最值和求最值范围等问题 预测2019年本专题在高考中主要考查基本不等式求最值、大小判断 ,求取值范围问题? 本专题知识的考查综合性较强 ,解答题一般为较难题目,每年分值为5 8分. 知识点精讲 1.几个重要的不等式 (1)a 2 启 0(a € R ),需 兰 0(a 兰 0), a 3 0(a w R ). ④重要不等式串:-ab < 1 1 2 -+- 厶 a b 调和平均值 乞几何平均值 乞算数平均值 乞平方平均值(注意等号成立的条件). 2?均值定理 已知 x ,y ?二 R X + V c s 2 (1)如果X y = S (定值),则xy 乞( )2 (当且仅当“ x = y ”时取“ 2 4 大值”. (2)如果xy = p (定值),则x ■ y _ 2、, xy 二2 p (当且仅当“ x = y ”时取“ =”)?即积为定值,和有最小值”. 题型归纳及思路提示 题型91 基本不等式及其应用 思路提示 熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证 . a 2 + b 2 1. 2 . (2)基本不等式:如果 a b a,b R ,则 2 ..ab (当且仅当“ a =b ”时取 ”). 1 特例:a 0,a 2; a (3)其他变形: a b 「 (a, b 同号). b a 2 2 (a +b ) 2 ①a b (沟通两和a b 与两平方和 2 2 (沟通两积ab 与两平方和a 2 b 2的不等关系式) ②ab 4 2 2 a - b 的不等关系式) 2 a + b ③ab 乞( )2 (沟通两积ab 与两和a b 的不等关系式) 2 2 (a ,b R )即 a 2 b ”).即“和为定值,积有最

运用函数的单调性与奇偶性解抽象函数不等式(附加半节课)—学生版

教学内容概要 教学内容

【知识精讲】 一、常见的抽象函数模型: ① 正比例函数模型:()0,≠=k kx x f ┄┄┄()()()y f x f y x f ±=±。 ② 幂函数模型:()2 x x f =┄┄┄()()()y f x f xy f ?=;() ()y f x f y x f =??? ? ??。 ③ 指数函数模型:()x a x f =┄┄┄()()()y f x f y x f ?=+;()()() y f x f y x f = -。 ④ 对数函数模型:()x x f a log =┄┄()()()y f x f xy f +=;()()y f x f y x f -=???? ??。 ⑤ 三角函数模型:()x x f tan =┄┄┄()()()()() y f x f y f x f y x f ?-+=+1。 如何利用函数单调性解题是历年高考和模考的重点,其中利用函数单调性解不等式是一个重点中的难点,如何攻克这个难点呢?一个词:去壳。 二、奇偶函数的性质: 奇函数:(1)()()f x f x -=-; (2)若奇函数()f x 的定义域包含0,则(0)0f =; (3)图像关于原点对称; (4)y 轴左右两侧的单调性相同; 偶函数:(1)()()f x f x -=; (3)图像关于y 轴对称; (4)y 轴左右两侧的单调性相反; 三、函数单调性的逆用: 若()f x 在区间D 上递增,则1212()()f x f x x x .(1x 2,x D ∈).

基本不等式及其应用

基本不等式及其应用 一、教学分析设计 【教材分析】 人教版普通高中课程标准试验教科书分不同的章节处理不等式问题。在必修5的第三章中,首先介绍了不等关系与不等式;然后是一元二次不等式及其解法,二元一次不等式(组)与简单的线性规划问题;最后在第四节介绍基本不等式。在选修教材《不等式选讲》中对不等式与绝对值不等式、证明不等式的基本方法、柯西不等式与排序不等式、数学归纳法证明不等式作了更详细的介绍。并在书中还安排章节复习了基本不等式,并将其推广到三元的形式。基本不等式从数学上凸显了沟通基础数学知识间的内在联系的可行性。 基本不等式的课程标准内容为:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最值问题。教学要求为:了解基本不等式的代数背景、几何背景以及它的证明过程;理解算数平均数、几何平均数的概念;会用基本不等式解决简单的最值问题;通过基本不等式的实际应用,感受数学的应用价值(说明:突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形)。《考试说明》中内容为:会用基本不等式解决简单的最值问题。通过对比分析,他们的共同都有“会用基本不等式解决简单的最值问题”。基本不等式与函数(包括三角函数)、数列、解析几何等内容均有丰富的联系,在《考试说明》中属于C及内容(含义:对该知识有实质性的理解并能与已有知识建立联系,掌握内容与形式的变化;相关技能已经形成,能用它来解决简单的相关问题)。 【学生分析】 从知识储备上看,高三学生已经基本掌握了不等式的简单性质和证明,并能用不等式及不等式组抽象出实际问题中的数学模型,也具备一定的几何知识。 从思维特点看,学生了解了不等关系的数学模型是解决实际问题的重要工具,具备一定的归纳、猜想、演绎证明和抽象思维的水平。 【目标分析】 结果性目标: 1、能在具体的问题情景中,通过抽象概括、数学建模以及逻辑推理获得基本不等式; 2、掌握基本不等式应用的条件“一正二定三相等”,和基本不等式的常见变形; 3、会用基本不等式解决一些简单的实际问题。 体验性目标: 1、在解决实际问题的过程中,体验基本不等式的本质是求二元的最值问题; 2、在解决实际问题中,体验“形”与“数”间的关联。 重点:创设基本不等式使用的条件。 难点:基本不等式的简单应用,以及使用过程中定值的取得。 【核心问题分析】 核心问题:在学校文化厘清过程中,拟对一块空地实行打造,现对其规划如下:将这块空地建成一个广场,在广场中间建一个长方形文化长廊,在其正中间造一个长方形景观池,并利用长廊内部左下角的那颗古树打造一条直线型景观带。请同学们按照以下要求实行数据设计: 问题1:文化长廊的周长为480米,要求文化长廊所围成的长方形面积最大,应怎样设计其长和宽? 问题2:已知景观池的容积为4800米,深为3米。已知景观池底每平米的造价是150元,池壁每平方米的造价是120元,问怎样设计,使造价最低,最低造价是多少? 问题3:设文化长廊为ABCD,现在长廊ABCD的左下角点E处有颗古树,且点E距左边AB和下边AD的D距离各为20米、10米,为保护古树,现经过古树E建造一直线型的景观带

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

9运用函数地单调性与奇偶性解抽象函数不等式(附加半节课)—学生版

教学容概要

教学容 【知识精讲】 一、常见的抽象函数模型: ① 正比例函数模型:()0,≠=k kx x f ┄┄┄()()()y f x f y x f ±=±。 ② 幂函数模型:()2 x x f =┄┄┄()()()y f x f xy f ?=;() ()y f x f y x f =??? ? ??。 ③ 指数函数模型:()x a x f =┄┄┄()()()y f x f y x f ?=+;()()() y f x f y x f = -。 ④ 对数函数模型:()x x f a log =┄┄()()()y f x f xy f +=;()()y f x f y x f -=??? ? ??。 ⑤ 三角函数模型:()x x f tan =┄┄┄()()()()() y f x f y f x f y x f ?-+= +1。 如何利用函数单调性解题是历年高考和模考的重点,其中利用函数单调性解不等式是一个重点中的难点,如何攻克这个难点呢?一个词:去壳。 二、奇偶函数的性质:

奇函数:(1)()()f x f x -=-; (2)若奇函数()f x 的定义域包含0,则(0)0f =; (3)图像关于原点对称; (4)y 轴左右两侧的单调性相同; 偶函数:(1)()()f x f x -=; (3)图像关于y 轴对称; (4)y 轴左右两侧的单调性相反; 三、函数单调性的逆用: 若()f x 在区间D 上递增,则1212()()f x f x x x .(1x 2,x D ∈). 四、不等式恒成立问题的解法 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 通过上面的等价转化,转换为函数求最值的问题。 【经典例题】

基本不等式及其应用

基本不等式及其应用 1.ab ≤a +b 2 (1)基本不等式成立的条件:a ≥0,b ≥0; (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号). (3)ab ≤? ????a +b 22 (a ,b ∈R ); (4)a 2+b 22≥? ????a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数 (1)设a ≥0,b ≥0,则a ,b 的算术平均数为a +b 2,几何平均数为ab . (2)基本不等式可叙述为两个非负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们正的等比中项. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 2 4; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p . 选择题: 设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 解析 ∵x >0,y >0,∴x +y 2≥xy ,即xy ≤(x +y 2)2=81,当且仅当x =y =9时,(xy )max =81 若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43 B.53 C .2 D.54 解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

数学中常用不等式及其应用

目录 数学中常用不等式及其应用 (2) 1.前言 (2) 2.研究背景及研究意义 (3) 2.1 不等式研究背景 (3) 2.2 研究意义 (4) 3.高等数学常用不等式举例介绍 (5) 3.1柯西不等式 (5) 3.2拉格朗日中值定理 (5) 3.3均值不等式 (8) 4.数学中不等式的中的应用 (9) 4.1 构造条件不等式对命题进行证明 (9) 4.2 利用微分中值定理进行不等式命题的证明 (12) 5.总结 (15) 参考文献 (17)

数学中常用不等式及其应用 1.前言 正所谓“问渠那得清如许。为有源头活水来”。回顾我国建国近70年的发展历程,我国坚持把国民教育在经济和社会发展中优先发展的战略地位,并制定了优先发展教育和“科教兴国”的重大战略决策,促进教育的改革和发展。我国教育改革始终坚持党对教育的领导和政府对教育的统筹,切实保证“科教兴国”战略和教育优先发展地位的落实。在教育改革中义务教育是提高国民素质和发展教育事业的基础,是社会主义现代化建设的奠基工程,涉及广大人民群众的根本利益。没有一个好的底子,就不能决定以后的参天大树枝叶是否会繁密。中央确定把基础教育作为整个教育工作的重点,把“两基”作为当代教育发展的“重中之重”,这是我国教育发展的一个重要指导思想,是贯彻科教兴国战略的重大措施。自2008年秋季起国家在全国范围实施了义务教育,使许多贫困家庭的孩子都能够享受接受教育的权利。 回顾历史我们可以看到,从提出“两基”,到逐步明确“两基”目标和具体规划,是党和国家根据社会主义经济、政治和社会发展的客观需要,多年酝酿,逐步成熟,并适时做出的慎重决策。作为大学生的我们有责任也有义务为国家教育事业的发展做出自己的贡献,将我们学习到的知识应用到教育中去,而中学教育就是一个很好的切入点。随着知识经济时代的到来,教育迎来了新的挑战,国家开始注重创新教育,指出教育要把传授基础知识和逐步培养学生的创新意识和创造性思维结合起来,创造良好的教学环境,有意识的培养学生的创新意识,激发学生的创造动机,发展学生的创新能力,为国家培养出适应新世纪发展的一代新人。 不等式是数学基础理论的重要部分。不等式是刻画现实世界和日常生活、生产和科学研究中的不等关系的数学模型,反映了事物在量上的区别,是研究数量关系和进一步学习数学的必备知识。此外,不等式在高中数学中占有举足轻重的地位,是学习数学及其他学科的基础知识。

抽象函数问题的题型综述

抽象函数问题的题型综述 抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型: 一. 求某些特殊值 这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。 例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。 解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44 =-=-∴+=-+=f x f x f x f x f x () () ()() () 84 故f x ()是周期为8的周期函数, ∴==f f ()()200000 例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时, f x f ()()>-=-012,,求f x ()在[]-21,上的值域。 解:设x x 12< 且x x R 12,∈, 则x x 210->,

由条件当x >0时,f x ()>0 ∴->f x x ()210 又f x f x x x ()[()]2211=-+ =-+>f x x f x f x ()()()2111 ∴f x ()为增函数, 令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00= ∴-=-f x f x ()(), 故f x ()为奇函数, ∴=-=f f ()()112,f f ()()-=-=-2214 ∴-f x ()[]在,21上的值域为[]-42, 二. 求参数范围 这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。 例3 已知f x ()是定义在(-11,)上的偶函数,且在(0,1)上为增函数,满足f a f a ()()---<2402,试确定a 的取值范围。 解: f x ()是偶函数,且在(0,1)上是增函数, ∴f x ()在()-10,上是减函数, 由-<-<-<-

第049讲 总复习:不等式的综合应用(基础)知识梳理

不等式的综合应用 【考纲要求】 1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力; 2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式; 3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题; 4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力; 5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题. 6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.. 【知识络】 【考点梳理】 考点一:不等式问题中相关方法 1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰. 2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函 数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式 化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用. 4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形 →判断符(值). 5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维 等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择 不 等式的综合应用 解不等式问题 实际应用问题 不等式中的含参问题 不等式证明

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

高考数学中抽象导函数不等式解法与技巧

高考数学中抽象导函数不等式解法与技巧 1.利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行: 如构造, 构造, 构造, 构造等。 例1.(2015全国卷2)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( ) A . (-∞,-1)∪(0,1) B . (-1,0)∪(1,+∞) C . (-∞,-1)∪(-1,0) D . (0,1)∪(1,+∞) 练习1设)(x f 是偶函数,0)1(=f ,当0>x 时,0)()(, >+x xf x f ,则不等式0)(>x f 的解集 。 练习2若定义在上的函数满足,其导函数,则下列结论中一定错误的是( ) A . B . C . D . 2.根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行: 如:构造, 构造, 构造, 构造等。 例2设定义在(0,+∞)上的函数f (x )满足xf ′(x )-f (x )=xlnx , ,则f (x )( ) A. 有极大值,无极小值 ; B .有极小值,无极大值; C .既有极大值,又有极小值; D.既无极大值,又无极小值。 ()()f x f x '<()()x f x g x e = ()()0f x f x '+<()()x g x e f x =()()xf x f x '<()()f x g x x = ()()0xf x f x +<'()()g x xf x =R ()f x ()01f =-()1f x k '>>11 f k k ??< ???111f k k ?? > ?-??1111f k k ?? < ? --??111 k f k k ?? > ?--??()()f x f x '-()()x f x g x e = ()()f x f x '+()()x g x e f x =()()xf x f x '-()()f x g x x = ()()xf x f x '+()()g x xf x =11 f e e ??= ???

相关文档
相关文档 最新文档