文档库 最新最全的文档下载
当前位置:文档库 › 铁电存储器的三个典型应用

铁电存储器的三个典型应用

铁电存储器的三个典型应用
铁电存储器的三个典型应用

铁电存储器的三个典型应用

2009-07-24 09:46:51 来源:与非网

摘要:铁电存储器(FRAM)以其非挥发性,读写速度块, 擦写次数多,和低功耗等特点被广泛应用各行各业. 文章首先介绍铁电的原理, 之后分别介绍铁电储存器在电表, 税款机, 和电子道路收费系统的典型应用.

关键词: 铁电储存器, 应用

1 铁电储存器的原理

上图是铁电的原子结构图. 当一个电场施加到铁电晶体时, 中心原子会顺着电场的方向在晶体里移动. 当原子移动通过一个能量壁垒时, 会引起电荷击穿. 内部电路感应到电荷击穿并设置储存器. 移去电场后, 中心原子保持不动, 储存器的状态也得以保存.铁电储存器不需要定时更新, 调电后数据却能够继续保存, 速度快而且不容易写坏. 铁电储存器就是根据该原理设计而成.

2 铁电储存器的典型应用

2.1 铁电存储器在电表存储中的应用

2.1.1 概述

在电子技术日新月异、新型多功能电能表层出不穷的今天,电能表中存储器的选择也是多种多样,存储器的好坏直接关系到电能表的正常使用

和测量精度。目前应用最多的方案仍是SRAM加后备电池、EEPROM、NVRAM 这三种。但这三种方案均存在着缺陷。其中SRAM加后备电池的方法增加了硬件设计的复杂性,同时由于加了电池又降低了系统的可靠性;而EEPROM的可擦写次数较少(约100万次),且写操作时间较长(约10 ms);而NVRAM的价格问题又限制了它的普及应用。因此,工程人员在设计电能表的存储模块时,往往要花很大的精力来完善方案,才能使电表数据准确无误的写入存储器中。由于所有的非易失性记忆体均源自ROM技术。你能想象到,只读记忆体的数据是不可能修改的。所有以它为基础发展起来的非易失性记忆体都很难写入,而且写入速度慢,它们包括EPROM(现在基本已经淘汰),EEPROM和Flash,它们存在写入数据时需要的时间长,擦写次数低,写数据功耗大等缺点。

鉴于以上情况,越来越多的设计者将目光投向了新型的非易失性铁电存储器(FRAM)。铁电存储器具有以下几个突出的优点:

i. 读写速度快。串口FRAM的时钟速度可达20 MHz,并口FRAM 的访问速度达70 ns,几乎无须任何的写入等待时间,可认为是实时写入,所以不用担心掉电后数据会丢失;

ii. 擦写次数多。一般认为FRAM的擦写次数为100亿次,而最新的铁电存储器的写入次数可达一亿亿次,这几乎可以认为是无限次;

iii. 超低功耗。FRAM的静态工作电流小于10μA,读写电流小于150μA。

2.1.2 FM25640与MCU的连接图

上图是一款适用于电表设计的方块图,其MCU还具有一个带有红外功能的串行通信接口SCI,一个高速SPI,8个键盘输入中断,以及内部LCD 驱动模块,因而节省了外挂液晶驱动芯片。系统中的电能计量芯片使用ADI 公司的三相电能计量芯片ADE7755/8,该芯片精确度高,可以提供有功功率、无功功率、视在功率、电压有效值和电流有效值等多项数据,具有两路脉冲输出,同时也带有SPI串口。由于SPI接口可支持多个器件挂在同一个总线上,并可通过片选信号区分每一个器件,因此,将FM25640和ADE7755/8都通过SPI接口与单片机相连,并将MCU的两个I/O口分别与FM25640和ADE7755/8的片选端CS相连接,就可以实现片选。

2.1.3 工作过程

本电表系统上电复位后,首先将进行一系列的初始化操作,包括单片机的时钟发生模块的寄存器设置、系统时钟的选择、I/O口输入输出的设置、SPI的控制寄存器的初始化、以及开中断允许等。然后再进行ADE7755/8的模式设置。在这些初始化工作完成后,ADE7755/8便开始将检测到的各个电能数据存放在相应的内部寄存器中。单片机通过I/O口给ADE7755/8的CS端一个低电平,即可选中ADE7755/8,之后再由ADE7755/8把电能数据通过SPI接口传输到单片机的RAM中。单片机在对数据进行处理后,

再通过I/O口给FM25640的CS端一个低电平,以选中FM25640,同时调用写数据的子程序,将数据存储到FM25640中去。之后每隔一分钟,单片机便发出一次更新数据的命令,重复上述操作过程。由于每隔一分钟更新一次数据,这样,一年365天的擦写次数为1×60×24×365,即525600次,而FM25640的擦写次数达100亿次,按这样计算,FM25640可以工作的年数为19025年!因此,如果系统要求更低的实时性,则完全可以减少更新数据的周期,而FM25640出色的擦写性能完全可以满足该要求。另外, 在要求更高的系统实时性方面, 也不必担心数据传输过程中掉电时数据的丢失,因为FM25640几乎可以认为是实时写入,无须任何等待时间,从而保证了系统具有很高的实时性和可靠性。

2.1.4 结束语

FRAM是一高可靠性的非挥发性储存器,适合于各种电表的应用。在未来的几年,其存储密度也将不断持续提升,成为储存主流之一,逐渐替换现有的储存记忆体,提供了其它存储记忆体无法解决的方案优势。

2.2 铁电存储器在税控机中的应用

2.2.1 概述

许多使用电子电气设备的场合都需要采集现场数据(如电表、水表、煤气灌装车间、加油站、税控机及一些破坏性实验装置等)。特别是税控机系统的实时数据保存方式、存取速度、使用寿命及防篡改是需要电子开发人员仔细衡量的问题。

税控机就是在原有电子收款机上加上税控功能,所以税控功能和资讯储存是整个系统的关键所在。当前其资讯储存的非易失性数据存储方案有静态

存储器SRAM加电池的组合、FLASH闪存芯片、EEPROM和铁电存储器FRAM (Ferroelectric Random Accessmemory)等。SRAM加电池的组合容易因电池掉电被数据篡改,而FLASH闪存芯片和EEPROM则有寿命问题,故具有读写速度快、无限次擦写及低功耗的特点的FRAM则成为开发人员的最佳存储器选则。

2.2.2 系统结构

下图所示是一典型的税控机方块图,数据采集系统利用铁电存储器方便的随采随存特点,来对每次的数据进行处理。

2.2.3 工作过程

图中的MCU为单片机主控制器,用于控制与作业装置的通信和数据采集、保存、显示,以及键盘扫描等;FRAM是铁电存储器,可保存采集到的数据和采集数据的时间及读写FRAM的地址;身份识别是ID卡读卡模块,每台税控机需要用两张卡,分别是税控卡和用户卡,税控卡在出厂时已经在税控机内,用户持有用户卡,系统会提示用户在适当的时候插入税控机使用以读取操作员的工作号码,以便于责任管理;数据采集通道用的是工业

上最常见的RS232总线.它有两个功能,即与作业设备的通信和单片机程序的下载;液晶模块可实时显示工作状态信息;键盘可方便工作人员设置系统参数并向作业装置发送命令;Printer可以列印发票以及报表。

2.2.4 结束语

铁电存储器因其读写次数几乎可以接近无限次,而且具有速度快、功耗低和操作方便等优点,日益受到电子工程师的关注,在数据采集系统中用FRAM实时保存数据的方法可使税控机的数据更可靠,软件编程更容易用性。

2.3 铁电存储器在电子道路收费中的应用

2.3.1 概述

电子道路收费系统(Electronic Toll Collection,缩写ETC;或Electronic Road Pricing System,缩写ERPS)是一种自动收费方式,通常被使用于高速公路或收费的桥梁或隧道,也被使用于实施市中心道路收费,以减轻交通挤塞的地区。

现行电子道路收费系统是使用于行进中的车辆,所以一般都采用RFID的无线传送方式作为资料收发,由于现行RFID的读写距离非对称,所以典型的电子道路收费系统均采用有源标应答器在系统应用中作为资料读写,这使得系统成本增加且需更换电池。RAMTRON的FRAM产品具有低功耗、快速写入的能力,在非接触式记忆体应用领域中具有相等读写距离的特性可提供比较好的解决方案。应用在电子道路收费系统中,可以在等功耗的环境下,达到15米以上的读写距离,因而改变系统架构由有源标应答器变为无源应答器,这不但能节省系统成本同时还能提高产品可靠性。当

系统性能得到提升,则系统可以选择收集更多的资料类型、或以更高频率收集资料。此时铁电(FRAM)记忆体的优点会转变为直接而明显的系统优点,例如快速的写入周期能让系统在更短的时间内收集到更多的资料。

2.3.2 系统架构

以下是典型电子道路收费系统架构

2.3.3 工作过程

PC 数据库为后台管理资料库,用于车辆管理及收费记录控管,可保存采集到的数据以及采集数据的时间;应答器(标签)置于车辆前挡风玻璃作为车辆识别,以及储值卡内含FRAM铁电存储器;读卡器用于发射功耗强度固定,得到RF讯号后以读写应答器;天线安装于车道上方作为数据采集的

收发天线。

2.3.4 结束语

铁电存贮器(FRAM)的等距离读写特性快速擦写和非易失性等特点带来无线应答器的技术革命,令系统工程师可以缩小现有大体积的有源应答器成为无源的小型应答器,简单地扩展了应用范围,节省了功耗, 成本, 空间,同时增加了整个系统的可靠性。在接下来几年,会有越来越多的电子道路收费系统采用FRAM应答器,因为FRAM技术提供了其它RFID记忆体无法解决或满足的方案优势。

铁电随机存储器(FRAM)的工作原理(EN)

Technology Note Sept. 2007 Ramtron International Corporation 1850 Ramtron Drive, Colorado Springs, CO 80921 (800) 545-FRAM, (719) 481-7000, Fax (719) 481-7058 F-RAM Technology Brief Overview Established semiconductor memory technologies are divided into two categories: 1. RAMs are Random Access Memories, which simply means that the access time for reads and writes are symmetric. 2. Nonvolatile memories have traditionally been ROM (Read Only Memory) until the advent of floating gate technology, which produced electrically erasable memories such as Flash and EEPROM. These products allow for in-system programming but read and write access times are dissimilar. In fact, the write access times can be several orders of magnitude greater than the read access times. Ferroelectric Random Access Memory or F-RAM has attributes that make it the ideal nonvolatile memory. It is a true nonvolatile RAM. The write advantages and non-volatility make it quite suitable for storing data in the absence of power. Ferroelectric Property The ferroelectric property is a phenomena observed in a class of materials known as Perovskites. Figure 1 shows a Perovskite crystal. The atom in the center has two equal and stable low energy states. These states determine the position of the atom. If a field is applied in the proper plane, the atom will move in the direction of the field. Applying an electric field across the crystal causes the low energy state or position to be in the direction of the field and, conversely, the high energy state in the opposite position. The applied field will, therefore, cause the atom to move from the high energy state to the low energy state. This transition produces energy in the form of charge generally referred to as switch charge (Qs). Therefore, applying an alternating electric field across the crystal will cause the atom to move from the top of the crystal to the bottom and back again. Each transition will produce charge, Qs. Figure 1. Ferroelectric (Perovskite) Crystal A common misconception is that ferroelectric crystals are ferromagnetic or have similar properties. The term “ferroelectric” refers to similarity of the graph of charge plotted as a function of voltage (Figure 2) to the hysteresis loop (BH curve) of ferromagnetic materials. Ferroelectric materials switch in an electric field and are not affected by The ferroelectric material has two states, the atom at the top, which is referred to as up polarization, and the atom at the bottom, which is referred to as down polarization (Figure 3). Therefore, with a viable sensing scheme a binary memory can be produced. Figure 3. Crystal Polarization

虚拟存储器管理实验报告

淮海工学院计算机科学系实验报告书 课程名:《操作系统》 题目:虚拟存储器管理 页面置换算法模拟实验 班级: 学号: 姓名:

一、实验目的与要求 1.目的: 请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。 2.要求: 本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。 二、实验说明 1.设计中虚页和实页的表示 本设计利用C语言的结构体来描述虚页和实页的结构。 在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。 在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。 2.关于缺页次数的统计 为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内, 此虚页被命中,count加1。最终命中率=count/20*100%。 3.LRU算法中“最近最久未用”页面的确定 为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问 一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前

三电平逆变器的主电路结构及其工作原理

三电平逆变器的主电路结构 及其工作原理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

三电平逆变器的主电路结构及其工作原理 所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压 (+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压 U=+V dc/2;若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开 关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-V dc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-V dc/2。通常标识为“-1”状态,如图所示。

存储器的分类

说起存储器IC的分类,大家马上想起可以分为RAM和ROM两大类。 RAM是Random Access Memory的缩写,翻译过来就是随机存取存储器,随机存取可以理解为能够高速读写。常见的RAM又可以分成SRAM(Static RAM:静态RAM)和DRAM(dynamic RAM:动态RAM)。 ROM是Read Only Memory的缩写,翻译过来就是只读存储器。常见的ROM又可分为掩膜ROM(有时直接称为ROM)、PROM(Programmable ROM:可编程ROM,特指一次编程的ROM)、EPROM(Erasable Programmable ROM:可擦除可编程的ROM,擦除时用紫外线)、EEPROM(Electrically Erasable Programmable ROM:电可擦除可编程ROM)。 以上是大家在各种教材上看到的存储器的分类。 问题是,ROM明明叫只读存储器,也就是不可写的存储器,现实是除了掩膜ROM是不可写的外,PROM、EPROM、EEPROM事实上都是可写的。它们的名称中还带有“ROM”是名不副实的叫法。掩膜ROM、PROM、EPROM、EEPROM这几种存储器的共同特点其实是掉电后,所存储的数据不会消失,所以可以归类为非易失性存储器(即Non-Volatile Memory)。 SRAM、DRAM的共同特点是掉电后数据会丢失,所以也可称为易失性存储器(V olatile memory)。 于是,存储器从大类来分,可以分为易失性存储器和非易失性存储器。 后来出现的Flash Memory(快闪存储,简称闪存),掉电后数据也不容易丢失,所以也属于非易失性存储器。Flash Memory的名称中已经不带ROM字样了,但是传统的分类方法中,还是把Flash Memory归类为ROM类,事实上此时是因为这些存储器都是非易失的。 把存储器分为易失性存储器和非易失性存储器就万事大吉了么? 令人纠结的是,有一种新的存储器,它既是非易失的,同时又是能够高速随时读写数据的,也就是说能够随机存取的。这种存储器就是FRAM(Ferroelectric Random Access Memory:铁电随机存取存储器,简称铁电存储器)。把FRAM归类为非易失性存储器是可以,但是FRAM的高速读写性质又与SRAM、DRAM更为接近,它也是一种RAM。 于是,存储器的分类令人纠结。传统的分为RAM与ROM的方式本来就不科学。如果分成RAM与非易失性存储器这两大类,也不科学,因为这个分类本身就不是按同一个标准分的,导致FRAM即属于RAM,又属于非易失性存储器。如果只分成易失性存储器和非易失性存储器,又导致FRAM与SRAM、DRAM分家,大家都有RAM嘛,凭什么分开是吧。 我的建议是,存储器分成随机存取存储器和非随机存取存储器两大类比较合适。 于是,存储器的分类如下(按存取速度分类): 1、随机存取存储器:SRAM、DRAM、FRAM; 2、非随机存取存储器:掩膜ROM、PROM、EPROM、EEPROM、Flash Memory。 差强人意的分类为(按易失性分类): 1、易失性存储器:SRAM、DRAM; 2、非易失性存储器:掩膜ROM、PROM、EPROM、EEPROM、Flash Memory、FRAM。

第5章虚拟存储器-题库及参考答案

第5章虚拟存储器-选择题参考答案 一、单项选择题 1.【2012统考真题】下列关于虚拟存储器的叙述中,正确的是() A.虚拟存储只能基于连续分配技术 B.虚拟存储只能基于非连续分配技术 C.虚拟存储容量只受外存容量的限制 D.虚拟存储容量只受内存容量的眼制 2.请求分页存储管理中,若把页面尺寸增大一倍而且可客纳的最大页数不变则在程序顺序执行时缺页中断次数 会() A.增加 B.减少 C.不变 D.可能增加也可能减少 3.进程在执行中发生了缺页中断,经操作系统处理后,应让其执行()指令 A.被中断的前一条 B.被中断的那一条 C.被中断的后一条 D.启动时的第一条 4.【2011统考真题】在缺页处理过程中,操作系统执行的操作可能是() Ⅰ.修改页表Ⅱ.磁盘1O Ⅲ.分配页框 A.仅Ⅰ、Ⅱ B.仅Ⅱ C.仅Ⅲ D.Ⅰ、Ⅱ和Ⅲ 5.【2013统考真题】若用户进程访问内存时产生缺页,则下列选项中,操作系回 统可能执行的操作是() Ⅰ.处理越界错Ⅱ.置换页Ⅲ.分配内存 A.仅Ⅰ、Ⅱ B.仅Ⅱ、Ⅲ C.仅Ⅰ、Ⅲ D.Ⅰ、Ⅱ和Ⅲ 6.虚拟存储技术是() A.补充内存物理空间的技术 B.补充内存逻辑空间的技术 C.补充外存空间的技术 D.扩充输入/输出缓冲区的技术 7.以下不属于虚拟内存特征的是() A.一次性 B.多次性 C.对换性 D.离散性 8.为使虚存系统有效地发挥其预期的作用,所运行的程序应具有的特性是() A.该程序不应含有过多的O操作 B.该程序的大小不应超过实际的内存容量 C.该程序应具有较好的局部性 D.该程序的指令相关性不应过多 9.()是请求分页存储管理方式和基本分页存储管理方式的区别 A.地址重定向 B.不必将作业全部装入内存 C.采用快表技术 D.不必将作业装入连续区城 10.下面关于请求页式系统的页面调度算法中,说法错误的是() A.一个好的页面调度算法应减少和迎免抖动现象

磁耦隔离器..

磁耦隔离器 一磁耦简介 磁耦:基于磁隔离技术的隔离器件,也称为磁隔离器。 磁耦合隔离是指利用电磁感应原理,把需要传输的变化信号加在变压器的初级线圈,该信号在初级线圈中产生变化的磁场,变化的磁场使次级线圈的磁通量发生变化,从而在次级感应出与初级线圈激励信号相关的变化信号输出,在整个信号的传输过程中,初级与次级之间没有发生电连接,从而达到隔离初次级的目的。 磁耦隔离器根据对信号编解码的不同,主要有脉冲调制变压器隔离器(ADI公司)和巨磁电阻隔离器(NVE公司和安华高公司)。 脉冲调制变压器隔离器 ADI公司的iCoupler隔离器是基于芯片尺寸变压器的磁耦合器,是采用脉冲调制方式实现的数字隔离器件。 磁隔离变压器采用平面结构,在晶圆钝化层上使用CMOS金属和金构成。金层下有一个高击穿的聚酰亚胺层,将顶部的变压器线圈与底部的线圈隔离开来。连接顶部线圈和底部线圈的CMOS电路为每个变压器及其外部信号之间提供接口。晶片级信号处理提供了一种在单颗芯片中集成多个隔离通道以及其它半导体功能的低成本的方法。磁隔离技术消除了与光耦合器相关的不确定的电流传送比率、非线性传送特性以及随时间漂移和随温度漂移问题;功耗降低了90%;并且无需外部驱动器或分立器件。 图1脉冲调制变压器隔离器剖面图 磁隔离的每个线圈的直径大约是500um,匝数15。顶部线圈粗4um,采用金材料制成;底部线圈粗1~2um,采用铝或金材料制成。 磁耦隔离器是空心变压器,没有磁芯。为了实现紧密互耦,将两个15匝、直径500um 的线圈直接堆叠,空隙仅为20um。这使得耦合系数大于0.8。 工作原理 iCoupler数字隔离器使用传送到给定变压器初级端的脉冲对输入逻辑跳变进行编码。这些脉冲从变压器初级线圈耦合到次级线圈,并且由次级端电路检测。然后,该电路在输出端重新恢复成输入数字信号。此外,输入端还包含一个刷新电路,保证即使在没有输入跳变的情况下输出状态也与输入状态保持匹配。

linux系统如何实现虚拟存储器

linux系统如何实现虚拟存储器 摘要:Linux 操作系统是一种能运行于多种平台、源代码公开、免费、功能强大、与Unix 兼容的操作系统。本文主要阐述了Linux 虚存管理的基本特点, 并分析了Linux 页式存储管理的特点、虚存的实现方法, 以及主要Linux虚拟地址空间的管理。此外还介绍了Linux缺页中断处理。 关键字:Linux ; 虚存管理; 中断处理 1.虚拟存储器 虚拟存储器的概念:以透明的方式给用户提供一个比实际内存大的多的作业地址空间。它不是任何实际的物理存储器,而是一个非常大的存储器的逻辑模型。 虚拟存储技术的实现思想:根据程序执行的局部性原理,在作业信息不全部装入内存的情况下,作业是可以运行的。例如对于一个4页大小的作业,当前只有3个空闲内存块,运行改作业的可行的办法就是将作业的3页装入内存的3个空闲块,先运行这3页,而将剩余的页暂时存放在外存上,待需要使用在第4页上的信息时,再选中在内存中的一页交换出内存,从而让出一个内存块以便装入第4页。作业的页面在内存与外存上的交换这一过程对用户是透明的,它是由操作系统自动完成的,这也相当于利用外存的空间扩充了内存空间。这就是虚拟存储技术的实现思想。根据虚拟存储技术的实现思想可知实现虚拟存储器必须具备以下条件: (1)实际内存空间。由于用户程序要在实际内存中运行,所以内存空间是实现虚拟存储器的基础。 (2)外存上的内存交换区。用户作业的一部分进入内存,另一部分暂时存放在外存的一个区域中,作业在内存与该区域之间换进、换出,该区域作为内存的扩充空间,因此,这个区域称为内存交换区。内存交换区的大小是可以设定的。但它必须受虚拟地址空间的限制。 (3)虚拟地址。针对虚拟存储器的使用,用户在编制程序时应使用逻辑地址。因此,逻辑地址也称为虚拟地址,逻辑地址空间也称为虚拟地址空间。虽然使用虚拟存储技术使得用户的作业的大小可以大于实际内存的大小,但是还是受到虚拟地址空间的限制,而虚拟地址空间的大小受到地址寄存器位数的限制,如一个32位的地址寄存器其虚拟地址空间最大为232字节,即4GB。 (4)换进、换出机制。如何实现作业在内存与交换区之间换进、换出?怎样选择作业在内存部分中的一部分进行换出?这都是实现虚拟存储技术必须解决的问题。 2.页式虚拟存储基本原理 基本思想:作业信息的副本存放在外存上,当作业被调度运行时,至少要将作业的第一页内容装入内存,在执行的过程当中,访问到不在内存的页时,再把它们调入内存。

铁电材料的特性及应用综述

铁电材料的特性及应用综述 孙敬芝 (河北联合大学材料科学与工程学院河北唐山 063009)摘要:铁电材料具有良好的铁电性、压电性、热释电以及性光学等特性以及原理,铁电材料是具有驱动和传感2 种功能的机敏材料, 可以块材、膜材(薄膜和厚膜) 和复合材料等多种形式应用, 在微电子机械和智能材料与结构系统中具有广阔的潜在应用市场。 关键词:铁电材料;铁电性;应用前景 C haracteristics and Application of Ferroelectric material Sun Jingzhi ( Materials Science and Engineering college, Hebei United University Tangshan 063009,China ) Abstract:Ferroelectric material has good iron electrical, piezoelectric , pyroelectric and nonlinear optical properties, such as a driver and sensing two function piezoelectric materials, can block material, membrane materials (film and thick film) and the compound Material of a variety of forms such as application, in microelectromechanical and intelligent materials and structures in the system with vast potential application market. Keywords: ferroelect ric materials Iron electrical development trend 0前言 晶体按几何外形的有限对称图象, 可以分为32 种点群, 其中有10 种点群: 1, 2, m , mm 2, 4,4mm , 3, 3m , 6, 6mm , 它们都有自发极化。从对称性分析它们的晶体结构都具有所谓的极轴, 即利用对称操作不能实现与晶体的其它晶向重合的轴向, 极轴二端具有不同的物理性能。从物理性质上看, 它们不但具有自发极化, 而且其电偶极矩在外电场作用下可以改变方向。在介电强度允许条件下, 能够形成电滞回线。晶体这种性能称为铁电性, 具有铁电性的材料称为铁电材料。1920 年法国人V alasek 发现了罗息盐(酒石酸钾钠 ) 的特异介电性, 导致“铁电性”概念的出现(也有人认为概念出现更早)。现在各种铁电材料十分丰富,

关于铁电存储器(FRAM)的常见问答

关于铁电存储器(FRAM)的常见问答 问:和其它非易失性存储器制造技术相比,铁电存储器在性能方面有什么不同吗? 答: 铁电存储器在性能方面与EEPRON和Flash相比有三点优势之处: 首先,铁电存储器的读写速度更快。与其它存储器相比,铁电存储器的写入速度要快10万次以上。读的速度同样也很快,和写操作在速度上几乎没有太大的区别。 其次,FRAM存储器可以无限次擦写,而EEPROM则只能进行100万次的擦写。最后,铁电存储器所需功耗远远低于其他非易失性存储器。 问:和其它存储器相比铁电存储器有什么不同吗? 答: 如果要回答这个问题的话,简单了解一下存储器技术的背景资料很有必要。存储器的生产技术可以分为两类:易失性和非易失性。易失性存储器在断电后存储的数据 会丢失,而非易失性存储器则不然。传统的易失性存储器包括SRAM(静态随机存储器)和DRAM(动态随机存储器)。他们都源自RAM技术-随机存取存储 器技术。 RAM 的主要优点是容易使用且读写操作类似。但是传统RAM的主要缺点是其只能被用来做暂时性的存储。传统的非易性存储器技术均源自ROM技术,即只读存储器技 术。经过各种技术的改进,工程师们创造出Flash和EEPROM存储器,这些改进的存储器开始能够进行写入操作了。但是这种基于ROM技术生产的存储器 都有不易写入、写入需要特大功耗等缺点。 所以传统的基于ROM技术制造的存储器是不适应需要多次写入操作的应用领域的。而铁电存储器(FRAM)则是第一个非易失性的RAM存储器。它结合了SRAM和DRAM易写入的特性,又具有Flash和EEPROM得非易失性的特点。 问:铁电存储器怎样与其它高性能的非易失性存储器,诸如MRAM来竞争? 答: 两者最大的区别就是产品技术和市场是否成熟。铁电存储器是从实验室研发阶段一步步发展到拥有巨大客户群的生产销售阶段的。而 MRAM和其他比较高级的存储器虽然承诺的条件和技术很好,但是在实际应用层面还面临着许多障碍,很难达到目前铁电存储器的水平,并且铁电存储器的技术还 在不断的更新和改进。所以事实上Ramtron不能将还处于实验室开发阶段的存储器产品与技术已经成熟并大量生产销售的铁电存储器相比较。

隔离,您选择光耦还是数字隔离器

话题大PK:隔离,您选择光耦还是数字隔离器??? 由ADIForum于2014-1-15 创建 正方——支持数字隔离器: 功耗低——数字隔离器在低频条件下只使用光耦合器功率的1%;在50Mbps,即光耦合器最高传送速率条件下(数字隔离器可以工作在100Mbps以上),它使用光耦合器功率的大约20%。降低功率会使其提高可靠性。 设计简单方便——单个器件;标准TTL或CMOS;电源可根据预算灵活调整;无CTR,在整个温度范围内稳定工作;不像光耦缺少集成特性,完整的集成解决方案降低整体BOM成本…… 反方——支持光耦: 光耦是70年代发展起来的隔离器件,产品种类繁多,价格便宜; 信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,无触点,使用寿命长; …… 您怎么看?欢迎参与探讨(无论您持怎样的观点,尽可畅所欲言,无所谓对错)。。。 硬件高手的实际设计经验分享——提高系统效率的几个误解 mu-zi 2014-1-10 下午5:52 误解一:这主频100M的CPU只能处理70%,换200M主频的就没事了 点评:系统的处理能力牵涉到多种多样的因素,在通信业务中其瓶颈一般都在存储器上,CPU 再快,外部访问快不起来也是徒劳。 误解二:CPU用大一点的CACHE,就应该快了 点评:CACHE的增大,并不一定就导致系统性能的提高,在某些情况下关闭CACHE反而比使用CACHE还快。原因是搬到CACHE中的数据必须得到多次重复使用才会提高系统效率。所以在通信系统中一般只打开指令CACHE,数据CACHE即使打开也只局限在部分存储空间,如堆栈部分。同时也要求程序设计要兼顾CACHE的容量及块大小,这涉及到关键代码循环体的长度及跳转范围,如果一个循环刚好比CACHE大那么一点点,又在反复循环的话,那就惨了。 误解三:这么多任务到底是用中断还是用查询呢?还是中断快些吧 点评:中断的实时性强,但不一定快。如果中断任务特别多的话,这个没退出来,后面又接踵而至,一会儿系统就将崩溃了。如果任务数量多但很频繁的话,CPU的很大精力都用在进出中断的开销上,系统效率极为低下,如果改用查询方式反而可极大提高效率,但查询有时不能满足实时性要求,所以最好的办法是在中断中查询,即进一次中断就把积累的所有任务都处理完再退出。

完美的铁电存储器

完美的铁电存储器 一. Fujitsu铁电存储器(FRAM) 技术原理 日本Fujitsu公司是全球最大的铁电存储器(FRAM)供货商,至2010年12月31日,全球已经累计出货17亿颗铁电存储器! Fujitsu公司铁电存储器(FRAM)的核心技术是铁晶体管材料,这一特殊材料使得铁电存储产品同时拥有随机存取内存(RAM) 和非挥发性存贮产品(ROM)的特性。 铁晶体管材料的工作原理是:当我们把电场加载到铁晶体管材料上,晶阵中的中心原子会沿着电场方向运动,到达稳定状态,晶阵中的每个自由浮动的中心原子只有两个稳定状态,一个我们拿来记忆逻辑中的0、另一个记亿1,中心原子能在常温,没有电场的情况下停留在此状态达一百年以上。铁电存储器不需要定时刷新,能在断电情况下保存资料。 二、Fujitsu铁电存储器(FRAM) 技术优点 传统半导体内存有两大体系:挥发性内存(Volatile Memory),和非挥发性内存(Non-volatile Memory)。 挥发性内存如SRAM和DRAM 在没有电源的情况下都不能保存资料,但这种内存拥有高性能、易用等优点。 非挥发性内存像 EPROM、 EEPROM和 FLASH 能在断电后仍保存资料,但由于所有这些内存均起源自只读存储器 (ROM) 技术,所以您不难想象得到它们都有不易写入的缺点, 确切的来说,这些缺点包括写入缓慢、有限次写入次数、写入时需要特大功耗等等。 FRAM第一个最明显的优点是FRAM可跟随总线(Bus Speed)速度写入,若比较起 EEPROM/Flash的最大不同的是 FRAM在写入后无须任何等待时间(NoDelayTM Write),而 EEPROM/Flash须要等 3~10毫秒 (mS) 才能写进下一笔资料。 铁电存储器(FRAM)的第二大优点是近乎无限次读写。当 EEPROM/Flash只能应付十万次 (10的5次方)至一百万次写入时,新一代的铁电存储器(FRAM)已达到一百亿个亿次(10的 10次方)的写入寿命。

T型三电平逆变器课程设计..

摘要 三相三电平逆变器具有输出电压谐波小,/ dv dt小,EMI小等优点,是高压大功率逆变器应用领域的研究热点,三相二极管中点箝位型三电平逆变器是三相三电平逆变器的一种主要拓扑,已经得到了广泛的应用。三相T型三电平逆变器,是基于三相二极管中点箝位型三电平逆变器的一种改进拓扑。这种逆变器中,每个桥臂通过反向串联的开关管实现中点箝位功能,是逆变器输出电压有三种电平。该拓扑比三相二极管中点箝位型三电平拓扑结构每相减少了两个箝位二极管,可以降低损耗并且减少逆变器体积,是一种很有发展前景的拓扑。 本设计采用正弦脉宽调制(SPWM),本文介绍了三相T型三电平逆变器的设计,介绍其结构和基本工作原理,及SPWM控制法的原理,并利用SPWM控制的方法对三电平逆变器进行设计与仿真。本设计采用SIMULINK对T型三电平逆变电路建立模型,并进行仿真。 关键词: T型三电平逆变器、正弦脉宽调制、SIMULINK仿真

目录 第一章绪论 (6) 1.1研究背景及意义 .. 1.2三电平逆变器拓扑分类 第一章 T型三电平逆变器工作原理分析 (6) 1.1逆变器的结构 1.2本章小结 第二章正弦脉波调制(SPWM) (7) 3.1 PWM与SPWM的工作原理 3.2三电平逆变电路SPWM的实现 3.3本章小结 第三章电路仿真与参数计算 (10) 4.1逆变器的基本要求 4.2电路图 4.3调制电路 4.4L-C滤波电路 4.5结果分析 第四章课程设计小结 (14) 参考文献 (15)

第一章绪论 1.1 研究背景及意义 近年来,随着经济的飞速发展,人类对能源的需求也大幅度增加,而传统能源面临着枯竭的危机。在这种情况下,我们不得不加速开发新型能源。各国的专家致力于新能源的开发与利用,光伏发电、风力发电、生物发电等各种新型发电技术已经得到了一定的应用,并且正在蓬勃的发展,尤其是光伏发电,因其成本低、稳定性较好,控制简单等优点,在各国得到了广泛的应用。受地区气象条件的影响,太阳能光伏电池板输出的直流电压极不稳定,而且电压幅值低,容量小。为了高效利用太阳能,需要将不稳定的光伏电池串、并联组合,并且经过多级电力电子变换器组合输出恒频交流电压并网运行。而把这些初始能源转化为可用电能的桥梁就是逆变器。随着开关器件的不断发展,逆变器的拓扑、调制方式和控制策略也在不断发展,控制理论在逆变器的控制上得到了很好的应用,这一切都保证了优良的供电质量。在一些高电压、大功率的应用场合,传统的两电平逆变器由于开关器件耐压限制,无法满足需求。在这种情况下,如何将低耐压开关器件应用于高电压大功率场合成为各国专家研究的热点,由此,多电平逆变器技术应运而生。多电平的概念最早是由日本专家南波江章(A.Nabae)等人在 1980 年提出的[1],通过改变主电路的拓扑结构、增加开关器件的方式,在开关器件关断的时候将直流电压分散到各个器件两端,实现了低耐压开关器件在大功率场合应用。 1.2三电平逆变器拓扑分类 常见的多电平的电路拓扑主要有三种:二极管箝位型逆变器、飞跨电容箝位型逆变器和具有独立直流电源的级联型逆变器。本文研究的 T 型三电平逆变器可以说是中点箝位型逆变器的改进拓扑,其优势主要体现在减少了电流通路中的开关器件数量,减少了传导损耗。而且与二极管箝位型三电平逆变器相比,T 型三电平逆变器的每个桥臂少用了两个箝位二极管,其控制方法和二极管箝位型三电平逆变器类似[2]。T 型三电平逆变器融合了两电平和三电平逆变器的优势,既有两电平逆变器传导损耗低,器件数目少的优点,又有三电平逆变器输出波形好,效率高的优点,是很有发展前景的一种三电平逆变器拓扑。

存储器的未来发展状况(精)

存储器未来发展状况 如果有一种半导体领域被视为商品,那就是存储器。当然,它是容纳最多列吋的区域。 DRAM 芯片的当前需求量最高,其平均售价的涨落通常作为整个半导体行业的主导。 市场和制造商 在商业方面,半导体市场目前每年收入大约可达 3000 亿美元, 存储器芯片对此做出了重大贡献,但是它每年的占有率极不稳定。制造商立足市场的成本很高,利润越来越微薄,只能在旺季才能赚取利润, 或许,除非您恰好是市场领导者。在过去十年间,该行业的主要供应商数量(占据了 5% 以上的市场占有率明显减少,或者说我们已看到存储器供应商已在大势整合。这种情况首先出现在 DRAM 行业,在过去几年间,非易失存储器 (NVM 的领先制造商群体(多半为闪存供应商中已改组。 过程、体系结构和互连 在技术方面,存储器芯片开发的主要挑战在于与微处理器提高的性能保持同步并提供快速且和较低功耗的存储器。存储器制造商的压力越来越大,以改进体系架构并移至更小的工艺节点,虽然存储器一直在硅工艺开发的驱动者。领先 DRAM 制造商现在以 30nm 的规格节点开始生产,一些供应商更供应 25nm 的规格工程样本。在 NAND 闪存中,闪存存储器最常见的类型用于固态驱动器、 USB 闪存驱动器和多媒体存储卡中的数据存储,领先的制造商现在开始生产 64 位存储器,采用 20 到 30nm 的过程技术。 随着 3D 存储器技术日益重要,还需要创新型存储器架构和结构:在技术过程阶段, DRAM 存储器单元采用 3D 结构设计,在硅压模阶段,使用 TSV (硅片直通孔互连进行 DRAM 压模堆叠,以满足高密度需求。 3D NAND 闪存存储器(带垂直门结构具有长寿命和高可靠性,前景很好,明年左右即可实现。

隔离器选型要点

隔离器选型要点 一.共模干扰抑制能力,隔离器优势先决条件。 隔离器在独有行业范围内,无论是温度隔离变送器、信号分配器、隔离配电器及电流、电压变送器等产品内,它们共有特点是端口之间要绝对电气隔离,也就是一次仪表、电源及采集设备之间没有任何电气连接,且要有一定隔离耐压范围,这是解决所谓设备之间“地”电位差的能力,(共模干扰抑制能力)一款最普通型隔离器也要具备1500V—2000V端口耐压时漏电流小于1mA,方能满足国内众多工业场合。一些强电场环境或航空、航天测控领域要求会更高。Paragon(帕罗肯公司)的PA、PR系列产品此方面有着独有优势,产品屏弃传统隔离方式,采用EMI方式,某些产品耐压已超过3000Vdc,已成功为国外某些厂家配套使用。二.产品耗用电流及产品工作时损耗功率。 当今社会节能环保已是社会各行业倡导的主流,家用电器在此方面尤为突出,也是衡量产品优劣的一个重要指标。但仪器仪表行业可能表现不是很突出,一般仪器仪表也就是几瓦至几十瓦,节能不是倡导主流。但无用的损耗,将会对仪器仪表的使用寿命,工作稳定性带来诸多弊端。隔离器因特殊作用,它是为了完善工业现场I/O插件的一类产品,在水泥、环保、冶金等恶劣工业环境下,为了更好对现场仪表信号采集,控制经常在系统集成时就配有专门的隔离柜。此时将在一个隔离柜中,密集安装几十,上百的隔离类产品,当一只产品独立使用时,可能温差感觉不明显,但十只、一百只同时安装时,温度将明显不同。有实验证明: ●1只功耗40mA隔离器在温度为25℃,空间1㎡的柜中测得温度是28.7℃; ●10只密集安装时温度是35.4℃; ●100只密集安装时温度是52.6℃; 可见产品温度和数量是成倍数关系的. 此时的问题就不仅是多耗用电流问题,而是直接影响产品使用寿命和参数的稳定,也就是 许多厂家对产品安装有要求的原因之一.那么问题如何解决?方法很多(扩大安装空间,增加散热装置等)但只能治标,不能治本.好的产品还要从产品自身低损耗设计开始.因为任何电子类产品,内部器件的寿命都和温度有很大关系,(如电容器在每增15℃-20℃时,使用寿命会减少1/3左右)。 我们要做的是,将产品多余损耗降到最低,单路产品的耗用电流在25mA内,而且因特殊隔离方式,我们产品能在-25℃-85℃时,保证极高稳定性。(实验测得-25℃-85℃时产品满值仅变化≤1‰满值) 三.产品传输精度 一款隔离器产品要确保现场信号传输的精度,其中对隔离类产品提出一系列要求,首先对差模干扰抑制能力。所谓差模干扰是信号在传输过程中受外界干扰源影响而叠加在信号上一些无用信号。这些干扰信号严重时可对设备产生误动作和采集、控制不准确。因工业环境的特殊地域,很难有效屏蔽和去除干扰源,因此对隔离类产品又提出此类问题。对于热电偶及微小信号处理不光要增加一些降噪和滤除噪音手段外,还应选取用高精度、高稳定性的差分电路。 另外要保证整个信号传输精度对隔离类产品的自身转换,传输精度也有很高要求,包括产品本身稳定性,受外界干扰的影响,环境温度变化的影响,及信号的分辨率等诸多因素。 总之,在采用此类产品时,应从多方面综合考虑,不要让劣质隔离类产品成为你庞大系统中最薄弱的一个环节。

三电平逆变器的分析与控制

三电平逆变器的分析与控制 薄保中 苏彦民 西安交通大学 摘要:三电平逆变器在中压大功率场合应用很广泛。由于中点电位波动等问题使三电平逆变器的控制较复杂。文章分析了空间矢量对中点电位波动的影响,仿真结果说明采用空间电压矢量控制方法时,通过选择多余的小矢量来控制中点电位波动是一个有效的方法。 关键词:三电平逆变器 中点电位波动 控制方法 Analysis and Control of Three-level Inverters Bo Baozhong Su Yanmin Abstract:T hree-level inver ters have found w ide applications in mediu m-voltage h igh-pow er applications. Du e to neutral-point poten tial flu ctuation th e in verters are difficult to control.In the paper th e in fluence of s pace vectors on the neutral-point potential fluctuation is investigated.It is verified b y simulation r esu lts that selecting redu ndant sm all s pace vectors is an effective way of control n eutral-point potential fluctuation w hen usin g s pace vector PWM techniqu e. Keywords:th ree-level inverters neutral-point p otential flu ctuation control tech nique 1 前言 三电平逆变器1981年由A.Nabae等人率先提出[1],在牵引等领域采用GT O元件的中压变频器得到了广泛的应用。近年来出现了基于晶闸管机理的GCT(门极换流晶闸管Gate Commu-tated Thyrister)器件,例如IGCT(集成门极换流晶闸管)和对称SGCT(对称GCT),前者适用于多电平逆变器,后者适用于电流源逆变器,二者的性能均比相应的GT O元件性能大幅提高。目前国内中压大功率调速装置市场发展很快,大部分厂家采用IGBT器件的逆变单元串联多电平结构。而在中压大功率调速领域,三电平逆变器采用IGCT器件,电路结构简单,装置体积小,因此一般认为GT O以及IGCT器件的三电平逆变器更有发展前途。 中压电机变频驱动与低压电机相比,电机控制策略很相似,区别主要是由于PWM方法和多电平带来的逆变器的控制问题。三电平逆变器现有产品采用直接转矩控制和转子磁场定向矢量控制,不管采用哪种电动机控制方法,逆变器的可靠控制是其核心问题,本文分析了三电平逆变器的空间矢量对中点电位的影响,通过仿真结果对提出的控制方法进行了验证。 2 三电平逆变器主电路 三电平逆变器主电路如图1所示,三电平逆变器每一相桥臂4个开关元件有3种正常的开关模式,以X相为例,S x1和S x2导通时,X相输出正电平,S x3和S x4导通时,X相输出负电平,S x2和S x3导通时,X相输出零电平,故称之为三电平 逆变 图1 三电平逆变器主电路 14

铁电存储器的原理及应用

Ramtron推出首款2兆位串行F-RAM存储器FM25H20 类别:新品推荐发布时间:2008-4-17 阅读:879 Ramtron推出首款2兆位串行F-RAM存储器,采用8脚TDFN (5.0 x 6.0 mm) 封装。FM25H20采用先进的130纳米CMOS工艺生产,是高密度的非易失性F-RAM存储器,以低功耗操作,并备有高速串行外设接口(SPI)。该3V、2Mb串行F-RAM器件以最大的总线速度写入,具有几乎无限的耐用性,通过微型封装提供更大的数据采集能力,使系统设计人员能够在计量和打印机等高级应用中减少成本和板卡空间。 FM25H20是串行闪存的理想替代产品,用于要求低功耗和最小板卡空间的精密电子系统中,包括便携式医疗设备如助听器等,它们实际上是微型数据处理器,但受到空间有限及功耗低的限制。与闪存相比,F-RAM的优势包括大幅降低工作电流、写入速度更快、写入耐用性更比闪存高出多个数量级。 Ramtron 战略市场拓展经理Duncan Bennett 解释道:“对于那些需要在其新一代应用中提高数据采集能力,却不增加板卡空间的计量和打印机客户而言,这款2Mb 串行F-RAM 是自然的产品延伸。FM25H20以相同的小占位面积,为半兆位串行F-RAM 客户提供高达四倍的存储能力。除提升现有系统外,这种技术发展还推动F-RAM 进入多个需要低功耗存储器而空间严重受限的新兴市场,如便携式医疗设备。” FM25H20是256K x 8位非易失性存储器,以高达40MHz的总线速度进行读写操作,具有几乎无限的耐用性、10年的数据保存能力,以及低工作电流。该器件设有工业标准SPI接口,优化了F-RAM的高速写入能力。FM25H20还备有软件和硬件写保护功能,能避免意外的写入与数据损坏。 该2Mb串行F-RAM以低功耗工作,在40MHz下读/写操作的耗电低于10mA,待机状态下耗电为80μA (典型值),超低电流睡眠模式下耗电为3μA (典型值)。FM25H20与同等串行闪存器件接脚兼容,并且具备快速存取、高耐用性和低工作电流等特性,比较闪存更为优胜。该器件在整个工业温度范围内(-40℃至+85℃) 于2.7至3.6V电压下工作。 FM25H20以德州仪器|仪表公认的130纳米CMOS制造工艺为基础。在标准CMOS 130 n m逻辑工艺内嵌入非易失性F-RAM模块,仅使用了两个额外的掩模步骤。 供货 FM25H20现提供样品,并采用符合RoHs要求的8脚TDFN封装,与8脚SOIC封装器件占位面积兼容。

相关文档