文档库 最新最全的文档下载
当前位置:文档库 › 两级全差动运算放大器的设计

两级全差动运算放大器的设计

两级全差动运算放大器的设计
两级全差动运算放大器的设计

华中科技大学

IC课程设计

两级全差动运算放大器的设计

年级:

学号:

姓名:

专业:

指导老师:

二零一一年十二月

摘要

应用0.18umCMOS工艺,设计了一个放大倍数为86dB、单位增益带宽为360MHz、负载为1pF的两级全差动运算放大器。可以满足一定的高速度、高精度的指标。两级分别由一个差分的共源放大器和一个折叠式放大器组成。通过运用差动输出代替普通两级运算放大器的单端输出,从而提高了输入动态范围、抑制共模信号和噪声的能力等性能。因此,优于一些传统的两级运算放大器。

关键词:全差动运算放大器;共源放大器;折叠式放大器

Abstract

A fully differential operational amplifier with a DC-gain of 86d

B and a gain-bandwidth of 360 MHz has been implemented in a 0.18um CMOS process.It can satisfy the index of high speed and high precision.And the two level is respectively made up of a common-source amplifier and a Folding amplifier.Therefore,it is better than some of the traditional operational amplifier.

Keywords:fully differential operational amplifier; common-source amplifier; Folding amplifier

目录

摘要 (1)

Abstract (2)

1.引言 (4)

2. 两级全差动运算放大器设计要求 (4)

3. 电路分析与设计 (4)

3.1.第一级运算放大器设计 (5)

3.1.1第一级差模电压增益 (6)

3.1.2.共模电压输入范围 (6)

3.1.3.第一级增益带宽积GBW (7)

3.1.4.第一级MOS管宽长比 (7)

3.1.5.第一级仿真结果 (7)

3.2.第二级运算放大器设计 (8)

3.2.1.第二级差模电压增益 (9)

3.2.2.偏置电压与偏值电流 (9)

3.2.3.增益带宽积与负载电容 (9)

3.2.4.第二级MOS管宽长比 (9)

3.2.5.第二级仿真结果 (10)

3.3.两级联仿 (10)

3.3.1.差分压摆率 (11)

3.3.2.静态功耗 (11)

3.3.3.等效输入参考噪声 (11)

3.3.4.相角裕度 (12)

3.3.5.两级联仿结果 (13)

4. 结论 (13)

致谢 (14)

参考文献 (14)

心得体会 (15)

1.引言

随着模拟集成电路技术的发展,高速、高精度运算放大器得到广泛应用。全差分运算放大器在输入动态范围、抑制共模信号和噪声的能力等方面,较单端输出运放有很大优势,成为应用很广的电路单元。另外,差动输出时的输出电压信号幅度比单端输出时增大一倍,这对低电源电压供电的现代CMOS 电路尤为重要,因为这可以扩大输出信号的动态范围。因此,本文讨论并设计了满足一定要求的差动输入——差动输出(即全差动)运算放大器。

2.两级全差动运算放大器设计要求

根据性能指标的要求,选择合适的放大器类型,采用0.18um CMOS 工艺,设计一个两级运算放大器性能指标如下:

3.电路分析与设计

首先,可以对典型的差动输入——差动输出运算放大器进行分析,通常运算放大器由差分输入级、高增益放大级、相位补偿电路、偏置电路等各个部分组成。这些部分在电路工作的时候都起到了不同的功能。下面介绍一下全差动运算放大器各功能模块的作用。

电源电压: 1.8V 第一级增益: ≥20dB 第一级GBW: ≥500MHz 两级增益: ≥80dB 相位裕度: ≥60o 差分压摆率: ≥200V/us 等效输入参考噪声:

200nV/

Hz

@1MHz

负载电容: ≤1pF 静态功耗:

尽可能小

典型的全差分运算放大器可以由以下四个部分组成:

V

+

in

V +

out V

-

in

V

-o u t

输入级采用差动放大器,可以提高运放的共模抑制比,从而改善运放的抗噪声能力和失调性能。高增益放大级要求提供足够高的电压增益和大的输出电压摆幅。差动输出具有更好的抑制共模信号和噪声的能力,同时使输出电压信号幅度增加了一倍。偏置电路给各级放大器提供合适的偏置电压或偏置电流,要求这些偏置电压或偏置电流尽可能不随电源电压、工艺参数和温度而变化。为了保证运放在负反馈状态下能够稳定工作,需要加入相位补偿电路(通常加在高增益放大级)。但在实际运放的结构划分可能并没有那么明确。因此,我们最终还是要的运放的整体性能。

3.1.第一级运算放大器设计

首先,可以将第一级设计为共源共栅差动输入,电路图如下:

图1 第一级放大电路

差分

输入级 高增益 放大级 相位补偿电路

偏置 电路

由第一级放大电路,可以推算出:

()r

r

g

A

dsn dsp

mp

v 1

1

//

-

=

又因为,

()

I V

V

C g

D

TH

GS

ox

ds

L

W λ

λμ≈-=

2

2

1

I

g

r

D

ds

ds

λ

1

1

=

因此,

()

dB n p

Dp mp v I

g A 201

21

2

1≥???

?

?

?+-=λλ 3.1.2.共模电压输入范围 已知电源电压V

dd

=1.8V ,并且只有当栅源电压V gs 大于开启电压V T ,且

V

V

V

T

gs

ds

-≥时,场效应管才能工作于饱和区。

因此,

V

V

v

v

v

v

v v v gsip

dsp dd

th

dsn 1.17.02

max 1

min

=-

-

=

=+

=

所以共模电压输入范围为v v v cm max min <<,取v cm =0.9V 。

要求第一级放大器的增益带宽为GBW=500MHz ,我们取负载电容为c L =0.4pf,根据公式:

c

g

L

mp

GBW π

2=

得到10

3

26.1-?≈g

mp

。因此,再根据公式:

v v

I g

th

ds

D

m

-=

2

得到通过输入管的电流为A I D μ126=,所以A I Mp μ2522=。 再根据公式:

()

2

2

1V

V

C I

TH

GS

ox

D

L

W -=

μ

得到()

2.2522

≈-=?

??

??V

V C I TH

GS ox D mip L W μ

3.1.

4.第一级MOS 管宽长比

通过运用Hspice 仿真,并经过多次地修改各个MOS 管的宽长比,最终得到各宽长比为:

3.1.5.第一级仿真结果 在设置参数如下时,

fF

V

A

I V c

V

V L

dd

cm 3508.11809.0====μ

可以得到第一级的波特图。从图上可以看到第一级的增益和增益带宽积为:

MHz

GBW dB

dB A

v 50020301

>>≈

因此,满足第一级的设计要求。

MOS 管 W/m L/m Mn1、Mn2 5.645u 180n Mipp 、Mipn

700u 180n Mp2 900u 1u Mp1

100u

1u

图2

3.2.第二级运算放大器设计

首先,把第二级运算放大器的电路图画出来,如下图:

图3.第二级放大电路

3.2.1.第二级差模电压增益

由第二级放大电路图,可以得到第二级差模电压增益为

()[](){}r r g r

r

r g

g

R G A

p p mp p p mp o v 1

3

3

1

min

3

3

min

222

////

-

=-=

因为两级放大后的总增益要大于80dB ,又知道第一级差模电压增益dB

A

v 301

≈。

因此,第二级差模电压增益B 502d A v ≥。 3.2.2.偏置电压与偏值电流

由第二级放大的电路图,因为Vdd=1.8V ,输入管与共源共栅管并联,我们假设每个管子平均分压为0.6V ,那么可以简单地估算出管子Mp1、Mp3、Mn1它们的偏置电压分别为V V b 8.02≈,V V b 5.03≈,V V

b 3.14

≈。

假设Mn1管提供的偏置电流为Iss ,它为输入管与共源共栅管提供电流,提供给Mp1管的电流为I1,提供给Mp3的电流为I2,那么,212

I I I ss

+=。因此,

折叠结构的运算放大器一般消耗更大的功耗。我们在本设计中取偏置电流为10uA 。

3.2.3.增益带宽积与负载电容

由于第一级的增益带宽积为500MHz ,第二级的增益带宽积可以稍小于第一级的增益带宽积。由公式C

g

c

p

GBW π

2min =

,其中C c 为负载电容。

所以

fF C

g

C

c

p

c

4010

4214

min =?≈≥

3.2.

4.第二级MOS 管宽长比

通过运用Hspice 仿真,并经过多次地修改各个MOS 管的宽长比,最终得到各宽长比为:

MOS 管 W/m L/m Mn1、Mn2 400n 1u Mn3、Mn4 800n 400n Mn5、Mn6 3u 280n Mp1、Mp2 800n 300n Mp3、Mp4 5.38u 300n Minp 、Minn

2u 300n

3.2.5.第二级仿真结果 把参数设置如下

fF

A I V

V

V

V C

V

V V

V c

b b b dd 80103.15.08.08.14

3

2

======μ

进行仿真得到如图结果。

我们可以看到第二级的差模电压增益为56dB,满足

dB

dB A

v 50562

>

=

图4

3.3.两级联仿

把第一级放大和第二级放大电路串联起来,得到两级联仿的电路图如下:

图5.两级联仿电路图

3.3.1.差分压摆率

差分压摆率,即转换速率,是当放大器在大信号输入时,输出电流的最大驱动能力,定义为

C

I

d d C

C

t

v SR out

max max

=

=

利用上面的公式可以得到,

第一级的转换速率: C

I Mp SR 1

021=

,其中C 1为第一级放大器的负载电容,它实际上是管子寄生电容

的总和。

第二级的转化速率: ()

C

C

I

L

c

Mp SR +=

1

22,其中C c 为补偿电容,C L 为负载电容。

所以,放大器的转换速率为

()21,min SR SR SR =

因此,放大器的转换速率s V SR μ/200≥。

3.3.2.静态功耗

运算放大器的静态功耗为I P V dd

?=。其中I 为静态电流。如果静态功耗确

定下来了,那么就可以确定整个电路的工作电流。因为设计要求要使静态功耗尽

可能地小,又因为V V

dd

8.1=已经确定。因此,要使静态功耗尽可能地小,可以

采取源极反偏法、双阈值法、多阈值法或变阈值法。 3.3.3.等效输入参考噪声

我们知道每一个

MOS 管都有一个可以等效到栅端的输入参考噪声,如图所示。

图6.MOS 管的噪声来源和等效输入参考噪声

所以,它的等效输入参考噪声可以写成

f

WL kT

C

K g

v

ox

f

m

in

n 13242,?

+

=

式中右边的第一项表示由于沟道电阻产生的热噪声在输入端的表现,第二项表示MOS 管的闪烁噪声。

由于第二级的噪声要除以第一级的增益才反映到输入端,因此会比较小,所以可以忽略不计。因此,整个电路的输入端噪声主要来自于第一级。所以,整个电路的输入端的等效参考噪声可以表示为

()()g

g C K

C K

g g g v

mipn

mn ox

mn f

ox

mipn f

mipn mn mipn

in

n f

WL f

WL kT 22010101

2,121223223224?

?

?

+?

?

+???

?

?

??

?

+?=

3.3.

4.相角裕度

直接两级联仿的波特图如下,可以明确看到相角裕度出现了问题,因此,针

对此问题可以利用电容来补偿。

因此,将添加两个补偿电容:fF C c 200=

将补偿电容接入后得到的仿真电路图为

3.3.5.两级联仿结果

因为设计要求要使负载电容小于1pF,因此,在做两级联仿时,将负载电容C L设为1pF。因此,满足设计要求。

通过运用Hspice仿真,可以得到最后的仿真波特图如下:

由上图可以得到,两级联仿的增益为86dB,相角裕度为83.6°,GBW=360MHz,达到设计要求。

4.结论

通过修改各个管子的宽长比以及添加相位补偿电路,最后使第一级放大器的差模电压增益达到了30dB,增益带宽积超过了500MHz;使第二级放大器的差模电压增益达到了56dB;两级联仿时,整个电路的差模电压增益为86dB,相角裕度为83.6°,GBW=360MHz,负载电容为1pF。因此,达到了设计的要求。同时,也可以看出来两级全差动运算放大器比普通的两级运算放大器的电压增益高许多,这也是使用较为广泛的原因之一。但是,在降低静态功耗上还是出现了一些问题可以再做优化。

致谢

在本文即将完成之际,谨此向我的助教表示衷心的感谢!在做课设期间,我们一共有三次答疑的机会,但因为有事而错过了第一次答疑。在后面的两次答疑中,我们的助教仔细耐心地给我们讲解如何使用Hspice,如何用Hspice编写网表。同时,在此期间助教也给了我们很多有用的资料。这些资料对我们来说非常重要,它不仅讲了编写网表的一些语法,还提供了一些例子。在对这些资料的自学和研究中慢慢地学会了。因此,我要感谢助教!

其次,我要感谢我的队友,他们两个也非常支持我的工作。每次我叫他们去答疑,他们都非常乐意。同时,在我们讨论的时候,他俩也比较积极。

最后,我要感谢帮助过我的所有的老师和同学!

参考文献

[1].何乐年,王忆,模拟集成电路设计与仿真[M],北京:科学出版社,2008

[2].魏廷存,陈莹梅,胡正飞,Analog CMOS IC Design模拟CMOS集成电路设计[M],北京:清华大学出版社,2010.3

[3].岳松洁,全差分运算放大器设计[D],湖南大学,电子信息工程,2009

心得体会

刚开始的时候,我感觉IC课设是一件非常难的事。特别是知道自己抽到的题是模电的时候,我心中完全没底。因为之前只用过verilog编程做数电的设计,而从来没有接触过Hspice,也不知道怎么写网表。因此,刚拿到题的那天下午,我就连忙在网上查找资料,但是收获不是很大,没找到多少有用的资料。主要原因是对这方面不是很了解,找资料的时候也不知道找哪方面的。在第二天,我又跑到图书馆去借了两本有关两级全差动运算放大器设计的书,还好在后面的学习中这两本书还是起到了非常大的作用。

本来就不怎么懂得我又因为有事错过了第一次答疑,因而前一段时间基本上没怎么做,完全是在盲目地找资料,盲目地学习。因此,浪费了很多时间。第二次答疑的时候,我们组都去了,助教逯召静给我们几个抽到第八题的同学讲了讲怎么使用Hspice这个软件以及如何编写网表,同时也给我们了些资料让我们自学。因为我们第八题采用的是0.18umCMOS工艺,因此,助教也把0.18um的一个库文件给了我们,叫我们先自己试着编写一下网表。在给我们的资料中,有一份教我们如何编写Hspice网表的资料非常有用。在编写网表之前,我先看了那份电子资料,上面讲的很仔细,对我的帮助很大。也全靠这份资料我才懂得了如何去写网表。经过一次大以后,再加上自己的学习感觉收获很大。

在最后一次答疑时,助教又给我们演示了如何运用Hspice,如何编写网表来做分析,并且又给我们了些资料,也给我们了一个例子。通过对这些资料了研究,最后终于明白了,也感觉突然明朗了起来。原来编写网表是一件非常简单容易的事情,当然后面的调整宽长比、添加相位补偿电路等程序也就很轻松的。总结出一点就是只要肯花时间肯努力,没有解决不了的问题。

其实,最让人头痛的是计算,比如说差分压摆率以及等效输入参考噪声等等,因为这些以前接触的不多,不是很熟悉,因而感觉很头大。但是,通过查找资料还是把它们的计算公式推导出来了。

总的来说,这次IC课设我收获很多,不仅学到新的知识,让自己的视野更加广阔了,还在这个过程中提高了自学和独立研究的能力。

CMOS二级运算放大器设计

CMOS二级运算放大器设计 (东南大学集成电路学院) 一.运算放大器概述 运算放大器是一个能将两个输入电压之差放大并输出的集成电路。运算放大器是模拟电子技术中最常见的电路,在某种程度上,可以把它看成一个类似于BJT 或FET 的电子器件。它是许多模拟系统和混合信号系统中的重要组成部分。 它的主要参数包括:开环增益、单位增益带宽、相位阈度、输入阻抗、输入偏流、失调电压、漂移、噪声、输入共模与差模范围、输出驱动能力、建立时间与压摆率、CMRR、PSRR以及功耗等。 二.设计目标 1.电路结构 最基本的COMS二级密勒补偿运算跨导放大器的结构如图所示。主要包括四部分:第一级输入级放大电路、第二级放大电路、偏置电路和相位补偿电路。 图两级运放电路图 2.电路描述 电路由两级放大器组成,M1~M4构成有源负载的差分放大器,M5提供该放大器的工作电流。M6、M7管构成共源放大电路,作为运放的输出级。M6 提供给M7 的工作电流。M8~M13组成的偏置电路,提供整个放大器的工作电流。相位补偿电路由M14和Cc构成。M14工作在线性区,可等效为一个电阻,与电容Cc一起跨接在第二级输入输出之间,构成RC密勒补偿。 3.设计指标 两级运放的相关设计指标如表1。

表1 两级运放设计指标 三.电路设计 第一级的电压增益: )||(422111o o m m r r g R G A == 第二级电压增益: )||(766222o o m m r r g R G A =-= 所以直流开环电压增益: )||)(||(76426221o o o o m m o r r r r g g A A A -== 单位增益带宽: c m O C g A GBW π2f 1 d == 偏置电流: 2 13 122121)/()/()/(2??? ? ??-=L W L W R L W KP I B n B 根据系统失调电压: 7 5 6463)/()/(21)/()/()/()/(L W L W L W L W L W L W == 转换速率: ? ?? ???-=L DS DS C DS C I I C I SR 575,min 相位补偿: 12.1)/()/()/()/(1 61311 146 6+== m m m C g g L W L W L W L W g R

采用折叠式结构的两级全差分运算放大器的设计

目录 1. 设计指标 (1) 2. 运算放大器主体结构的选择 (1) 3. 共模反馈电路(CMFB)的选择 (1) 4. 运算放大器设计策略 (2) 5. 手工设计过程 (2) 5.1 运算放大器参数的确定 (2) 5.1.1 补偿电容Cc和调零电阻的确定 (2) 5.1.2 确定输入级尾电流I0的大小和M0的宽长比 (3) 5.1.3 确定M1和M2的宽长比 (3) 5.1.4确定M5、M6的宽长比 (3) 5.1.5 确定M7、M8、M9和M10宽长比 (3) 5.1.6 确定M3和M4宽长比 (3) 5.1.7 确定M11、M12、M13和M14的宽长比 (4) 5.1.8 确定偏置电压 (4) 5.2 CMFB参数的确定 (4) 6. HSPICE仿真 (5) 6.1 直流参数仿真 (5) 6.1.1共模输入电压范围(ICMR) (5) 6.1.2 输出电压范围测试 (6) 6.2 交流参数仿真 (6) 6.2.1 开环增益、增益带宽积、相位裕度、增益裕度的仿真 (6) 6.2.2 共模抑制比(CMRR)的仿真 (7) 6.2.3电源抑制比(PSRR)的仿真 (8) 6.2.4输出阻抗仿真 (9) 6.3瞬态参数仿真 (10) 6.3.1 转换速率(SR) (10) 6.3.2 输入正弦信号的仿真 (11) 7. 设计总结 (11) 附录(整体电路的网表文件) (12)

采用折叠式结构的两级全差分运算放大器的设计 1. 设计指标 5000/ 2.5 2.551010/21~22v DD SS L out dias A V V V V V V GB MHz C pF SR V s V V ICMR V P mW μ>==?== >=±=?≤的范围 2. 运算放大器主体结构的选择 图1 折叠式共源共栅两级运算放大器 运算放大器有很多种结构,按照不同的标准有不同的分类。从电路结构来看, 有套筒 式共源共栅、折叠式共源共栅、增益提高式和一般的两级运算放大器等。本设计采用的是如图1所示的折叠式共源共栅两级运算放大器,采用折叠式结构可以获得很高的共模输入电压范围,与套筒式的结构相比,可以获得更大的输出电压摆幅。 由于折叠式共源共栅放大器输出电压增益没有套筒式结构电压增益那么高,因此为了得到更高的增益,本设计采用了两级运放结构,第一级由M0-M10构成折叠式共源共栅结构,第二级由M11-M14构成共源级结构,既可以提高电压的增益,又可以获得比第一级更高的输出电压摆幅。 为了保证运放在闭环状态下能稳定的工作,本设计通过米勒补偿电容Cc 和调零电阻Rz 对运放进行补偿,提高相位裕量! 另外,本文设计的是全差分运算放大器,与单端输出的运算放大器相比较,可以获得更高的共模抑制比,避免镜像极点及输出电压摆幅。 3. 共模反馈电路(CMFB )的选择 由于采用的是高增益的全差分结构,输出共模电平对器件的特性和失配相当敏感,而且不能通过差动反馈来达到稳定,因此,必须增加共模反馈电路(CMFB )来检测两个输出端

差分运算放大器基本知识

一.差分信号的特点: 图1 差分信号 1.差分信号是一对幅度相同,相位相反的信号。差分信号会以一个共模信号 V ocm 为中心,如图1所示。差分信号包含差模信号和公模信号两个部分, 差模与公模的定义分别为:Vdiff=(V out+-V out- )/2,Vocm=(V out+ +V out- )/2。 2.差分信号的摆幅是单端信号的两倍。如图1,绿色表示的是单端信号的摆 幅,而蓝色表示的是差分信号的摆幅。所以在同样电源电压供电条件下,使用差分信号增大了系统的动态范围。 3.差分信号可以抑制共模噪声,提高系统的信噪比。In a differential system, keeping the transport wires as close as possible to one another makes the noise coupled into the conductors appear as a common-mode voltage. Noise that is common to the power supplies will also appear as a common-mode voltage. Since the differential amplifier rejects common-mode voltages, the system is more immune to external noise. 4.差分信号可以抑制偶次谐波,提高系统的总谐波失真性能。 Differential systems provide increased immunity to external noise, reduced even-order harmonics, and twice the dynamic range when compared to signal-ended system. 二.分析差分放大器电路 图2.差分放大器电路分析图

折叠式共源共栅运算放大器设计

折叠式共源共栅运算放大器

目录 一.摘要 (2) 二.电路设计指标 (3) 三.电路结构 (3) 四.手工计算 (7) 五.仿真验证 (10) 六.结论 (12) 七.收获与感悟 (12) 八.参考文献 (13)

摘要 运算放大器在现代科技的各个领域得到了广泛的应用,针对不同的应用领域出现了不同类型的运放。本文完成了一个由pmos作输入的放大器。vdd为3.3v,负载电容为1pf,增益Av 大于80dB,带宽GBM大于100MHz的放大器。输出级采用共源级结构以提高输出摆幅及驱动能力,为达到较宽的带宽,本文详细分析推导了电路所存在的极零点,共源共栅镜像电流源产生Ibias。选择P沟道晶体管的宽度和长度,使得它们的m g 和ds r 与N沟道晶体管的情况相匹配。 关键字:运算放大器、共源共栅级、极点 Abstract Operation amplifiers are widely used in many field s nowadays。All kinds of differential operation amplifiers appear f6r special application.One basic cell of which is fully differential operation amplifiers is designed in the thesis.Power Supply 3.3v,load capacitor 1pf,Gain>80dB,GBM>100MHz。The output stage is common source amplifier for getting proper DC operation point,for the purpose of wider bandwidth,we carefully analysis the pole and zero in the circuit ,use common source common gate as current Ibias。Choose pmos w/l to make their mg and dsr which can match with nmos。 Kay words:Operation amplifiers、common source common gate、pole

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下

1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的差动放大器 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 100.43-? 双出 A m 100.43-? 单出 A m 100.43-? 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 109.83-? 双出 A m 109.83-? 单出 A m 100.93-? 分析内容 u A i R o R CMR K 空载 -189 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω 分析内容 u A i R o R CMR K 空载 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

差动放大器的原理及四种连接方法_下_

电子报/2011年/5月/22日/第010版 电子职校 差动放大器的原理及四种连接方法(下) 江苏顾振远 (接上期) 3.晶体管恒流源电路 用差动放大器抑制零点漂移的方法就是“加入”Re,如上所述Re愈大,克服零点漂移的效果愈好,但Re愈大,需要的电源Ee愈高。我们一方面希望Re大,一方面又希望Ee低一些。在这种情况下,可使用晶体管来代替Re,这种电路称为晶体管恒流源差动放大电路,如图3所示。 图3中R1和R2是分压电阻,为T3提供正向偏置,以固定基极电位Ub3。当温度升高使Ic1、Ic2增加时,Re3两端的电压也要增加,但由于Ub3为固定值,Ube3就要下降,Ib3随之减小,因此抑制了Ic3的上升,保持了Ic3的不变。则Ic1、Ic2就不能增加,从而使管子的输出uol和u02几乎不变。 4.共模反馈型 如果一级差动放大倍数不够,就得采用多级进行放大,图4是一个高放大倍数放大器的前两级,为了提高共模抑制比和减小输出的漂移,引进了共模反馈。 当输入端有共模信号时(输入端的漂移或外界共模干扰),Ic1、Ic2将同时变化。如果Ic1、Ic2都减小了,则第二级T4、T5管的Ie将增大,Ub3随之升高。如果用Ub3控制T3的基极,则Ic3将增加一些,从而Ic1、Id2回升,使Ic1、Ic2的变化趋势被削弱,这样每个管子输出电压的漂移也就小了。 以上各种方法,在良好工艺措施保证下,差动电路的零点漂移可以作到10μV/℃以下。 5.差动电路四种连接方法的比较 先将差动电路几种接法的主要性能列成附表。从附表上可以看出一些规律: (1)凡是双端输出,放大倍数基本上和单管一样。单端输出时放大倍数为单管一半。 (2)输出电阻在双端输出时为2RC,单端输出时为RC。 (3)输入电阻无论在双端输入还是单端输入时,均为2(Rbl+rbe)。(完)

全差分套筒式运算放大器设计

全差分套筒式运算放大器设计 1、设计内容 本设计基于经典的全差分套筒式结构设计了一个高增益运算放大器,采用镜像电流源作为偏置。为了获得更大的输出摆幅及差模增益,电路采用了共模反馈及二级放大电路。 本设计所用到的器件均采用SMIC 0.18μm的工艺库。 2、设计要求及工艺参数 本设计要实现的各项指标和相关的工艺参数如表1和表2所示:

3、放大器设计 3.1 全差分套筒式放大器拓扑结构与实际电路 图1 全差分套筒式放大器拓扑结构 图2 最终电路图

3.2 设计过程 在图1中,Mb1和M9组成的恒流源为差放提供恒流源偏置,且M1,M2完全一样,即两管子所有参数均相同。Mb2、M7和M8构成了镜像电流源,M5、M6和M7、M8构成了共源共栅电流源,M1、M2、M3、M4构成了共源共栅结构,可以显著提高输出阻抗,提高放大倍数(把M3的输出阻抗提高至原来的(gm3 + gmb3)ro2倍。但同时降低了输出电压摆幅。为了提高摆幅,控制增益,在套筒式差分放大器输出端增加二级放大。 本设计中功率上限为10mW,可以给一级放大电路分配3mA的电流。设计要求摆幅为3V,所以图1中M1、M3、M5、M9的过驱动电压之和不大于1.8-3/2=0.3V。我们可以平均分配每个管子的过驱动电压。根据漏电计算流公式(1)(考虑沟道长度调制效应),可以计算出每个管子的宽长比。 I D=1 2μn C ox W L (V GS?V TH)2(1+λV DS)(1) 其中,C ox等于ε/t ox,μn和t ox可以从工艺库中查找。 4、仿真结果 经过调试优化之后的仿真结果如以下各图所示: 图3 增益及相位裕度 从图中可以看出,本设计的低频增益达到了74.25dB,达到了预期要求。3dB 带宽为35kHz左右,比较小,可见设计还有改进的余地。 当CL为2pF时,相位裕度: PM=180°+∠βH(ω)=180°?125.5°=54.5° 电源电压为1.8V时,输出摆幅如下图所示,达到了3V。

实验3.7 差动放大器

108 实验3.7 差动放大器 一、实验目的 (1)理解差动放大器的工作原理,电路特点和抑制零漂的方法。 (2)掌握差动放大器的零点调整及静态工作点的测试方法。 (3)掌握差动放大器的差模放大倍数、共模放大倍数和共模抑制比的测量方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 差动放大器实验电路如图3.7.1所示,其中晶体管T 1、T 2称为差分对管,与电阻R C1、R C2及电位器R W 共同组成差动放大的基本电路。其中R C1=R C2,R W 为调零电位器,若电路完全对称,静态时R W 应处为中点位置,若电路不对称,调节R W ,使U o 两端静态时的电位相等(U o = 0)。 晶体管T 3、D 1与电阻R e3和R 2组成恒流源电路,可以为差动放大器提供恒定电流I 0。两个R 1为均衡电阻,给差动放大器提供对称的差模输入信号。由于电路参数完全对称,当外界温度变化,或电源电压波动时,对电路的影响都是一样的,因此差动放大器能有效的抑制零点漂移。 1、差动放大器的输入输出方式,如图3.7.1所示电路。 根据输入信号和输出信号的不同方式有四种连接方式。 (1)双端输入—双端输出:输入信号U i 加在U i1、U i2两端:U i =U i1-U i2;输出U o 取自U o1、U o2两端:U o =U o1-U o2。 (2)双端输入—单端输出:输入信号U i 加在U i1、U i2两端:U i =U i1-U i2;输出U o 图3.7.1 差动放大器实验电路

109 取自U o1或U o2到地的信号:U o =U o1或U o =U o2。 (3)单端输入—双端输出:输入信号加在U i1上,U i2接地(或U i1接地而信号加在U i2上);输出U o 取自U o1、U o2两端:U o =U o1-U o2。 (4)单端输入—单端输出:输入信号加在U i1上,U i2接地(或U i1接地而信号加在U i2上);输出U o 取自U o1或U o2到地的信号:U o =U o1或U o =U o2。 连接方式不同,电路的性能参数有所不同。 2、静态工作点的计算 具有恒流源的差动放大器静态时(U i = 0),由恒流源电路得 e3 BE D 0R U U I -= (3-7-1) 其中U D 为稳压管D 1的稳压值,U BE 为发射结压降。 差动放大器中的T 1、T 2参数对称,则 I C1 = I C2 = I 0 /2 (3-7-2) 2 C1 0CC C1C1CC C2C1R I U R I U U U - -=== (3-7-3) 由(3-7-3)式可知,具有恒流源的差动放大器的工作点,主要由恒流源I 0决定。 3、差动放大器的主要指标计算 (1)差模放大倍数A ud 由分析可知,差动放大器在单端输入或双端输入方式不同时,它们的差模电压增益相同。但是对双端输出和单端输出方式的不同,差模电压增益不同。在此仅分析双端输入情形,单端输入情形可自行分析。 差动放大器的两个输入端分别输入两个大小相等,极性相反的差模信号U id1、U id2 (U id1=-U id2),差动放大器的差模输入信号U id = U id1-U id2。 双端输入—双端输出时,差动放大器的差模电压增益为 (3-7-4) 式中 L L C ||2 R R R '=。A u1为单管电压增益。 双端输入—单端输出时,差模电压增益为: od1od1L ud1u1W id id1b be 1222((1))2 U U R A A U U R r ββ'≈ === +++ (3-7-5) 式中L C L ||R R R '=。 (2)共模放大倍数A uC 差动放大器的两个输入端同时加上两个大小相等,极性相同的共模信号,即 od od1od2L ud u1W id id1id2 b be (1)2 U U U R A A R U U U R r ββ'-= === -+++

实验五 差动放大器

南昌大学实验报告 实验五 差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。 它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。R E 为两管共用的发射极电阻, 它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1 差动放大器实验电路 1、静态工作点的估算 典型电路 Ic1=Ic2=1/2IE 恒流源电路 Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (121r R βR △U △U A +++- == 单端输出 d i C1d1A 2 1△U △U A ==

d i C2d2A 21 △U △U A -== 当输入共模信号时,若为单端输出,则有 3、 共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 或 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、 典型差动放大器性能测试 按图5-1连接实验电路,开关K 拨向左边构成典型差动放大器。 1) 测量静态工作点 2) ①调节放大器零点 信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压U O ,调节调零电位器R P ,使U O =0。 调节要仔细,力求准确。 E C E P be B C i C1C2C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-====d c A CMRR A () =d c A CMRR 20Log dB A

几个常用经典差动放大器应用电路详解资料

几个常用经典差动放大器应用电路详解 成德广营浏览数:1507发布日期:2016-10-10 10:48 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。关键词:CMRR差动放大器差分放大器 简介 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。 大学里的电子学课程说明了理想运算放大器的应用,包括反相和同相放大器,然后将它们进行组合,构建差动放大器。图 1 所示的经典四电阻差动放大器非常有用,教科书和讲座 40 多年来一直在介绍该器件。 图 1. 经典差动放大器 该放大器的传递函数为: 若R1 = R3 且R2 = R4,则公式 1 简化为:

这种简化可以在教科书中看到,但现实中无法这样做,因为电阻永远不可能完全相等。此外,基本电路在其他方面的改变可产生意想不到的行为。下列示例虽经过简化以显示出问题的本质,但来源于实际的应用问题。 CMRR 差动放大器的一项重要功能是抑制两路输入的共模信号。如图1 所示,假设V2 为 5 V,V1 为 3 V,则4V为共模输入。V2 比共模电压高 1 V,而V1 低 1 V。二者之差为 2 V,因此R2/R1的“理想”增益施加于2 V。如果电阻非理想,则共模电压的一部分将被差动放大器放大,并作为V1 和V2 之间的有效电压差出现在VOUT ,无法与真实信号相区别。差动放大器抑制这一部分电压的能力称为共模抑制(CMR)。该参数可以表示为比率的形式(CMRR),也可以转换为分贝(dB)。 在1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定运算放大器为理想运算放大器,则共模抑制可以表示为: 其中,Ad为差动放大器的增益, t 为电阻容差。因此,在单位增益和 1%电阻情况下,CMRR 等于 50 V/V(或约为 34 dB);在 0.1%电阻情况下,CMRR等于 500 V/V(或约为 54 dB)-- 甚至假定运算放大器为理想器件,具有无限的共模抑制能力。若运算放大器的共模抑制能力足够高,则总CMRR受限于电阻匹配。某些低成本运算放大器具有 60 dB至 70 dB的最小CMRR,使计算更为复杂。 低容差电阻 第一个次优设计如图 2 所示。该设计为采用OP291 的低端电流检测应用。R1 至R4 为分立式 0.5%电阻。由Pallás-Areny文章中的公式可知,最佳CMR为 64 dB.幸运的是,共模电压离接地很近,因此CMR并非该应用中主要误差源。具有 1%容差的电流检测电阻会产生 1%误差,但该初始容差可以校准或调整。然而,由于工作范围超过 80°C,因此必须考虑电阻的温度系数。

全差分运算放大器设计

全差分运算放大器设计 岳生生(0126) 一、设计指标 以上华CMOS 工艺设计一个全差分运算放大器,设计指标如下: 直流增益:>80dB 单位增益带宽:>50MHz 负载电容:=5pF 相位裕量:>60度 增益裕量:>12dB 差分压摆率:>200V/us 共模电压:(VDD=5V) 差分输入摆幅:>±4V 运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的 ,DSAT N V 之和小于,输出端的所有PMOS 管的 ,DSAT P V 之和也必须小于。对于单 级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 性能指标分析 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 1 1 1 3 5 7 1 1 3 5 1 3 5 7 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=- +P 第二级增益9 2 2 9 11 2 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=-+P 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r == ≥++ 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR : 1)、输入级: max 1max |2| Cc out DS C C d SR dt I v I C C = = = 单位增益带宽1m u C g C ω= ,可以得到 1m C u g C ω =

差动放大电路实验

差动放大电路实验报告 严宇杰141242069 匡亚明学院 1.实验目的 (1)进一步熟悉差动放大器的工作原理; (2)掌握测量差动放大器的方法。 2.实验仪器 双踪示波器、信号发生器、数字多用表、交流毫伏表。 3.预习内容 (1)差动放大器的工作原理性能。 (2)根据图3.1画出单端输入、双端输出的差动放大器电路图。 4.实验内容 实验电路如图3.1。它是具有恒流源的差动放大电路。在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。若电路完全对称,对于差模信号,若Q1的集电极电流增加,则Q2的集电极电流一定减少,增加与减少之和为零,Q3 和R e3等效于短路,Q1,Q2的发射极等效于无负载,差模信号被放大。对于共模信号,若 Q1的集电极电流增加,则Q2的集电极电流一定增加,两者增加的量相等,Q1、Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模信号被衰减。从而使差动放大器有较强的抑制共模干扰的能力。调零电位器 R p用来调节T1,T2管的静态工作点,希望输入信号V i=0时使双端输出电压V o=0. 差动放大器常被用作前置放大器。前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。于是人们希望只放大差模信号,不放大共模

二级运算放大电路版图设计

1前言1 2二级运算放大器电路 1 2.1电路结构 1 2.2设计指标 2 3 Cadence仿真软件 3 3.1 schematic原理图绘制 3 3.2 生成测试电路 3 3.3 电路的仿真与分析 4 3.1.1直流仿真 4 3.1.2交流仿真 4 3.4 版图绘制 5 3.4.1差分对版图设计 6 3.4.2电流源版图设计 7 3.4.3负载MOS管版图设计 7 3.5 DRC & LVS版图验证 8 3.5.1 DRC验证 8 3.5.2 LVS验证 8 4结论 9 5参考文献 9

本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。。版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。 关键词:cadence仿真,设计指标,版图验证。 Abstract In this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one. Key words: cadence simulation, design index, layout verification.

差动放大电路与集成运算放大器 习题

第三章差动放大电路与集成运算放大器 3.1 选择填空 1.使用差动放大电路的目的是为了提高()。 A输入电阻B电压放大倍数C抑制零点漂移能力D电流放大倍数 2.差动放大器抑制零点漂移的效果取决于()。 A两个晶体管的静态工作点B两个晶体管的对称程度 C各个晶体管的零点漂移D两个晶体管的放大倍数 3.差模输入信号是两个输入信号的(),共模输入信号是两个输入信号的()。 A 和 B 差 C 比值 D 平均值 4.电路的差模放大倍数越大表示(),共模抑制比越大表示()。 A有用信号的放大倍数越大B共模信号的放大倍数越大 C抑制共模信号和温漂的能力越强 5.差动放大电路的作用是()。 A放大差模B放大共模C抑制共模D抑制共模,又放大差模 6.差动放大电路由双端输入变为单端输入,差模电压增益是()。 A增加一倍B为双端输入的1/2 C不变D不定 7.差动放大电路中当U I1=300mV,U I2=-200mV,分解为共模输入信号U IC=()mV,差模输入信号U ID=()mV。 A500 B100 C250 D50 8.在相同条件下,阻容耦合放大电路的零点漂移()。 A比直接耦合电路大B比直接耦合电路小C与直接耦合电路相同 9.差动放大电路由双端输出改为单端输出,共模抑制比K CMRR减小的原因是()。 A A UD不变,A UC增大 B A UD减小,A UC不变 C A UD减小,A UC增大 D A UD增大,A UC减小 3.2简答题 1.直接耦合放大电路能放大交流信号吗?直接耦合放大电路和阻容耦合放大电路各有什么优缺点? 2.什么叫零点漂移?产生零点漂移的主要原因是什么?如何抑制零点漂移?在阻容耦合放大电路中是否存在零点漂移? 3.有甲已二个直接耦合放大电路,甲电路的Au=100,乙电路的Au=50。当外界温度变化了20℃时,甲电路的输出电压漂移了10V,乙电路的输出电压漂移了6V,向哪个电路的温度漂移参数小?其数值是多少? 4.解释下列术语的含义:差模信号,共模信号,差模电压放大倍数,共模电压放大倍数,共模抑制比。 5.差动式放大电路为什么能抑制零点漂移?单端输出和双端输出时,它们抑制零点漂移的原理是否一样?为什么? 6.共模抑制比是如何定义的?为什么说共模抑制比越大电路抗共模干扰能力就越强?7.长尾电路中的公共射极电阻Re,它对差模信号和共模信号各有什么影响?用恒流源取代Re有什么好处? 8.集成运算放大器的内部电路一般由哪几个主要部分组成?各部分的作用是什么? 3.3双端输出的差动式放大电路如图3.1所示,已知Rc1= Rc2=3KΩ,Re=5.1KΩ,每个三极管的U BE=0.7V,β=50,r be=2kΩ,Rs1=Rs2=02.KΩ

全差分运算放大器设计说明

全差分运算放大器设计 岳生生(6) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的 ,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11135711 3 5 1 3 5 7 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=- +P 第二级增益 9 2 291129 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- +P 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r == ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

两级运算放大器

两级运算放大器实验报告 一、实验名称:两级运算放大器 二、实验目的: 1.熟悉掌握Orcad captureCIS的使用方法以及常见的仿真方法和参数设置。 2.利用Orcad captureCIS设计两级运算放大器,并完成要求功能。 3.掌握运算放大器中的增益、带宽、输出摆幅、压摆率、速率、噪声等各个参数之间的折中调试。 三、实验步骤: (一)参数要求: 1.电源电压VCC= 2.7V. 2.CL=10pF. 3.增益Ad>80dB. 4.增益带宽积GW>5M. 5.共模电压输入范围ICMR=1~2V. 6.共模抑制比CMRR>70dB. 7.输出电压摆幅>2V. 8.diss<1mW. 9.SR>10V/us (二)实验步骤及数据: (1)由参数要求,共模电压输入范围为1~2V,电源电压为2.7V,Pdiss<1mW,由这些参数以及相位余度要为60度,由相应的公式估算出来,电路如图所示: 如电路所示,为一个差分输入级与共源放大器组成,采用了密勒补偿,按照计算步骤确定各个元件参数之后,下边进行仿真验证与调试。 (2)交流仿真验证增益带宽是否满足,仿真结果如图所示:

如图结果,增益Av=82dB,增益带宽积GW=6.6M,相位裕度有42度,满足要求,并且还有一定的余量。 (3)交流仿真验证共模电压输入范围ICMR与共模抑制比CMRR是否满足要求,仿真电路如图所示: 1、在仿真验证CMRR之前,先做了一个增益随共模输入电压的变化曲线,大致了解共模电压输入范围,结果如图所示: 如图所示,增益在大于80dB时,共模电压输入范围为0.96V~2.66V,能达到要求,且还有余量。 2、现在仿真验证一下CMRR随共模电压的变化曲线,需要更改仿真电路图,更改的电路图如图所示:

半导体器件(二极管三极管场效应管差动放大电路集成运放)解读

半导体基本知识和 半导体器件(二极管、三极管、场效应管、集成运放) 一、选择题: 1、PN结外加正向电压时,其空间电荷区()。 A.不变 B.变宽 C.变窄 D.无法确定 2、PN结外反正向电压时,其空间电荷区()。 A.不变 B.变宽 C.变窄 D.无法确定 3、当环境温度升高时,二极管的反向饱和电流I s将增大,是因为此时PN结内部的() A. 多数载流子浓度增大 B.少数载流子浓度增大 C.多数载流子浓度减小 D.少数载流子浓度减小 4、PN结反向向偏置时,其内电场被()。 A.削弱 B.增强 C.不变 D.不确定 5、在绝对零度(0K)和没有外界激发时,本征半导体中( ) 载流子。 A.有 B.没有 C.少数 D.多数 6、集成运放的输入级采用差分放大电路是因为可以()。 A.减小温漂B. 增大放大倍数 C. 提高输入电阻 D. 减小输出电阻 7、以下所列器件中,()器件不是工作在反偏状态的。 A、光电二极管 B、发光二极管 C、变容二极管 D、稳压管 8、当晶体管工作在放大区时,()。 A. 发射结和集电结均反偏 B.发射结正偏,集电结反偏 C.发射结和集电结均正偏 D.发射结反偏,集电结正偏 9、稳压二极管稳压时,其工作在( ), A.正向导通区B.反向截止区C.反向击穿区 D.不确定 10、抑制温漂(零漂)最常用的方法是采用()电路。 A.差放 B.正弦 C.数字 D.功率放大 11、在某放大电路中,测得三极管三个电极的静态电位分别为0 V,-10 V,-9.3 V,则这只三极管是()。 A.NPN 型硅管B.NPN 型锗管Array C.PNP 型硅管 D.PNP 型锗管 12、某场效应管的转移特性如右图所示,该管为()。 A.P沟道增强型MOS管 B.P沟道结型场效应管 C.N沟道增强型MOS管 D.N沟道耗尽型MOS管 13、通用型集成运放的输入级采用差动放大电路,这是因为它的()。 A.输入电阻高 B.输出电阻低 C.共模抑制比大 D.电压放大倍数大 14、如右图所示复合管,已知V1的β1 = 30,V2的β2 = 50,则复合后的β约为()。

相关文档
相关文档 最新文档