文档库 最新最全的文档下载
当前位置:文档库 › 模态参数辨识方法——综述

模态参数辨识方法——综述

模态参数辨识方法——综述
模态参数辨识方法——综述

模态参数辨识方法综述

摘要:本文对模态分析和模态参数识别进行了综述,对当前识别方法的原理、识别精度及适用条件进行阐述和比较,提出环境激励下模态参数识别方法需解决的关键问题及模态分析在缺陷检测和结构优化中作用。

关键词:模态分析模态参数识别模态分析与缺陷检测结构工作模态

0引言

模态分析是将线性时不变系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,坐标变换的变换矩阵为振型矩阵,其每列即为各阶振型。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。振动模态是弹性结构固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内,各阶主要模态的特性,就可能预知结构在此频段内,在外部或内部各种振源作用下实际振动响应,而且一旦通过模态分析知道模态参数并给予验证,就可以把这些参数用于(重)设计过程,优化系统动态特性,或者研究把该结构连接到其他结构上时所产生的影响。模态分析的最终目标是识别出系统的模态参数,为结构系统的振动分析、振动故障诊断和预报、结构动力特性的优化设计提供依据。

解析模态分析可用有限元计算实现,而实验模态分析则是对结构进行可测可控的动力学激励,由激振力和响应的信号求得系统的频响函数矩阵,再在频域或转到时域采用多种识别方法求出模态参数,得到结构固有的动态特性,这些特性包括固有频率、振型和阻尼比等。有限元法是当前分析机械结构模态的主要方法,很多学者研究了单裂缝和多裂缝缺陷对不同结构动态特性的影响,但这些研究仅局限于出现缺陷结构的当前状态,考虑到缺陷在机械结构使用过程中的扩展,提出了模态分析与缺陷扩展理论相结合的方法分析缺陷的发展趋势,便于机械结构剩余寿命的评估,使已达到设计寿命的结构在失效前仍然发挥其功能,节约了经济成本。

一般模态识别方法是基于实验室条件下的频率响应函数进行的参数识别方法,它要求同时测得结构上的激励和响应信号。但是,在许多工程实际应用中,工作条件和实验室条件相差很大,对一些大型结构无法施加激励或施加激励费用很昂贵,因此要求识别结构在工作条件下的模态参数。工作模态参数识别方法与传统模态参数识别方法相比有如下特点:一、仅

根据结构在环境激励下的响应数据来识别结构的模态参数,无需对结构施加激励,激励是未知的,如无需对大桥、海洋结构、高层建筑等大型结构进行激励,仅需直接测取结构在风力、交通等环境激励下的响应数据就可以识别出结构的模态参数。该方法识别的模态参数符合实际工况及边界条件,能真实地反映结构在工作状态下的动力学特性,如高速旋转的设备在高速旋转的工况和静态时结构的模态参数有很大差别。二、该种识别方法不施加人工激励完全靠环境激励,节省了人工和设备费用,也避免了对结构可能产生的损伤问题。三、利用环境激励的实时响应数据识别结构参数,能够识别由于环境激励引起的模态参数变化。尽管传统的模态参数方法已在许多领域得到了广泛应用,但近年来,环境激励下模态参数识别方法得到了航天、航空、汽车及建筑领域的研究人员的极大关注,如美国国家实验室已将该方法用于高速汽轮机叶片在工作状态下固有频率和阻尼比的识别。总之,基于环境激励下响应的结构模态参数识别方法,正在受到工程界的重视。

1 环境激励下模态参数识别

对于环境激励下结构工作模态的研究经过几十年的研究,特别是近几年来,人们已经提出了多种环境激励下模态参数识别的方法。大致分类如下:按识别信号域分为:时域识别方法、频域识别方法、和联合时频域识别方法;按激励信号分为:平稳随机激励和非平稳随机激励有的方法假设环境激励为白噪声激励;按信号的测取方法分为:单输入多输出和多输入多输出;按识别方法特性分为:时间序列法、随机减量法、随机子空间法、模态函数分解法、峰值拾取法、频域分解法及联合时频方法。

环境振动模态分析从分析方式上来讲可分为频域方法和时域方法。频域识别方法是基于结构的各阶模态相互独立,并构成一个正交函数系的属性,将结构振动分解为结构模态分量的叠加。频域识别方法的基本手段是傅立叶变换。

峰值拾取法是根据频响函数在固有频率附近出现峰值的原理,用随机响应信号的功率谱代替频响函数。假定响应的功率谱峰值仅由一个模态确定,这样系统的固有频率由功率谱的峰值得到,用工作挠度曲线替代系统模态振型,但该方法不能识别密集模态。

频域分解法是峰值拾取法的延伸,克服了峰值拾取法的缺点,其主要思想是:对响应的功率谱进行奇异值分解,将功率谱分解为对应多模态的一组单自由度系统功率谱。频域分解法识别精度高,有一定的抗干扰能力。此外有人也提出将频响函数用各响应点的参考点间的互功率谱密度函数代替,根据互功率谱密度函数同模态参数之间的关系,单独利用响应数据求出模态参数[17]。

时间序列法是一种利用参数模型对有序的随机采样数据进行处理,进而求取模态参数的方法。具体的模型包括:AR(自回归模型)﹑MA(滑动平均模型)和ARMA(自回归滑动平均模型)。1969 年H. Akaile首次利用自回归滑动平均模型进行白噪声激励下的结构模态参数识别[18]。其中基于ARMA模型的识别方法,通过对输出的有序离散随机数据进行分析,提取蕴含在

输出数据中的系统固有特性,系统与激励间的相互关系,以及输入激励的能量信息。这种方法适用于产生观测数据的系统没有明确的定义或者系统的输入不可观测,或输入虽可观测但系统处于严重而不可观测的噪声干扰下的系统的特性估计。利用这种方法识别参数无能量泄漏,分辨率高,但定阶问题没有很好的解决。目前,已有很多的定阶准则的出现,随着结构输入荷载统计资料和先验经验的累计以及计算机运算速度的提高产生了基于ARMAX(用带输入信息的时间序列模型)的识别方法[19]。

时域识别方法最先是应用于经济和金融领域,如时间序列分析,然后才应用于机械、航天和航空领域,被用来实现结构的模态识别和控制。环境振动时域识别方法有时间序列识别方法、特征系统实现方法、随机子空间方法和ITD 方法等。

时域识别法与频域方法不同,它无需将所测得响应与激励的时间历程信号变换到频域中去,而是直接在时域中进行参数辨识。时域法所采用的原始数据主要为结构的自由振动响应,有的也采用结构的脉冲响应和强迫振动响应,这样可以无需知道激励就可单独从响应数据中辨识模态参数。Ibrahimt利用随机减量技术(RandomDecre.mentTechnique,简称RDT)从结

构的随机响应中得到了自由响应信号,但此方法只适合用于线性结构或弱非线性机构;张西宁等[18]改进了RDT,采用了正负阀值同时截取的提取方法,解决了信号提取中截取阀值和

平均次数的矛盾;James等[20]成功的将自然激励识别技术(NaturalExcitationTechnique,简称NEXT)用于立式风轮机的参数识别中;Peeters等]成功的将随机子空间(Stochastic Subspac eIdenti.fication,简称SSF应用于土木工程的参数识别中;尹志宏等[21]利用SSF法,结合DASP分析系统测得主轴系统的动态响应,获得了加工中心主轴系统的模态参数,为主轴系

统的结构改进设计提供依据;Hermans等通过工程应用的实例,指出了NExT、均衡实现法(Balanced Realization,简称BR和规范变量分析法(Canonical Variate Analysis,简称CVA)的性

能和局限性;李中付等[23]根据环境激励具有随机性的特点,应用ITD法改进了特征矩阵的算法,并结NExT法的原理,提出了一种在线参数识别的新方法(OLPIT法);Juang等[24]利用特

征系统实现算法(Eigensystem Realization Algorithm,简称ERA)进行模态参数识别和模型降阶

处理,取得了良好的结果;Mohanty等[25]改进了ERA,用于存在着谐波干扰的运行模态分析,取得了理想的效果,特别是当谐波频率与特征频率较接近时,此方法更加有利,但当给出的

谐波频率与实际的不符合时,结果与没改进的时候差不多;姜浩等结合NExT和ERA对环境激励下桥梁结构进行模态参数识别,并采用模态幅值相关因子来分辨和剔除识别出的虚假模态;李哗等[27]利用正弦数据的特点,主要针对稳态正弦扫描时,扫描频率分布不均匀的情况,研究了一种新的数据改进方法,即将所有频率的响应信息叠加在一起,对它重新采样得到新的时域数据。利用改进后的参考点数据和测量点数据求得系统的传递特性函数,再利用最小二乘复指数法(LeastSquares Complex ExponentialMethod,简称LSCE)进行模态参数识别;Kindt等[28]在充分考虑了随机噪声、交叉灵敏度和对准误差后,利用多参考最小二乘复指数法提取滚动轮胎的模态参数。

时域法可以克服频域法的一些缺陷,特别是对大型复杂构件,如海洋平台、建筑物及水工结构等受到风、浪及大地脉动的作用。它们在工作中承受的载荷很难测量,但响应信号容易测得,直接利用响应的域信号进行参数识别具有重要的意义。时域法面临的问题是抗噪声干扰、分辨和剔除由噪声引起的虚假模态和模型的定阶等问题。

特征系统实现法(ERA法)是多输入多输出的时域模态参数识别方法,源于控制理论中的Ho-Kalman的最小实现理论[29]。它只需很短的自由响应数据来识别参数,并且识别速度快,对低频、密频、重频有很强的识别能力,更重要的是能得到系统的最小实现便于控制应用,因而该方法得到广泛的应用。ERA算法的实质是,利用实测的脉冲响应数据或自由响应数据构成Hankel矩阵,并采用奇异值分解,寻找系统的一个最小实现。该法也已推广到利用自由衰减和自由响应数据进行参数识别,并实现了基于频响函数矩阵的频域ERA格式。该方法能够有效的识别模态参数,但这种算法也同样存在着去噪,识别虚假模态和正确定阶等问题。

随机子空间法是基于线性系统离散状态空间方程的识别方法[30],适用于平稳激励。该法直接从输入输出数据矩阵的行、列空间投影中估计出系统的Kalman状态序列或广义观测矩阵,再分别通过Kalman状态序列和广义观测矩阵识别模态参数。同经典的识别方法相比,子空间法不需要对模型预先参数化。一系列基本的线性代数运算,如正交三角分解(QR分解)、奇异值分解(SVD分解),避免了传统方法因非线性迭代引起的数值的“病态”,尤其处理高阶多变量系统能像处理单入单出系统一样的简单。从逼近理论来看,子空间方法是以尽量少的阶次来描述系统的振动特性,减少了计算量;从信号处理的角度来看,子空间方法相当于对数据进行了一次滤波处理,剔除了与输入输出无关的随机噪声[8],从而使其识别具有一定的抗干扰能力。

2模态分析与缺陷检测

缺陷对机械结构动态特性的影响一直是重要的科研课题,结构的模态和固有频率包含了有关缺陷位置和尺寸的信息,对结构任何偶然(如裂缝)或有意的修改都会改变其刚度和阻尼值,影响其动态特性。有缺陷结构相对于无缺陷结构模态和固有频率的变化是目前缺陷检测的普遍方法,但是,许多有关缺陷检测方法只考虑了缺陷的当前状态,不能对机械结构使用过程中的性能和剩余寿命给出合理的解释。模态分析与裂纹扩展相关理论相结合的方法考虑了缺陷在结构使用过程的动态变化,可以预测结构的剩余寿命,充分发挥结构的性能。

Abraham 和Brandon[24]将结构按裂缝分成许多部分,通过子结构标准模态预测含有封闭裂缝悬臂梁的振动特性,取得了很好的效果。一个包含子结构的多裂缝整体结构,其完全本征解有很多自由度,数值计算过程会花费大量的计算时间,由Hurty[15]提出的组件模态合成法可以使整体结构分解为各自独立的部分,很大程度上降低了问题的复杂性。该方法在处理非线性裂缝梁时具有如下优点:梁从裂缝区域分成的每一部分都是线性的,或者得到的数值结果适合于他们的标准模态,因而容易进行分析计算。因此,最初在裂缝区域具有局部不连续刚度的非线性系统现在由一组线性部分所代替,各线性子部分由假想无质量的等效弹簧连接。推导出每一部分的动态方程,计算出各界面连接点上的物理位移矩阵,由断裂力学理论求出各子部分之间的相互作用力后,可以计算出等效弹簧的刚度矩阵,由刚度矩阵可以将各子部分在数学形式上连接为一个整体。

缺陷检测技术的发展历史及当前国内外的研究现状,提出了基于模态分析与缺陷扩展理论相结合的方法研究裂缝出现后的动态过程。目前,这两种方法都各有学者研究,难点是如何将二者联系起来,以及如何处理相关的影响因素和影响效果,这也是今后工作的重点。4展望

基于环境激励下响应模态识别方法的关键问题及研究方向针对目前识别方法的特点,环境激励下模态参数识别要解决的关键问题是:一、如何得到归一化振型;二、提高目前识别方法的鲁棒性,上面方法大都是以白噪声激励为前提;三、环境激励响应信号频带覆盖模态频带的程度,在什么样激励工作状况下测定响应最好;四、环境激励造成的结构非对称性如何处理;五、对时变的模态参数如何识别。关于环境激励能量大小的问题,目前还没有完善的衡量标准,需要进一步探讨。目前通常的环境激励的辨识是考虑典型且具有代表性的工况来辨识结构模态参数。由于环境激励响应信号成分复杂通常是非平稳的,在未来的识别方法要充分利用信号处理技术,寻找新的识别方法。

参考文献:

[1] 陈栋华, 周宏, 易明. 轿车车头子系统的结构动力修改.同济大学学报.2004,32(4):513 516

[7] 朱东生, 朱稀, 田琪. 识别桥梁模态参数时域法的仿真研究. 兰州铁道学院学报. 1995,14(3):1 9

[8]史东锋, 郑敏, 申凡. 工程结构工作模态的子空间辫识方法. 振动工程学报.2000,13(3):406 412

[9] 沈松, 应怀樵, 雷速华. 用锤击法和变时基技术进行黄河铁路桥的模态试验分析. 振动工程学报. 2000,13(3):492 495

[10] 李惠彬, 秦权, 钱良忠 . 青马悬索桥的时域模态识别 . 土木工程学报 .2001,34(5):52 56

[11] 陆晓军, 梁杰. 492Q 发动机油底壳实验振动模态分析. 中国公路学报.2001,14(1):115 118

[12] 崔玉萍, 杨党旗. 钢-混凝土组合梁桥结构的振动特性测试与计算分析. 公路.2002,(9):13 16

[13] 徐良, 过静珺. 用GPS 和随机减量技术对悬索桥实时监测. 清华大学学

报.2002,42(6):822 824

[14]李中付, 华宏星, 宋汉文. 非稳态环境激励下线性结构的模态参数辫识. 振动工程学报. 2002,15(2):139~143

[15] 濮卫. 基于光纤监测技术的混凝土结构损伤识别试验研究. 森林工程.2004,20(6):15 17

[16] 胡利平, 韩大建, 禹智涛. 基于环境激励的大跨度桥梁模态试验. 广东工业大学学报. 2005,22(1):100 104

[17] 申凡, 郑敏, 史东锋. 一种基于互功率谱密度的频域模态识别法. 振动工程学报. 2001,14(3):259 262

[19] 赵永辉, 邹经湘. 利用ARMAX 模型识别结构模态参数. 振动与冲击.2000,19(1):34 36

[20] 李蕾红, 陆秋海, 任革学. 特征系统实现算法的识别特性研究及算法的推广.工程力学. 2002,19(1):109 113

[21] 禹丹江, 任伟新. 基于经验模式分解的随机子空间识别方法. 地震工程与工程振动. 2005,25(5):61 66

[23] 李德葆. 振动模态分析及应用. 北京:宇航出版社, 1989:102 118

[24] 罗军辉, 罗勇江, 白义臣, 庞娜. MATLAB7.0 在数字信号处理中的应用. 机械工业出版社, 2005:145 147

[25] 赵继俊, 赵滨, 李永海. 工程测试与信息处理. 哈尔滨出版社, 2000:174~175

极大似然参数辨识方法

2 极大似然参数辨识方法 极大似然参数估计方法是以观测值的出现概率为最大作为准则的,这是一种很普遍的参数估计方法,在系统辨识中有着广泛的应用。 2.1 极大似然原理 设有离散随机过程}{k V 与未知参数θ有关,假定已知概率分布密度)(θk V f 。如果我们得到n 个独立的观测值,21,V V …n V ,,则可得分布密度)(1θV f ,)(2θV f ,…,)(θn V f 。要求根据这些观测值来估计未知参数θ,估计的准则是观测值{}{k V }的出现概率为最大。为此,定义一个似然函数 ) ()()(),,,(2121θθθθn n V f V f V f V V V L = (2.1.1) 上式的右边是n 个概率密度函数的连乘,似然函数L 是θ的函数。如果L 达到极大值,}{k V 的出现概率为最大。因此,极大似然法的实质就是求出使L 达到极大值的θ的估值∧ θ。为了便于求∧ θ,对式(2.1.1)等号两边取对数,则把连乘变成连加,即 ∑== n i i V f L 1)(ln ln θ (2.1.2) 由于对数函数是单调递增函数,当L 取极大值时,lnL 也同时取极大值。求式(2.1.2)对θ的偏导数,令偏导数为0,可得 0ln =??θL (2.1.3) 解上式可得θ的极大似然估计ML ∧ θ。 2.2 系统参数的极大似然估计 设系统的差分方程为 )()()()()(1 1 k k u z b k y z a ξ+=-- (2.2.1) 式中 111()1...n n a z a z a z ---=+++ 1101()...n n b z b b z b z ---=+++ 因为)(k ξ是相关随机向量,故(2.2.1)可写成 )()()()()()(1 11k z c k u z b k y z a ε---+= (2.2.2) 式中 )()()(1 k k z c ξε=- (2.2.3) n n z c z c z c ---+++= 1 11 1)( (2.2.4) )(k ε是均值为0的高斯分布白噪声序列。多项式)(1-z a ,)(1-z b 和)(1-z c 中的系数n n c c b b a a ,,,,,10,1和序列)}({k ε的均方差σ都是未知参数。 设待估参数

DHMA实验模态分析系统的概述

DHMA实验模态分析系统的概述 江苏东华测试技术有限公司推出的“DHMA实验模态分析系统”, 从激励信号、传感器、适调器、数据采集和分析软件到实验报告的生成,构成了完整的进行实验模态分析的硬件和软件条件。专业的技术培训,保证了用户可靠、准确、合理的使用本系统。 DHMA实验模态分析系统汇集了公司多年来硬件、软件研发经验,和广大用户对实验模态分析系统的改进意见,参考国内外实验模态分析领域专家学者的研究成果和指导意见,功能强大,特点鲜明:采用内嵌专业知识的软件模式,即使是非专业的用户也可以成功地进行模态实验;内嵌的工作流程保证符合质量标准的重复实验过程;强大的模态参数提取技术保证了高质量、不受操作者经验多寡的影响,即使对模态高度密集或阻尼很大的结构也游刃有余。 汽车白车身现场图片

汽车白车身一阶振型 针对不同实验对象的特点,本公司提供了三种具体的解决方案,满足了大多数用户的需求: 方案一:不测力法(环境激励)实验模态分析系统 不测力法实验模态分析(OMA)可用于对桥梁及大型建筑、运行状态的机械设备或不易实现人工激励的结构进行结构特性的动态实验。仅利用实测的时域响应数据,通过一定的系统建模和曲线拟合的方法识别结构的模态参数。桥梁及大型建筑、运行状态下的机械设备等不易实现人工激励的结构均可采用不测力法来进行实验模态分析。

方案二:锤击激励法实验模态分析系统 DHMA实验模态分析系统可以提供用户完整的锤击激励法实验模态分析完整的解决方案,是对被测结构用带力传感器的力锤施加一个已知的输入力,测量结构各点的响应,利用软件的频响函数分析模块计算得到各点频响函数数据。利用频响函数,通过一定的模态参数识别方法得到结构的模态参数。锤击激励法实验模态分析可分为单点激励法和单点拾振法。

实验6 数据拟合及参数辨识方法

实验6 数据拟合及参数辨识方法 一、实验目的及意义 [1] 了解最小二乘拟合的基本原理和方法; [2] 掌握用MATLAB作最小二乘多项式拟合和曲线拟合的方法; [3] 通过实例学习如何用拟合方法解决实际问题,注意与插值方法的区别。 [4] 了解各种参数辨识的原理和方法; [5] 通过范例展现由机理分析确定模型结构,拟合方法辨识参数,误差分析等求解实 际问题的过程; 通过该实验的学习,掌握几种基本的参数辨识方法,了解拟合的几种典型应用,观察不同方法得出的模型的准确程度,学习参数的误差分析,进一步了解数学建模过程。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。 二、实验内容 1.用MATLAB中的函数作一元函数的多项式拟合与曲线拟合,作出误差图; 2.用MATLAB中的函数作二元函数的最小二乘拟合,作出误差图; 3.针对预测和确定参数的实际问题,建立数学模型,并求解。 三、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.根据观察到的结果写出实验报告,并浅谈学习心得体会。 四、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会) 应用实验 1.旧车价格预测 某年美国旧车价格的调查资料如下表,其中x i表示轿车的使用年数,y i表示相应的平均价格。试分析用什么形式的曲线来拟合上述的数据,并预测使用4.5年后轿车的平均价

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

ITD模态参数识别matlab修改版

%ITD法识别模态参数 clear clc close all hidden format long %% txt文件下输入 fni=input('ITD法模态参数识别-输入数据文件名:','s'); fid=fopen(fni,'r'); mn=fscanf(fid,'%d',1); %模态阶数 %定义输入实测数据类型 %ig=1时域数据如冲击响应、自由振动、互相关函数、随机减量法处理结果 %ig=2频域数据如频响函数实部和虚部数据 ig=fscanf(fid,'%f',1); %ig=1时,f为采样频率sf,ig=2时,f为频率间隔df f=fscanf(fid,'%f',1); fno=fscanf(fid,'%s',1); %输出数据文件名 b=fscanf(fid,'%f',[ig,inf]); %实测时域或频域数据 status=fclose(fid); %% clc; clear all; format long [FileName,PathName] = uigetfile('*.mat', 'Select the Mat-files of time signal'); %窗口读文件,并获取包含路径的文件名 if isequal(FileName,0) disp('User cancel the selection'); %如果取消选择则显示提示 return; else FULLFILE=fullfile(PathName,FileName); Signal_str= sprintf('User selected signal file: %s',FULLFILE); disp(Signal_str); Struct=load(FULLFILE); end c=fieldnames(Struct); %得到一个元胞数组,包含Struct中各个域名(倘若有多个的话) b=getfield(Struct,c{1}); %获取c{1}对应的域中的内容 b=b(3601:9600); %% %ig=1时域数据如冲击响应、自由振动、互相关函数、随机减量法处理结果 %ig=2频域数据如频响函数实部和虚部数据 ig=input('数据类型ig='); f=input('采样频率f=');%指定采样频率 mn=input('计算模态阶数mn=');%指定计算模态阶数

模态参数识别方法的比较研究

模态参数识别方法的比较研究 发表时间:2017-09-07T14:07:39.937Z 来源:《防护工程》2017年第9期作者:安鹏强[导读] 本文将频域法、时域法和整体识别法识别模态参数的应用范围、存在的优缺点进行对比、分析和说明。 航天长征化学工程股份有限公司兰州分公司甘肃兰州 730050 摘要:本文将频域法、时域法和整体识别法识别模态参数的应用范围、存在的优缺点进行对比、分析和说明,对模态参数识别的研究方向具有指导意义。 关键词:模态参数识别;频域法;时域法;整体识别法 引言 多自由度线性振动系统的微分方程可以表达为[1]: [M]{x ?(t)}+[C]{x ?(t)}+[K]{x(t)}={f(t)} 通过将试验采集的系统输入与输出信号用于参数识别的方法中,进而对系统的模态质量、模态阻尼、模态刚度、模态固有频率及模态振型进行识别,这一过程称为结构的模态参数识别。本文将对模态参数识别的频域法、时域法及整体识别法三者的应用范围、存在的优缺点进行对比、分析和说明。 1频域法 模态参数识别的频域法是结合傅里叶变换理论[1]形成的,这种方法是从实测数据的频响函数曲线上对测试结构的模态参数进行估计。图解法[1]是最早的频域模态参数识别方法,随之,又陆续发展了导纳圆拟合法[2]、最小二乘迭代法[2]、有理式多项式法[2]等多种频域模态参数识别方法。 频域法的优点是直观、简便,噪声影响小,模态定阶问题易于解决。频域法识别模态参数的思路是首先借助实测频响函数曲线对模态参数进行粗略的估计,进而将初步观测的模态估计值作为一些频域识别法的最初输入值,通过反复的迭代获取最终的模态参数。频域识别方法对于实测频响函数的分布容易控制,其输人数据是主观人为的。频域中参数识别方法识别结果的精准度,取决于测试试验中获得的频响函数质量的好坏。判断实测频响函数的质量,就要看其曲线的光滑[2]和曲线的饱满程度[2],曲线越光滑越饱满的实测频响函数,用其进行参数识别时,识别精度越高。 2时域法 模态参数识别的时域法的研究与应用比频域法晚,时域法可以克服频域法的一些缺陷。时域模态参数识别的技术优点在于无需获得激励力即可进行参数的识别[3-7]。对于一些大型的工程结构如大坝、桥梁等,获取激励荷载不太容易,但容易测得他们在风、地脉动等环境激励下的响应数据,把这些响应数据用于时域中一些参数识别的方法上,即可对测试结构的模态参数进行识别。 时域法的优点不仅在于其无需激励设备、减少测试费用而且可以避免由信号截断而造成对识别精度的影响,并且可实现对大型工程结构的在线参数识别,真实地反映结构的动力特性。但是由于响应信号中含有大量的噪声,这会使得所识别的模态中含有虚假模态。目前,对于如何剔除噪声模态、优化识别过程中的一些参数问题、以及怎样更稳定、可靠地进行模态定阶等成为时域法研究中的重要课题。目前常用的判定模态真假的方法是稳定图方法[8],该方法的基本思想在于不同阶次的系统模型会对虚假模态的影响比较大,在稳定图中出现次数最多的模态可认为是系统的真实模态。 3整体识别法 结构模态参数识别的单输入单输出类型是针对单个响应点的数据进行相应的计算,从而得到该测点对应的模态频率、阻尼比和振型系数等动力参数,但是对于有多个测点的试验,若要用单输入单输出类型的识别方法对多自由度结构进行参数识别,则需要对各个测点单独计算来识别各个测点对应的模态参数,通过对各个测点分别计算处理,得到每一个测点数据所识别的模态参数,然后求取所有测点响应识别的算术平均值来作为整体结构最终的识别结果。理论上讲,用每个测点数据识别的结果应该是一样的,但实际测试实验中,因测试实验中测点布置位置的不同、测试中其他因素及识别方法上的不完善会使得各个测点的识别结果不同、识别精度不同及错误的识别结果等现象。因此,对于多测点的测试试验,用单输入单输出类型的识别方法进行参数识别不仅会因多次重复导致计算工作量复杂累赘而且识别结果的正确性及精度无法保证。 整体识别的方法避免了单输入单输出类型的一些不足之处。该方法通过将结构上的所有测点的实测数据同时进行识别计算,所识别得到的结果作为结构整体的模态参数,每阶模态的固有频率和阻尼比是唯一的,减小了随机误差,提高了识别进度,并且使得计算工作量大大减少。 4三种识别方法的比较分析 (1)频域内的模态参数识别方法方便、快捷,但在实际运用中人为的主观选择性对识别结果的影响较大; (2)基于环境激励的时域模态参数的识别方法具有测试试验的花费较少、测试相对安全,并且识别精度较高。因此,基于环境激励的时域模态参数的识别方法已成为科研工作者研究的热点问题。 (3)对于多测点的测试试验,用频域和时域的单输入单输出类型识别模态参数不仅会因多次重复导致计算工作量复杂累赘而且识别结果的正确性及精度无法保证。整体识别法将所有测点的数据同时进行处理计算,得到结构的整体识别结果。整体识别方法通过对所有测点数据同时进行识别计算,减小了随机误差,提高了识别进度,使得计算工作量大大减少。 (4)对比时域和频域识别方法对虚假模态的剔除,可以看出,频域中的剔除虚假模态主要依据模态频率在频幅曲线图上会出现峰值的原理,利用该峰值处的幅值角是否为0°或180°来剔除虚假模态;相对频域剔除虚假模态的方法来说,时域中的剔除虚假模态的方法有定量的精度判别指标。总体看来,时域识别方法无法判别是否已将系统的所有模态进行识别且对于阻尼比的确定还有待研究。参考文献 [1] 曹树谦,张德文,萧龙翔. 振动结构模态分析-理论、实验与应用[M]. 天津大学出版社,2001. [2] 王济,胡晓. Matlab在振动信号处理中的应用[M]. 水利水电出版社,2006.

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

模态参数辨识的频域方法

模态参数辨识的频域方法 吕毅宁 目录 模态参数辨识的频域方法 (1) 单点输入单点输出(SISO) (1) 图解法............................................................................................................ 1 频域多参考点模态参数辨识(MIMO ) ............................................................ 2 频域模态测试和参数辨识的可控性和可观性. (5) 单点输入单点输出(SISO) 图解法 1) 峰值检测 半功率点 )(2 1 )()(21r j H j H j H ωωω= = (1) r r ωωωξ21 2-= (2) 2) 模态检测 () ir r jr r r r ij r jr ir r r r r jr ir r r ij Q A Q j j Q j H ψσψσσψψωσωψψω-= -= -= +-= ) ()( (3) 式中,r Q 是模态比例换算因子。 在上式中,() r ij A 是模态质量r m 和模态刚度r k 的函数,又由下面的关系 2r r r m k ω= (4) 联立即可求得模态质量和模态刚度。 3) 圆拟合法 固有频率

max ==ω ωωd ds r r (5) 振型 r er I ij g k H 1 -= (6) jr ir r er k k ??= (7) er k 是等效模态刚度,r r r k g η= 是等效结构阻尼。 ()r ij r I ij ir r r jr R g k )(2==-H ?? (8) 模态阻尼 r g ) 1(2tan 211 ωα-= (9) r g ) 1(2tan 222 -= ωα (10) 2 tan 2 tan 22 1 12ωωω+-= r r g (11) 模态刚度 由 r er r I ij g k H 1 )1(-= =ω (12) 可得 r r I ij er g H k )1(1 =-= ω (13) 模态质量 2 r r r k m ω= (14) 其他方法,如正交多项式曲线拟合法,非线性优化辨识方法。 频域多参考点模态参数辨识(MIMO ) 一个N 自由度粘性阻尼线性系统,对它施加P 个激励力,在N 个点上进行响应

系统辨识研究综述

系统辨识研究综述 摘要:本文综述了系统辨识的发展与研究内容,对现有的系统辨识方法进行了介绍并分析其不足,进一步引出了把神经网络、遗传算法、模糊逻辑、小波网络知识应用于系统辨识得到的一些新型辨识方法。并对基于T-S模型的模糊系统辨识进行了介绍。文章最后对系统辨识未来的发展方向进行了介绍 关键词:系统辨识;建模;神经网络;遗传算法;模糊逻辑;小波网络;T-S 模型 1.系统辨识的发展和基本概念 1.1系统辨识发展 现代控制论是控制工程新的理论基础。辨识、状态估计和控制理论是现代控制论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持;控制理论的应用又几乎不能没有辨识和状态估计。 而现代控制论的实际应用不能脱离被控对象的动态特性,且所用的数学模型需要选择一种使用方便的描述形式。但很多情况下建立被控对象的数学模型并非易事,尤其是实际的物理或工程对象,它们的机理复杂且含有各种噪声,使建立数学模型更加困难。系统辨识就是应此需要而形成的一门学科。 系统辨识和系统参数估计是六十年代开始迅速发展起来的。1960年,在莫斯科召开的国际自动控制联合会(IFCA)学术会议上,只有很少几篇文章涉及系统辨识和系统参数估计问题。然而,在此后,人们对这一学科给予了很大的注意,有关系统辨识的理论和应用的讨论日益增多。七十年代以来,随着计算机的开发和普及,系统辨识得到了迅速发展,成为了一门非常活跃的学科。 1.2系统辨识基本概念的概述 系统辨识是建模的一种方法。不同的学科领域,对应着不同的数学模型,从某种意义上讲,不同学科的发展过程就是建立它的数学模型的过程。建立数学模型有两种方法:即解析法和系统辨识。 L. A. Zadeh于1962年给辨识提出了这样的定义:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。根据实用性观点,对模型的要求并非如此苛刻。1974年,P. E. ykhoff给出辨识的定义“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统) 本质为: 特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。而1978

环境振动下模态参数识别方法综述.

环境振动下模态参数识别方法综述 摘要:模态分析是研究结构动力特性的一种近代方法,是系统识别方法在工程振动领域中的应用。环境振动是一种天然的激励方式,环境振动下结构模态参数识别就是直接利用自然环境激励,仅根据系统的响应进行模态参数识别的方法。与传统模态识别方法相比,具有显著的优点。本文主要是做了环境振动下模态识别方法的一个综述报告。 关键词:环境振动模态识别综述 Abstract: The modal analysis is the study of structural dynamic characteristics of a modern method that is vibration system identification methods in engineering applications in the field. Ambient vibration is a natural way of incentives, under ambient vibration modal parameter identification is the direct use of the natural environment, incentives, based only on the response of the system for modal parameter identification method. With the traditional modal identification methods, has significant advantages. This paper is a summary report of the environmental vibration modal identification method. Keywords: Ambient vibration ;modal parameters ;Review 随着我国交通运输事业的发展,各种形式的大、中型桥梁不断涌现,由于大型桥梁结构具有结构尺大、造型复杂、不易人工激励、容易受到环境影响、自振频率较低等特点,传统模态参数识别技术在应用上的局限性越来越突出。传统的振动试验采用重振动器或落锤激励桥梁,需要投入大量人力和试验设备,激励成本增高,难度大,而且对于桥梁这样的大型复杂结构,激励(输入)往往很难测得,也不适合长期监测的实验模态分析。 环境振动是指振幅很小的环境地面运动。系由天然的和(或)人为的原因所造成,例如风、海浪、交通干扰或机械振动等,受激结构的振幅较小,但响应涵盖频率丰富。系统或者结构的模态参数包括:模态频率、模态阻尼、模态振型等。模态参数识别是系统识别的一部分,通过模态参数的识别可以了解系统或结构的动力学特性,这些动力特性可以作为结构有限元模型修正、故障诊断、结构实时监测的评定标准和基础。环境振动下的模态参数识别就是利用自然环境激励,根据结构的动

模态参数识别的单模态法,模态参数识别的导纳圆法

一.模态参数识别的单模态法 常见的单模态识别有三种方法:直接读数法(分量分析法)、最小二乘圆拟合法和差分法。 所谓单模态识别法,是指一次只识别一阶模态的模态参数,所用数据为该阶模态共振频率附近的频响函数值。待识别的这阶模态称为主导模态,余模态称为剩余模态,剩余模态的影响可以全部忽略或简化处理。 1. 直接读数法(分量分析法) 1)基本公式 所谓分量分析法就是讲频响函数分成实部分量和虚部分量来进行分析。 N 自由度结构系统结构,p 点激励l 点响应的实模态频响函数可表示如下: 2222222111 ()(1)(1)N r r lp r er r r r r g H j K g g ωωωω=??--=+??-+-+?? ∑ (1.1) 其中r er lr pr K K φφ= ,为第二阶等效刚度 /r r ωωω= g 2r r r ζω= ,为第r 阶模态结构阻尼比 当ω趋近于某阶模态的固有频率时,该模态起主导作用,称为主导模态或者主模 态。 在主模态附近,其他模态影响较小。若模态密度不是很大,各阶模态比较远离,其余模态的频响函数值在该模态附近很小,且曲线比较平坦,即几乎不随频率而变化,因此其余模态的影响可以用一个复常数来表示,第r 阶模态附近可用剩余模态表示成: 222222211 ()()(1)(1)R I r r lp C C er r r r r g H j H H K g g ωωωω??-= -++??-+-+?? (1.2) ()lp H ω的实部和虚部可分别表示如下: 222211 ()(1)R R r lp C er r r H H K g ωωω??-= +??-+?? (1.3) 2221 ()(1)I I r lp C er r r g H H K g ωω??-= +??-+?? (1.4)

模态分析与参数识别

模态分析方法在发动机曲轴上的应用研究 xx (xx大学 xxxxxxxx学院 , 山西太原 030051) 摘要:综述模态分析在研究结构动力特性中的应用,介绍模态分析的两大方法:数值模态分析与试验模态分析。并着重介绍目前的研究热点一一工作模态分析。通过发动机曲轴的模态分析这一具体的实例,综述了运行模态分析国内外研究现状,指出了其关键技术、存在问题以及研究发展方向。 关键词:模态分析数值模态试验模态工作模态 Abstract :Sums up methods of model analysis applied on the research of configuration dynamic;al characteristio. It introduces two methods of model analysis: numerical value model analysis and experimentation model analysis. Then it stresses the hotspot-working model analysis.Some key techniques, unsolved problems and research directions of OMA were also discussed. Key words:Model analysis Numerical value model analysis Experimentation model analysis Working model analysis 1、引言 1.1模态分析的基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率围各阶主要模态的特性,就可能预言结构在此频段在外部或部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带围,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成置选项。然而随着计算机的发展,存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

系统辨识综述

系统辨识方法综述 摘要 在自然和社会科学的许多领域中,系统的设计、系统的定量分析、系统综合及系统控制,以及对未来行为的预测,都需要知道系统的动态特性。在研究一个控制系统过程中,建立系统的模型十分必要。因此,系统辨识在控制系统的研究中起到了至关重要的作用。本文论述了用于系统辨识的多种方法,重点论证了经典系统辨识方法中运用最广泛的的最小二乘法及其优缺点,引出了将遗传算法、模糊逻辑、多层递阶等知识应用于系统辨识得到的一些现代系统辨识方法,最后总结了系统辨识今后的发展方向。 关键字:系统辨识;最小二乘法;遗传算法;模糊逻辑;多层递阶 Abstract In many fields of natural and social science, the design of the system, the quantitative analysis of the system, the synthesis of the system and the control of the system, as well as the prediction of the future behavior, all need to know the dynamic characteristics of the system. It is very necessary to establish a system model in the process of studying a control system. Therefore, system identification plays an important role in the research of control system. This paper discusses several methods for system identification, the key argument is that the classical system identification methods using the least squares method and its advantages and disadvantages, and leads to the genetic algorithm, fuzzy logic, multi hierarchical knowledge application in system identification of some modern system identification method. Finally, the paper summarizes the system identification in the future direction of development. Keywords:System identification; least square method; genetic algorithm; fuzzy logic; multi hierarchy 第一章系统辨识概述 系统辨识是研究建立系统数学模型的理论和方法。系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质牲征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。辨识就是按照一个准则在一组模型类中

ITD模态参数识别matlab修改版

%ITDxx识别模态参数 clear clc close all hidden format long %% txt文件下输入 fni=input('ITD法模态参数识别-输入数据文件名:','s'); fid=fopen(fni,'r'); mn=fscanf(fid,'%d',1);%模态阶数 %定义输入实测数据类型 %ig=1时域数据如冲击响应、自由振动、互相关函数、随机减量法处理结果%ig=2频域数据如频响函数实部和虚部数据 ig=fscanf(fid,'%f',1); %ig=1时,f为采样频率sf,ig=2时,f为频率间隔df f=fscanf(fid,'%f',1); fno=fscanf(fid,'%s',1);%输出数据文件名 b=fscanf(fid,'%f',[ig,inf]);%实测时域或频域数据 status=fclose(fid); %% clc; clear all;

format long [FileName,PathName] = uigetfile('*.mat', 'Select the Mat-files of time signal'); %窗口读文件,并获取包含路径的文件名 if isequal(FileName,0) disp('User cancel the selection');%如果取消选择则显示提示 return; else FULLFILE=fullfile(PathName,FileName); Signal_str= sprintf('User selected signal file:%s',FULLFILE); disp(Signal_str); Struct=load(FULLFILE); end c=fieldnames(Struct);%得到一个元胞数组,包含Struct中各个域名(倘若有多个的话) b=getfield(Struct,c{1}); %获取c{1}对应的域中的内容 b=b(3601:9600); %% %ig=1时域数据如冲击响应、自由振动、互相关函数、随机减量法处理结果 %ig=2频域数据如频响函数实部和虚部数据 ig=input('数据类型ig='); f=input('采样频率f=');%指定采样频率 mn=input('计算模态阶数mn=');%指定计算模态阶数

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

相关文档