文档库 最新最全的文档下载
当前位置:文档库 › 功能陶瓷的固相反应法制备及介电性能测试

功能陶瓷的固相反应法制备及介电性能测试

功能陶瓷的固相反应法制备及介电性能测试
功能陶瓷的固相反应法制备及介电性能测试

功能陶瓷的固相反应法制备及介电性能测试

一、实验目的

1、了解制备功能陶瓷材料的固相反应法;

2、掌握用LCR仪测试功能陶瓷材料介电性能的方法;

3、测量特定频率及温度范围内BaTiO3陶瓷的介电性能随频率及温度的变化;

4、结合实验结果分析BaTiO3陶瓷的介电性能与频率及温度的关系。

二、实验原理

固相反应法制备功能陶瓷:

制备功能陶瓷材料的方法有很多种,其中最成熟、应用最为广泛的则是固相反应法。这种方法以高纯度粉末(常为氧化物)为原料,经精确称量后与球磨介质(常为球状,一般用ZrO2、Al2O3、玛瑙等高硬度材料)及分散液体(通常为水或酒精)混在一起,经球磨、干燥、过筛后得到颗粒细小、混合均匀的粉末。均匀混合的粉末在高温下发生化学反应,合成所需的物相,此过程称为预烧结(又称锻烧)。之后再次进行球磨、干燥、过筛,并将得到的颗粒细小的粉末与少量有机物水溶液(如PV A、PVB等)混合在一起、研磨后过筛(此过程称为造粒),以增加粉末在成型过程中的可塑性和流动性,并减小粉末与模具间的摩擦。将造粒后的粉末放置于金属模具中,并施加高压,即得到具有所需形状的压粉体(又称素胚),此过程称为成型。压粉体具有一定的强度和致密度,但其中仍存在很多气孔,需通过高温下的烧结过程予以排除。由于粉末颗粒细小,具有较高的表面能,这和高温一起构成了烧结过程的动力。在烧结动力的作用下,颗粒之间发生传质的过程,同时伴随着晶粒的长大、大部分气孔的排除、体积的收缩、密度的增大及强度的提高,最终得到致密的陶瓷材料。

材料的介电性能及其测试方法:

介电性是材料对外加电场的一种反应。介电材料内的电荷在外加电场的作用下会发生位移,导致正、负电荷中心不重合,从而发生电极化、在介质表面形成束缚电荷,并在宏观上表现为电容及介电常数。介电常数 是表征材料介电性能

的物理量,定义为电位移与外加电场之间的比值。出于方便的考虑,常用相对介电常数r ε (即介电常数与真空介电常数的比值,0/εε)来表示。有时也称相对介电常数为介电常数。

电极化的微观单元称为电偶极子,而不同的电偶极子则对应不同的极化机制,如转向极化、空间电荷极化、松驰极化、自发极化、离子极化、电子极化等。极化的过程对应电偶极子的重新排布,这需要一定时间来完成。因此,极化对外加电场在时间上有一定的滞后,即材料的介电常数应为一复数,表示为'‘‘εεεj -=,而介电损耗则定义为‘‘εεδ/tan '=。介电常数与介电损耗放在一起时,通常指介电常数的实部。介电损耗也可理解为电场作用在材料上时由于偶极子的重新排布受到阻碍使得一部分电能以热量的形式损失掉。同时,由于极化过程需要一定时间来完成,故介电常数和介电损耗对外加电场的频率有着明显的依赖性。又由于温度的改变影响着电偶极子的活跃程度,因此介电性能对温度也有着依赖性。

铁电体是一类特殊的介电材料,存在着可反转的自发极化,即在无外加电场的情况下也存在电极化。铁电性及自发极化的产生源于铁电体特殊的结构(要求为非中心对称的极性晶体),如钙钛矿结构BaTiO 3的铁电性源于中心Ti 4+离子偏离中心位置。在宏观性能上,铁电体的极化随着外加电场强度的改变出现回线形状的曲线,称为电滞回线,同时其介电常数随温度的变化出现极大值,对应居里温度和居里峰。

根据测试频率范围及原理的不同,材料介电性能的测试方法可分为很多种。一般情况下,人们比较关注材料在1MHz 以下的介电性能。在此频率范围,试样通常做成片状,并在两端镀上金属电极。这样,试样即可看作一平板电容,通过测试试样的电容即可计算得到其介电性能。而1MHz 以下电容的测试则可用阻阬分析法或电桥法。前者在试样两端施加一交流电压,通过测量通过试样的电流得到试样的复阻抗,并由此求出电容和介电损耗。而电桥法则是将试样置于由两个臂组成的电桥的一个臂上,通过调节电桥上的电容、电感及电阻使电桥达到平衡,此时两个臂上的阻抗相同,通过已知的其它电容、电感及电阻的值即可计算得到试样的电容和介电损耗。阻抗分析法和电桥法均有成套的仪器可供直接使用,分别为阻抗分析仪和LCR 仪(L 、C 、R 分别为英文电感、电容、电阻的首字母)。

本实验中使用的测试方法为电桥法,对应的仪器为Agilent 4284A 高精度LCR 仪。LCR 仪可直接读出试样的电容和介电损耗,并可由公式d S C r 0εε=计算出材料的相对介电常数。其中,C 为试样电容,r ε为相对介电常数,0ε为真空介电常数,S 为电极面积,d 为试样厚度。

四、实验步骤

BaTiO 3陶瓷的制备:

1、称料:原料为BaCO 3(99.93%)、TiO 2(99.5%)粉末,欲制备得到60g BaTiO 3

2、球磨:原料 + 去离子水 + ZrO 2球,24小时

3、烘干、过筛:60o C 烘箱、120目尼龙筛

4、预烧结:室温 5o C/min 1100o C 3小时 1100o C 随炉冷却

5、再次球磨、烘干、过筛

6、造粒:BaTiO 3粉末 + 6wt% PV A 溶液、过40目尼龙筛

7、烧结垫料:室温 5o C/min 1400o C 3小时 1100o C 随炉冷却

8、成型:100Mpa 压强、2~3分钟 直径12mm 的压粉体

9、烧结:室温 5o C/min 1350o C 3小时 1350o C -2o C/min 1100o C 随炉冷却

10、镀银电极、烧银:550o C 、20min

BaTiO 3陶瓷介电性能的测试:

1、对LCR 仪进行开路、短路校准,提高仪器的测试精度;

2、将BaTiO 3陶瓷试样安装在频谱测试夹具上,在LCR 仪上读出试样在室温下、1kHz~1MHz 的频率范围内的电容及介电损耗;

3、将BaTiO 3陶瓷试样安装在温谱测试夹具上,并放置于可控温的实验箱式炉内。设置箱式炉的控温程序,以2o C/min 的速度由室温升至200o C 。从30o C 开始,每隔2o C 记录一次试样在100kHz 下的电容及介电损耗。

五、实验结果处理

对测量结果进行处理,可以得到:

1、室温下介电常数与损耗随频率的变化;

2、100kHz下介电常数与损耗随温度的变化;

3、写出实验报告,并对实验结果做简单分析。

六、实验注意事项

仔细阅读实验指导讲义的内容,在指导老师的监督下严格按要求进行实验。

思考题:

1、制备功能陶瓷材料的固相反应法中每个步骤的目的是什么?

2、BaTiO3陶瓷的介电性能随频率和温度的变化该如何解释?

3、在介电性能的频谱及温谱测试过程中,实验误差的主要来源有哪些?

试验三结构陶瓷的制备及性能测试

实验一陶瓷墙地砖的制备 陶瓷墙地砖的制备包括坯料和釉浆的制备、坯体成型、施釉、烧成等主要工序。陶瓷墙地砖产品质量的好坏与泥釉料配方、工艺参数及工艺控制密切相关。本实验目标是要求学生制备出陶瓷内外墙砖或地板砖的小件制品,从中体会陶瓷墙地砖的生产工艺技术,提高操作技能。可分组进行各阶段的实验,然后组合在一起,也可以上组为下一组制备泥浆、釉浆和坯体。 一、实验目的 1、掌握坯料、釉料制备方法。 2、掌握和运用粉体、釉浆及产品性能测试技术。 3、掌握陶瓷砖的成型方法。 4、了解陶瓷烧成过程中的物理、化学变化。 5、了解影响陶瓷墙地砖产品质量的因素及改进方法。 二、实验内容 独立设计制作各类陶瓷墙地砖;了解和掌握制备陶瓷砖的工艺步骤(包括配方计算、配料、研磨、成型、施釉、烧成等过程);墙地砖抗弯强度、吸水率、热稳定性等性能的测试方法及影响因素分析。 三、实验原理 制定坯料配方的方法通常是根据产品性能要求,选用原料,确定配方及成型方法。例如制造日用瓷则必须选用烧后呈白色的原料,包括粘土原料并要求产品有一定强度;制造化学瓷则要求有好的化学稳定性;制造地砖则必须有高的耐磨性和低的吸水性;制造电瓷则需有高的机电性能;制造热电偶保护管必须能耐高温、抗热震并有高的传热性,制造火花塞则要求有大的高温电阻、高的耐冲击强度及低的热膨胀系数。 选择原料确定配方时既要考虑产品性能,还要考虑工艺性能及经济指标。各地文献资料所载成功的经验配方固有参考价值,但无论如何,不能照搬。因粘土、瓷土、瓷石均为混合物;长石、石英常含不同的杂质,同时各地原有母岩的形成方法、风化程度不同,其理化工艺性能不尽相同或完全不同,所以选用原料制定配方只能通过实验来决定。坯料配方试验方法一般有三轴图法、孤立变量法、示性分析法和综合变量法。 三轴图法即三种原料组成图,图中共有66个交点和100个小三角形,其中由三种原料组成的交点有36个,由两种原料组成的交点有27个,由一种原料组成的交点有3个。如图所示。配料时先决定该种坯料所选用各种原料之适当范围,初步确定三轴图中几个配方点(配方点可以在交点上,也可以在小三角形内)。 孤立变量法即变动坯料中一种原料或一种成分,其余原料或成分均保持不变,例如A、月、C三种原料,固定A、B,变动C;或固定月、C,变动A;或固定A、C变动B,最后找出一个最佳配方。 示性分析法即着眼于化学成分和矿物组成的理论配合比。例如高岭土中常含有长石及石英之混合物,长石中常含有未化合的石英,瓷石中则常含有长石、石英、高岭石、绢云母等。如配方中的高岭土是指纯净的高岭石,配方中的长石、石英是指极纯的长石及石英,则最好用示性分析法测定各种原料内之高岭石、长石,石英的含量,以便配料时统计计算。 综合变量法即正交试验法,也叫多因素筛选法、多因素优选法、大面积撒网法。试验前

电介质的电学性能及测试方法

电介质材料的电性包括介电性、压电性、铁电性和热释电性等。 1介电性、 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中) 的比值即为相对介电常数,又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。 介电常数又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对介电常数越小即某介质下的电容率越小,应该更不绝缘。来个极限假设,假设该介质为导体,此时电容就联通了,也就没有电容,电容率最小。介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。 科标检测介电常数检测标准如下: GB11297.11-1989热释电材料介电常数的测试方法 GB11310-1989压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 GB/T12636-1990微波介质基片复介电常数带状线测试方法 GB/T1693-2007硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T2951.51-2008电缆和光缆绝缘和护套材料通用试验方法第51部分:填充膏专用 试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直 流电阻率 GB/T5597-1999固体电介质微波复介电常数的测试方法 GB/T7265.1-1987固体电介质微波复介电常数的测试方法微扰法 GB7265.2-1987固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T10142-1991电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T10143-1991固体电介质微波复介电常数测试方法重入腔法 SJ/T11043-1996电子玻璃高频介质损耗和介电常数的测试方法 SJ/T1147-1993电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ20512-1995微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T6528-2002岩样介电常数测量方法 服务范围:老化测试、物理性能、电气性能、可靠性测试、阻燃检测等 介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负 电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化(electronic polarization,1015Hz),离子极化(ionic polarization,1012~1013Hz),转向极化(orientation polarization,1011~1012Hz)和 空间电荷极化(space charge polarization,103Hz)。这些极化的基本形式又分为位 移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立

汽车制动性能测试方法分析

编号:SY-AQ-06715 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 汽车制动性能测试方法分析Analysis on test method of automobile braking performance

汽车制动性能测试方法分析 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 汽车制动性能是汽车性能检测中极其重要的指标,关系着汽车行驶安全,为此应加强汽车制动性能测试方法研究,为更好的检测汽车制动性能奠定基础。本文着重探讨了汽车制定性能检测方法,以期为汽车制动性能的检测提供参考。 截止去年年底我国汽车保有量已达到2.4亿辆,由此引发的汽车安全问题越来越引起人们的重视,不断提高汽车制动性能检测水平,对减少汽车事故保证行车安全具有重要意义。 汽车制动性能指标 汽车制动性能指汽车在短距离内能够稳定停车,以及在长坡时维持一定车速的能力。用于评判汽车制动性能优劣的重要参数称为汽车制动性能指标,包括制动稳定性、制动效能恒定性以及制动效能,下面逐一对其进行阐述。 1.1.制动效能

制动效能即汽车的制动减速度或制动距离,其优劣与否常用汽车在路面良好的条件下,以一定的速度行驶制动至完全停止的距离评定。汽车制动后行驶的距离越短,表示制动性能越佳。另外,为保证交通安全,国家对不同车型的制动减速度和制动距离做了明确规定,如表1所示: 表1不同车辆类型制动距离和速度 机动车类型 制动初速度/(km·h-1 ) 满载减速度/(m·s-2 ) 满载制动距离/m 空载减速度/(m·s-2 ) 空载制动距离/m 空载t1/s

性能测试报告-模板

Xxx系统性能测试报告 拟制:****日期:****审核:日期: 批准:日期:

1.概述 1.1.编写目的 本次测试报告为xxx系统的性能测试总结报告,目的在于总结性能测试工作,并分析测试结果,描述系统是否符合xxx系统的性能需求。 预期参考人员包括用户、测试人员、开发人员、项目管理者、质量管理人员和需要阅读本报告的高层经理。 1.2.项目背景 腾讯公司为员工提供一个网上查询班车的入口,分析出哪些路线/站点比较紧张或宽松,以进行一些合理调配。 1.3.测试目标 (简要列出进行本次压力测试的主要目标)完善班车管理系统,满足腾讯内部员工的班车查询需求,满足500个用户并发访问本系统。 1.4.名词解释 测试时间:一轮测试从开始到结束所使用的时间 并发线程数:测试时同时访问被测系统的线程数。注意,由于测试过程中,每个线程都是以尽可能快的速度发请求,与实际用户的使用有极大差别,所以,此数据不等同于实际使用时的并发用户数。 每次时间间隔:测试线程发出一个请求,并得到被测系统的响应后,间隔多少时间发出下一次请求。 平均响应时间:测试线程向被测系统发请求,所有请求的响应时间的平均值。 处理能力:在某一特定环境下,系统处理请求的速度。 cache影响系数:测试数据未必如实际使用时分散,cache在测试过程中会比实际使用时发挥更大作用,从而使测试出的最高处理能力偏高,考虑到这个因素而引入的系数。 用户习惯操作频率:根据用户使用习惯估算出来的,单个用户在一段时间内,使用此类功能的次数。通常以一天内某段固定的高峰使用时间来统计,如果一天内没有哪段时间是固定的高峰使用时间,则以一天的工作时间来统计。

功能陶瓷的固相反应法制备及介电性能测试

功能陶瓷的固相反应法制备及介电性能测试 一、实验目的 1、了解制备功能陶瓷材料的固相反应法; 2、掌握用LCR仪测试功能陶瓷材料介电性能的方法; 3、测量特定频率及温度范围内BaTiO3陶瓷的介电性能随频率及温度的变化; 4、结合实验结果分析BaTiO3陶瓷的介电性能与频率及温度的关系。 二、实验原理 固相反应法制备功能陶瓷: 制备功能陶瓷材料的方法有很多种,其中最成熟、应用最为广泛的则是固相反应法。这种方法以高纯度粉末(常为氧化物)为原料,经精确称量后与球磨介质(常为球状,一般用ZrO2、Al2O3、玛瑙等高硬度材料)及分散液体(通常为水或酒精)混在一起,经球磨、干燥、过筛后得到颗粒细小、混合均匀的粉末。均匀混合的粉末在高温下发生化学反应,合成所需的物相,此过程称为预烧结(又称锻烧)。之后再次进行球磨、干燥、过筛,并将得到的颗粒细小的粉末与少量有机物水溶液(如PV A、PVB等)混合在一起、研磨后过筛(此过程称为造粒),以增加粉末在成型过程中的可塑性和流动性,并减小粉末与模具间的摩擦。将造粒后的粉末放置于金属模具中,并施加高压,即得到具有所需形状的压粉体(又称素胚),此过程称为成型。压粉体具有一定的强度和致密度,但其中仍存在很多气孔,需通过高温下的烧结过程予以排除。由于粉末颗粒细小,具有较高的表面能,这和高温一起构成了烧结过程的动力。在烧结动力的作用下,颗粒之间发生传质的过程,同时伴随着晶粒的长大、大部分气孔的排除、体积的收缩、密度的增大及强度的提高,最终得到致密的陶瓷材料。 材料的介电性能及其测试方法: 介电性是材料对外加电场的一种反应。介电材料内的电荷在外加电场的作用下会发生位移,导致正、负电荷中心不重合,从而发生电极化、在介质表面形成束缚电荷,并在宏观上表现为电容及介电常数。介电常数 是表征材料介电性能

铁电性能综合测试概要

铁电薄膜的铁电性能测量 引言 铁电体是这样一类晶体:在一定温度范围内存在自发极化,自发极化具有两个或多个可能的取向,其取向可能随电场而转向.铁电体并不含“铁”,只是它与铁磁体具有磁滞回线相类似,具有电滞回线,因而称为铁电体。在某一温度以上,它为顺电相,无铁电性,其介电常数服从居里-外斯(Curit-Weiss)定律。铁电相与顺电相之间的转变通常称为铁电相变,该温度称为居里温度或居里点Tc。铁电体即使在没有外界电场作用下,内部也会出现极化,这种极化称为自发极化。自发极化的出现是与这一类材料的晶体结构有关的。 晶体的对称性可以划分为32种点群。在无中心对称的21种晶体类型种除432点群外其余20种都有压电效应,而这20种压电晶体中又有10种具热释电现象。热释电晶体是具有自发极化的晶体,但因表面电荷的抵偿作用,其极化电矩不能显示出来,只有当温度改变,电矩(即极化强度)发生变化,才能显示固有的极化,这可以通过测量一闭合回路中流动的电荷来观测。热释电就是指改变温度才能显示电极化的现象,铁电体又是热释电晶体中的一小类,其特点就是自发极化强度可因电场作用而反向,因而极化强度和电场E 之间形成电滞回线是铁电体的一个主要特性。 自发极化可用矢量来描述,自发极化出现在晶体中造成一个特殊的方向。晶体红,每个晶胞中原子的构型使正负电荷重心沿这个特殊方向发生位移,使电荷正负中心不重合,形成电偶极矩。整个晶体在该方向上呈现极性,一端为正,一端为负。在其正负端分别有一层正和负的束缚电荷。束缚电荷产生的电场在晶体内部与极化反向(称为退极化场),使静电能升高,在受机械约束时,伴随着自发极化的应变还将使应变能增加,所以均匀极化的状态是不稳定的,晶体将分成若干小区域,每个小区域称为电畴或畴,畴的间界叫畴壁。畴的出现使晶体的静电能和应变能降低,但畴壁的存在引入了畴壁能。总自由能取极小值的条件决定了电畴的稳定性。 参考资料 [1]钟维烈,铁电物理学,科学出版社,1996。 [2]干福熹,信息材料,天津大学出版社,2000 [3]J.F.Scoot,Ferroelectric Memories,Springer,2000。 实验目的 一、了解什么是铁电体,什么是电滞回线及其测量原理和方法。 二、了解铁薄膜材料的功能和应用前景。 实验原理 一、铁电体的特点 1.电滞回线 铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。在电场作用下新畴成核长,畴壁移动,导致极化转向,在电场很弱时,极化线

xxx大数据性能测试方案-V1.0-2.0模板

编号: 密级: XXX大数据平台 性能测试方案 [V1-2.0] 拟制人: 审核人: 批准人: [2016年06月08日]

文件变更记录 *A - 增加M - 修订D - 删除 修改人摘要审核人备注版本号日期变更类型 (A*M*D) V2.0 2016-06-08 A 新建性能测试方案

目录 目录................................................................................................................................................................... I 1 引言 (1) 1.1编写目的 (1) 1.2测试目标 (1) 1.3读者对象 (1) 1.4 术语定义 (1) 2 环境搭建 (1) 2.1 测试硬件环境 (1) 2.2 软件环境 (2) 3 测试范围 (2) 3.1 测试功能点 (2) 3.2 测试类型 (2) 3.3性能需求 (3) 3.4准备工作 (3) 3.5 测试流程 (3) 4.业务模型 (4) 4.1 基准测试 (4) 4.1.1 Hadoop/ Spark读取算法的基准测试 (4) 4.1.2 Hadoop/ Spark写入算法的基准测试 (5) 4.1.3 Hadoop/ Spark导入算法的基准测试 (6) 4.1.4 Hadoop/ Spark导出算法的基准测试 (7) 4.2 负载测试 (8) 4.2.1 Hadoop/ Spark并行读取/写入算法的负载测试 (8) 4.2.2 Hadoop/ Spark并行导入/导出算法的负载测试 (9) 4.3 稳定性测试 (10) 4.3.1 Hadoop/ Spark并行读取/写入/导入/导出算法,7*24小时稳定性测试 (10) 5 测试交付项 (12) 6 测试执行准则 (12) 6.1 测试启动 (12) 6.2 测试执行 (12) 6.3 测试完成 (13) 7 角色和职责 (13) 8 时间及任务安排 (13) 9 风险和应急 (14) 9.1影响方案的潜在风险 (14) 9.2应急措施 (14)

氧化铝陶瓷的制备实验指导书

结构陶瓷的制备通常由所需起始物料的细粉,加入一定的结合剂,根据合适的配比混合后,选择适当的成型方法,制成坯体。坯体经干燥处理后,进行烧结而得到。坯体经烧结后,宏观上的反映为坯体有一定程度的收缩,强度增大,体积密度上升,气孔率下降,物理性能得到提高。 实验目的: 1.选用氧化铝粉体,通过干法成型,制备氧化铝陶瓷。 2.选用合适的烧结助剂,促进氧化铝陶瓷的烧结,加深对陶瓷烧结的理解。 3.熟悉陶瓷常用物理性能的测试方法 实验原理: 氧化物粉体经成型后得到的生坯,颗粒间只有点接触,强度很很低,但通过烧结,虽在烧结时既无外力又无化学反应,但能使点接触的颗粒紧密结成坚硬而强度很高的瓷体,其驱动力为粉体具有较高的表面能。但纯氧化铝陶瓷的烧结需要的温度很高,为在较低的温度下完成烧结,需要向体系中加入一定的助烧剂,使其能在相对较低的温度下出现液相而实现液相烧结。 本实验中,采用向氧化铝粉体中加入适量的二氧化硅粉体以促进烧结,而达到氧化铝陶瓷烧结的目的。 实验仪器: 天平、烧杯、压力机、模具、游标卡尺、电炉等 实验步骤: 1.配料。将氧化铝、氧化锆粉体按80:20的质量比例混合均匀,并外加入 5%的水起结合作用。 2.制样。称取适量混合好的粉体,倒入模具内,压制成型。并量尺寸,计算 生坯的体积密度。 3.干燥。将成型好的生坯充分干燥。 4.烧结。将干燥后的生坯置于电炉内,在1600℃的条件下保温3小时。 5.检测。测量烧后试样的尺寸,计算其体积密度。计算烧结前后线变化率。

1.实验目的 2.实验仪器 3.实验数据记录及数据处理 起始物料的配比;结合剂的加入量;烧结前后试样的体积密度及质量变化;烧结前后的线变化率。 4.思考题: 1)助烧剂的作用机理是什么? 2)常用体积密度的测试方法有哪几种?

驻车制动性能测试仪

驻 车 制 动 检 测 仪 使 用 说 明 书 天津市圣威科技发展有限公司

目录 一、概述 (1) 二、主要技术指标 (1) 三、主要特点 (1) 四、工作原理 (1) 五、安全操作注意事项 (2) 六、驻车制动检测流程说明 (3) 七、具体界面及操作介绍 (4) 八、设备的日常维护和保养 (7)

一、概述 驻车制动检测仪是用于测量车辆驻车制动性能的仪器。 该仪器采用测力传感器来测量机动车驻车制动时的制动力,通过机械装置将在坡道上的驻车制动方式转换为平坦路面制动方式。解决了城市机动车检测站场地不足,不便修建标准坡道的难题,为《机动车运行安全技术条件》(GB7258-2012)、《机动车安全检验项目和方法》(GB21861)中路试检验制动性能提供了一种方便准确的检测手段。 二、主要技术指标 1、量程:70kN 2、最大允许误差:±2% 3、仪器的分辨力:1N 三、主要特点 1、LCD 液晶触摸屏显示操作。 2、可打印测量结果。 3、1km内无线传输。 4、可单机登陆检测打印也可远程登陆和查询检测结果。 四、工作原理 驻车制动检测仪主要组成部分:机械固定底座、上下位置调 整涡轮涡杆、拉力涡轮涡杆、控制仪表、强电柜。 驻车制动检测仪的工作原理是按规定的控制力进行一次驻 车制动, 通过减速机转动蜗杆给被测车辆施加牵引力,当所施加的

牵引力大于或等于被测车辆整备质量的20%(对总质量为整备质量的1.2 倍以下的机动车为15%)时,测量仪表将停止加载,如果车辆保持静止,就达到国家标准所要求的合格判定要求,反之即为不合格。 图一装置组成部分 五、安全操作注意事项 1、先检查设备是否可以正常运行; 2、先检查汽车牵引装置,牵引要求符合GB 21861 标准再进行检验; 3、车辆应停在指定检验区域,检验区域非检验人员不 得进入;

高效液相色谱仪的使用及运行性能测试

高效液相色谱仪的使用及运行性能测试 实验目的 1.了解高效液相色谱仪的基本原理和结构。 2.掌握高效液相色谱仪的基本操作方法。 3.掌握测试高效液相色谱仪运行性能的指标和方法,验证各部件及整机的性能。 实验器材 高效液相色谱仪,LC-ATvp高压泵、SCL-10Avp程序控制器、SPD-M10Avp二极管阵列检测器、CTO-10Asvp温度控制器。Shim-packVP-ODS C18 150×4.6mm分析柱、20μl进样器、AS3210型超声波发生器。无水甲醇和双蒸水各500ml(脱气处理)、萘、咖啡因(均为色谱纯或分析纯)。 实验原理 高效液相色谱法是一种现代液相色谱法,其基本方法是用高压输液泵将流动相泵入装有填充剂的色谱柱,注入的供试品被流动相带入柱内进行分离后,各成分先后进入检测器,用记录仪或数据处理装置记录色谱图并进行数据处理,得到测定结果。由于应用了各种特性的微粒填料和加压的液体流动相,本法具有分离性能高、分析速度快的特点。 仪器描述 高效液相色谱仪由输液泵、进样器、色谱柱、检测器和色谱数据处理系统组成。LC-2010和Agilent1100型为单泵型,适于单一流动相的洗脱;LC-10Avp型为双泵型高效液相色谱仪,适于程序洗脱。单泵型高效液相色谱仪的结构示意见图9-1。 实验步骤 (一)高效液相色谱仪的基本操作步骤(以岛津LC-10A为例) 1.依照顺序开机,自检完毕后进入操作模板; 2.设定洗脱程序、检测器的条件及测定报告; 3.完成实验过程,打印试验结果,依照顺序关机。 (二)性能测试

高效液相色谱仪的性能检查分为单个部件的验证和整机验证。验证时一般先验证泵、柱温箱、自动进样器的性能,接着是检测器的性能,最后是整机的性能验证。验证目的是检查并确认高效液相色谱仪运行性能是否符合要求。 1.验证标准 按照中华人民共和国国家计量检定规程,高效液相色谱仪各验证部件的验证项目的合格标准见表9-1。 表9-1 高效液相色谱仪各验证部件的验证项目的合格标准 验证部件验证项目合格标准 输液泵流量设定值误差Ss 0.5ml.min-1: < 5%; 1.0ml.min-1: < 3% 2.0 ml.min-1: < 2% 流量稳定性误差SR 0.5ml.min-1: < 3%; 1.0ml.min-1: < 2% 2.0 ml.min-1: < 2% 柱温箱柱温箱设定值误差ΔTs< ±2℃柱温箱控温稳定性Tc ≤1℃ 自动进样器进样量准确度误差≤±2% 检测器基线噪声≤2×10+5AU 最小检测浓度≤1×10-7g.ml-1(萘的甲醇溶液) 基线漂移≤5×10-4AU.h-1 整机性能定性测量重复性误差RSD≤0.5% 2.验证步骤 (1)输液泵泵流量设定值误差SS、流量稳定性误差SR的检定 将仪器的各部分联接好,以甲醇为流动相,流量设为1.0mL.min-1,按说明书启动仪器,待压力平稳后保持10分钟,按表16-2设定相应数值,待流速稳定后,在流动相排出口用事先清洗称重过的容量瓶收集流动相,同时用秒表计时,准确地收集,称重。按式(1)、式(2)计算SS和SR,结果填入数据记录与处理的表9-3中。 表9-2 流量、次数、收集时间表 流量设定值(mL/min)0.5 1.0 2.0 测量次数 3 3 3 流动相收集时间(min)10 5 5

HfC陶瓷先驱体的制备及其性能研究

Material Sciences 材料科学, 2017, 7(8), 716-724 Published Online November 2017 in Hans. https://www.wendangku.net/doc/c05030362.html,/journal/ms https://https://www.wendangku.net/doc/c05030362.html,/10.12677/ms.2017.78094 Preparation and Properties of HfC Ceramic Precursor Liyan Zhang, Xiaozhou Wang, Yifei Wang Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha Hunan Received: Nov. 5th, 2017; accepted: Nov. 19th, 2017; published: Nov. 27th, 2017 Abstract As an important ultra-high temperature ceramics (UHTCs), HfC ceramics have been considered to be one of the most promising materials for the application in aerospace. A precursor for HfC ce-ramic was prepared by using hafnium tetrachloride, methanol, acetylacetone, and 1,4-butanediol as raw materials. The composition, structure and pyrolysis process of the obtained precursor was investigated by elemental analysis, Fourier transform infrared (FTIR), XPS and TG-MS. The results show that, the precursor mainly contains Hf, C, O, Cl, with a linear structure of Hf-O-C. The compo-sition, structure and properties of the pyrolysis products were analyzed by elemental analysis, XRD and SEM. It is found that hafnia still remain in the products after being treated at 1600?C in argon. In addition, the carbothermal reduction had started at 1200?C, and only HfC existed after the heat treatment of 1600?C in vacuum. Keywords HfC, Ultra-High-Temperature, Precursor, Ceramic HfC陶瓷先驱体的制备及其性能研究 张丽艳,王小宙,王亦菲 国防科技大学,航天科学与工程学院新型陶瓷纤维及其复合材料重点实验室,湖南长沙 收稿日期:2017年11月5日;录用日期:2017年11月19日;发布日期:2017年11月27日 摘要 HfC陶瓷具有优异的耐超高温性能,在航空航天领域具有广阔的应用前景。本文以四氯化铪、乙酰丙酮、甲醇、1,4-丁二醇为原料合成了HfC陶瓷先驱体。采用元素分析、红外光谱、XPS、TG-MS等对先驱体的

性能测试方案

XXX系统--版本号XXX 性能测试方案 XXX有限公司 XXXX年XX月XX日 修订历史记录

目录 1简介 (1) 1.1目的和软件说明 (1) 1.2内容摘要 (1) 1.3适用对象 (1) 1.4术语和缩略语 (1) 1.5参考文档 (1) 2系统概述 (2) 2.1项目背景 (2) 2.2系统架构 (3) 2.2.1架构概述 (3) 2.2.2运行环境 (3) 2.2.3处理流程 (4) 2.3技术方案设计 (4) 3测试目标 (5) 4测试范围 (6)

4.1测试对象 (6) 4.2需要测试的特性 (6) 4.3不需要测试的特性 (7) 5 4. 测试启动/结束/暂停/再启动准则 (8) 5.1启动准则 (8) 5.2结束准则 (8) 5.3暂停准则 (8) 5.4再启动准则 (9) 6测试人员 (10) 7测试时间 (11) 8测试环境 (12) 8.1系统架构图 (12) 8.2测试环境逻辑架构图 (12) 8.3测试环境物理架构图 (12) 8.4环境配置列表 (12) 8.4.1生产环境 (12)

8.4.2测试环境 (13) 8.4.3环境差异分析 (13) 8.4.4测试客户机 (14) 8.5测试工具 (14) 9测试策略 (15) 10测试场景设计 (16) 10.1总体设计思路 (16) 10.2业务模型 (16) 10.3测试场景设计 (17) 10.3.1......................................... 单交易负载测试 17 10.3.2....................................... 混合交易负载测试 18 10.3.3............................................. 稳定性测试 18 10.3.4...................................... 有/无缓存比对测试 19 10.3.5....................................... 网络带宽模拟测试 19 11测试实施准备.. (21) 11.1................................................. 测试环境准备 21

二氧化锆陶瓷的制备及性能分析

特种陶瓷综合论文 院(部、中心)材料科学与工程学院 姓名 x x x 学号 xxx 专业材料科学与工程班级 xx 课程名称特种陶瓷材料综合论文 设计题目名称氧化锆陶瓷的制备及性能分析 起止时间 成绩 指导教师 xxx大学教务处制

目录 一、氧化锆的基本性质及应用 (1) 1.1氧化锆的基本性质 (1) 1.2氧化锆的应用 (1) 二、氧化锆粉料的制备 (1) 2.1常用微粉 (2) 2.2 超细粉制备 (2) 三、氧化锆陶瓷的成型 (4) 3.1 热压铸成型 (4) 3.2 干压成型 (4) 3.3 等静压成型 (6) 3.4注浆成型 (6) 3.5流延成型 (6) 3.6凝胶注模成型 (7) 四、氧化锆陶瓷的烧结 (7) 4.1 真空烧结炉 (8) 4.2实验室烧结炉 (10) 五、氧化锆陶瓷的性能测试 (11) 5.1体积密度、吸水率和气孔率的测定 (11) 5.2 抗压强度的测定 (12) 5.3 三点抗弯强度 (12) 5.4 SEM 测试分析 (12)

一、氧化锆的基本性质及应用 1.1氧化锆的基本性质 氧化锆是自然界中以斜锆石存在的一种矿物,是一种耐高温、耐磨损、耐腐蚀的无机非金属材料。它的熔点高达2700摄氏度。白色重质无定形粉末,无臭、无味。溶于2份硫酸和1份水的混合液中,微溶于盐酸和硝酸,慢溶于氢氟酸,几乎不溶于水。有刺激性。相对密度5.85。熔点 2680℃。沸点4300℃。硬度次于金刚石[1]。能带间隙大约为5-7eV 。一般常含有少量的氧化铪。化学性质不活泼,且高熔点、高电阻率、高折射率和低热膨胀系数的性质,使它成为重要的耐高温材料、陶瓷绝缘材料和陶瓷遮光剂。纯的ZrO 2在常压下共有三种晶型:从低温到高温一次为单斜相、四方相、和立方相。氧化锆晶型转变如下:[2] 221170℃2370℃t 2 950℃m ZrO ZrO c ZrO --- 1.2氧化锆的应用 主要用于压电陶瓷制品、日用陶瓷、耐火材料及贵重金属熔炼用的锆砖、锆管、坩埚等。也用于生产钢及有色金属、光学玻璃和氧化锆纤维。还用于陶瓷颜料、静电涂料及烤漆[3]。 氧化锆还是一种很优秀的高科技生物材料。生物相容性好,优于各种金属合金,包括黄金。氧化锆全瓷牙具有极高的密合性,且对牙龈无刺激、无过敏反应,很适合应用于口腔。导热性能极低,仅为黄金的十七分之一,更有利于牙髓的保护。质量轻,密度仅为黄金的四分之一,患者佩戴更舒适。 二、氧化锆粉料的制备 氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多。氧化锆的提纯主要有氯化和热分解法、碱

开关电源电性能测试标准和方法

开关电源电性能测试标准和方 法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

开关电源电气性能测试标准和方法 I.测试标准 一.电性能标准 1.输入电压100-240VAC 2.输入频率47-63Hz 3.总谐波失真小于20% 4.功率因数大于90% 5.效率大于90% 6.电压调整率小于2% 7.负载调整率小于2% 二.耐用性标准 1.开路保护 2.短路保护 3.过功率保护 4.抗雷击大于4KV 5.环境温度-40℃~70℃ 6.电源电压开关次数大约于1000次 7.寿命大于50000Hr 三.防护等级标准 1.IP67: II.测试方法 一.电性能测试方法 1.设备:数字电参数测量仪,万用表,调压器,可调负 载。 2.测试方法:电源接标称功率的80%-90%的负载。串于数 字电参数测量仪后,开灯测量。调压器先将电源电压调 至AC100V,60Hz。测量开关电源的输出电压并记录。再将 电源调至AC240V,50Hz。测量开关电源的输出电压并记 录。计算出输出电压相对变化量。输入电压标称值 220VAC,50Hz时,可调负载在标称值的10%-100%范围

变化,测量开关电源的输出电压并记录。计算出输出电 压相对变化量。 二耐用性测试方法: 1.设备:雷击测试仪,万用表, 可调负载,恒温箱,计数 器,时钟,老化台。 2.开路保护:电源输出端不接入负载,接通额定电压并 持续1Hr后,再接入标称负载,电源应能正常工作。 3.短路保护:电源输出端正负极直接短路,接通额定电 压并持续1Hr后,再断开正负极短路装置,接入标称 负载,电源应能正常工作。 4.过功率保护:当输出端接入超出标称值负载时,电源 应自动降低功率输出。 5.抗雷击保护:雷击测试仪 6.环境温度测试:恒温箱温度调至60℃,开关电源置于 恒温箱内,外接正常负载。开灯并持续1Hr。然后将 开关电源移至-25℃的恒温箱内,开灯并持续1Hr。如 此循环5次。 7.电源电压开关测试:在额定电源电压下,电源开启和 关闭各30s。无负载情况下循环200次。最大负载情 况下循环800次。 8.寿命测试:路灯置于老化台上,持续工作。直至开关电 源无法工作。记录时间。 三防护等级测试方法: 1.设备:水箱,时钟。 2.测试方法:在标准大气压下,开关电源置于水箱 中,样品底部距水底至少1米,样品顶部距水面至 少0.15米。时间30分钟。

第四章 汽车制动性能检测

第四章汽车制动性能检测 制动检验台常见的分类方法有:按测试原理不同,可分为反力式和惯性式两类;按检验台支撑车轮形式不同,可分为滚筒式和平板式两类;按检测参数不同,可分为测制动力式、测制动距离式、测制动减速度式和综合式四种;按检验台的测量、指示装置、传递信号方式不同,可分为机械式、液力式和电气式三类;目前国内汽车综合性能检测站所用制动检验设备多为反力式滚筒制动检验台和平板式制动检验台。目前国内外已研制出惯性式防抱死制动检验台但价格昂贵,短期内难以普及应用。本章内容重点介绍反力式滚筒制动试验台。 第一节制动台结构及工作原理 一、反力式滚筒制动检验台 1.基本结构 反力式滚筒制动检验台的结构简图如图2-4-1所示。它由结构完全相同的左右两套对称的车轮制动力测试单元和一套指示、控制装置组成。每一套车轮制动力测试单元由框架(多数试验台将左、右测试单元的框架制成一体)、驱动装置、滚筒组、举升装置、测量装置等构成。 图 2-4-1反力式制动检验台结构简图 (1)驱动装置 驱动装置由电动机、减速器和链传动组成。电动机经过减速器减速后驱动主动滚筒,主动滚筒通过链传动带动从动滚筒旋转。减速器输出轴与主动滚筒同轴连接或通过链条、皮带连接,减速器壳体为浮动连接(即可绕主动滚筒轴自由摆动)。日式制动台测试车速较低,一般为0.1~0.18km/h, 驱动电动机的功率较小,为2×0.7~2×2.2kW;而欧式制动台测试车速相对较高,为2.0~5km/h,驱动电动机的功率较大,为2×3~2×11kW。减速器的作用是减速增扭,其减速比根据电动机的转速和滚筒测试转速确定。由于测试车速低,滚筒转速也较低,一般在40~100r/min范围(日式检验台转速则更低,甚至低于10r/min)。因此要求减速器减速比较大,一般采用两级齿轮减速或一级蜗轮蜗杆减速与一级齿轮减速。 理论分析与试验表明,滚筒表面线速度过低时测取协调时间偏长、制动重复性较差,过高时对车轮损伤较大,推荐使用滚筒表面线速度为2.5km/h左右的制动台。 (2)滚筒组

性能测试测试方案

性能测试详细测试方案 、八、- 前言 平台XX项目系统已经成功发布,依据项目的规划,未来势必会出现业务系统中信息大量增长的态势。 随着业务系统在生产状态下日趋稳定、成熟,系统的性能问题也逐步成为了我们关注的焦点:每天大数据量的“冲击”,系统能稳定在什么样的性能水平,面临行业公司业务增加时,系统能否经受住“考验”,这些问题需要通过一个完整的性能测试来给出答案。 1第一章XXX系统性能测试概述 1.1 被测系统定义 XXX系统作为本次测试的被测系统(注:以下所有针对被测系统地描述均为针对XXX系统进行的),XXX系统是由平台开发的一款物流应用软件,后台应用了Oraclellg数据库, 该系统包括主要功能有:XXX 等。在该系统中都存在多用户操作,大数据量操作以及日报、周报、年报的统计,在本次测试中,将针对这些多用户操作,大数据量的查询、统计功能进行如预期性能、用户并发、大数据量、疲劳强度和负载等方面的性能测试,检查并评估在模拟环境中,系统对负载的承受能力,在不同的用户连接情况下,系统的吞吐能力和响应能力,以及在预计的数据容量中,系统能够容忍的最大用户数。1.1.1 功能简介 主要功能上面已提到,由于本文档主要专注于性能在这里功能不再作为重点讲述。 1.1.2 性能测试指标 本次测试是针对XXX系统进行的全面性能测试,主要需要获得如下的测试指标。 1、应用系统的负载能力:即系统所能容忍的最大用户数量,也就是在正常的响应时间中,系统能够支持的最多的客户端的数量。

2、应用系统的吞吐量:即在一次事务中网络内完成的数据量的总和,吞吐量指标反映的是服务器承受的压力。事务是用户某一步或几步操作的集合。 3、应用系统的吞吐率:即应用系统在单位时间内完成的数据量,也就是在单位时间内,应用系统针对不同的负载压力,所能完成的数据量。 4、T PS每秒钟系统能够处理事务或交易的数量,它是衡量系统处理能力的重要指标。 5、点击率:每秒钟用户向服务器提交的HTTP青求数。 5、系统的响应能力:即在各种负载压力情况下,系统的响应时间,也就是从客户端请求发起,到服务器端应答返回所需要的时间,包括网络传输时间和服务器处理时间。 6、应用系统的可靠性:即在连续工作时间状态下,系统能够正常运行的时间,即在连续工作时间段内没有出错信息。 1.2系统结构及流程 XXX系统在实际生产中的体系结构跟本次性能测试所采用的体系结构是一样的,交易流 程也完全一致的。不过,由于硬件条件的限制,本次性能测试的硬件平台跟实际生产环境略有不同。 1.2.1系统总体结构 描述本系统的总体结构,包括:硬件组织体系结构、网络组织体系结构、软件组织体系结构和功能模块的组织体系结构。 1.2.2功能模块 本次性能测试中各类操作都是由若干功能模块组成的,每个功能都根据其执行特点分成 了若干操作步骤,每个步骤就是一个功能点(即功能模块),本次性能测试主要涉及的功能 模块以及所属操作如下表

陶瓷的制备方法实验报告

一.实习目的 掌握陶瓷主要工艺实验的原理、方法与一定的操作技能,通过陶瓷工艺综合实验了解陶瓷产品的设计程序与工艺过程,培养综合设计实验的能力,提高分析问题、解决问题和动手能力。 二.实习时间 2013年11月22日 三.实习地点 南信大尚贤实验室及江都金刚机械厂 四实习过程 1.陶瓷材料 A概念:用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。 B 分类:普通材料:采用天然原料如长石、粘土和石英等烧结而成,是典型 的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。 特种材料:采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成, 一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。 C性能: (1)力学特性:陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。(2)热特性:陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。 (3)电特性:大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件。铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。 (4)化学特性:陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。 (5)光学特性:陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。 2.实验材料 粘土:是多种微细的矿物的混合体,其矿物的粒径多数小于2μm,主要是由粘土矿物和其他矿物组成的并且具有一定特性的(其中主要是可塑性)土状岩石

材料的电学性能测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。区分标准一般以106Ω?cm和1012Ω?cm为基准,电阻率低于106Ω?cm称为导体,高于1012Ω?cm称为绝缘体,介于两者之间的称为半导体。然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。就高分子材料而言,通常是以电阻率1012Ω?cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω?cm称为导电高分子材料,电阻率为106 ~1012Ω?cm常称为抗静电高分子。通常高分子材料都是优良的绝缘材料。 通过本实验应达到以下目的: 1、了解高分子材料的导电原理,掌握实验操作技能。 2、测定高分子材料的电阻并计算电阻率。 3、分析工艺条件与测试条件对电阻的影响。 二、实验原理 1、电阻与电阻率 材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。 体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。 体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。高阻测量一般可以利用欧姆定律来实现,即R=V/I。如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。问题是R值很大时,用恒流测压法,被测电压V=RI将很大。若I=1μA,R=1012Ω,要测的电压V=106V。用加压测流法,V是已知的,要测的电流I=V/R将很小。因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。 2、导电高分子材料的分类

相关文档
相关文档 最新文档